THE SAFE LAMBDA CALCULUS

William Blum

Linacre College

Submitted in partial fulfilment of the requirements for
the degree of Doctor of Philosophy

Oxford University Computing Laboratory

Michaelmas 2008

Abstract

We consider a syntactic restriction for higher-order grammars called safety that
constrains occurrences of variables in the production rules according to their type-
theoretic order. We transpose and generalize this restriction to the setting of the
simply-typed lambda calculus, giving us what we call the safe lambda calculus. We
study the expressivity of the calculus and show a result in the same vein as Schwicht-
enberg’s 1976 characterization of the simply-typed lambda calculus: we show that
the numeric functions representable in the safe lambda calculus are exactly the multi-
variate polynomials; thus conditional is not definable. We also give a characterization
of representable word functions. We then study the complexity of deciding beta-eta
equality of two safe simply-typed terms and show that this problem is PSPACE-hard.
The safety restriction is then extended to other applied lambda calculi featuring re-
cursion and references such as PCF and Idealized Algol (IA for short).

In order to study the game semantics of safe languages, we introduce a new concrete
presentation of game semantics based on the theory of traversals: we show that the
revealed game denotation of a term can be computed by traversing some souped-up
version of the abstract syntax tree of the term using adequately defined traversal
rules. This result was presented at the Galop workshop at ETAPS 2008. This allows
us to give a game-semantic analysis of safety via syntactic reasoning: we show that
safe lambda-terms are denoted by what we call P-incrementally justified strategies.
This result was presented at TLCA 2007.

Next we study models of the safe lambda calculus and show that these are captured
by Incremental Closed Categories. We build a categorical game model of the safe
lambda calculus which gives rise to a fully abstract game model of safe IA. The model
obtained for safe TA is effectively presentable: two terms are equivalent just if they
have the same set of complete O-incrementally justified plays, where O-incremental
justification is defined as the dual of P-incremental justification.

Finally in the last chapter we study safety from the point of view of algorithmic
game semantics. We observe that up to the 3" order, the addition of unsafe context
is conservative for observational equivalence (for both TA and safe TA). This implies
that all the upper complexity bounds known for the lower-order fragments of IA also
hold for the safe fragment; we show that it is also the case for the known lower-
bounds. At order 4, observational equivalence was shown to be undecidable for TA.
We conjecture that for the order-4 safe fragment of IA, the problem is reducible to
the DPDA-equivalence problem (which is decidable).

Contents

1 Introduction

1.1 Background L
1.2 Overview o
1.3 Organization of the thesis 0L

2 Background

2.1 Lambda Calculus
21,1 Terms . . . o e e e e
2.1.2 Substitution
2.1.3 Conversion
2.1.4 Properties
2.1.5 Simple typeso
2.1.6 Simply-typed lambda calculus ¢ la Curry
2.1.7 Simply-typed lambda calculus a la Church
2.1.8 Extensions
2.1.9 PCF e
2.1.10 Idealized Algol

2.2 Higher-Order Grammars and the Safety Restriction
2.2.1 Higher-order grammars e
2.2.2 The safety restrictiono L oL
2.2.3 Automata-theoretic Characterization
2.24 Expressivity oL e
2.2.5 Is safety a genuine restriction? oo
2.2.6 Higher-order grammars and the simply-typed lambda calculus

2.3 Game Semantics e
2.3.1 Historical remarks
2.3.2 Definitions
2.3.3 Categorical interpretation
2.3.4 The fully abstract game model of PCF
2.3.5 The fully abstract game model of Idealized Algol
2.3.6 On the necessity of justification pointers
2.3.7 Algorithmic game semantics

3 The Safe Lambda Calculus

3.1 Definition and properties.
3.1.1 Safety adapted to the lambda calculus
3.1.2 Safe beta reduction
3.1.3 Eta-long normal form 0 0o
3.1.4 Almost safety L
3.1.5 Safety with respect to other type-ranking functions
3.1.6 Homogeneous safe lambda calculus

3.2 Complexity o

SN =

© o ©

10

12
12
13
14
15
15
17
20
20
21
23
23
24
24
26
26
28
34
36
41
43
45

ii Contents
3.2.1 Statman’sresult e 66
3.2.2 Mairson’s encodingo 67
3.2.3 PSPACE-hardness e 70
3.2.4 Other complexity results Lo oL 71

3.3 Expressivity oo e 72
3.3.1 Numeric functions representable in the safe lambda calculus 72
3.3.2 Word functions definable in the safe lambda calculus. 74

3.4 Typing problems 78
3.4.1 Relating derivations from AS" and safe AC* 78
3.4.2 Type checking and typability 79
3.4.3 The type inhabitation problem 80

3.5 Extensions. e e e 81
3.5.1 PCF . . e 81
3.5.2 Idealized Algol 85
3.5.3 Generalization to other applied lambda calculi 91

3.6 Related work e e 92

4 A Concrete Presentation of Game Semantics 93

4.1 Computation treeo 94
4.1.1 Definition L 94
4.1.2 Pointers and justified sequence of nodes 97
4.1.3 Traversal of the computation tree 100

4.2 Game semantics correspondenceo oo e e 120
4.2.1 Revealed game semantics L L L oo 121
4.2.2 Relating computation trees and games 130
4.2.3 Mapping traversals to interaction plays 134
4.2.4 The correspondence theorem for the pure simply-typed lambda calculus . 136

4.3 Extension to PCF and TA 147
4.3.1 PCF fragment 147
4.3.2 Idealized algol L 152

4.4 Conclusion and related works L 157

5 Syntactic Analysis of the Game Denotation of Safe Terms 161

5.1 P-incrementally justified strategies 162

5.2 Dead code elimination 162

5.3 Incremental binding L L 163

5.4 Safe lambda calculus 167

5.5 Safe PCEF e 169

5.6 Safe Idealized Algol 171

5.7 Towards a game model of safe PCF 171
5.7.1 Definability 171
5.7.2 Compositionality 172
5.7.3 Full abstraction e 174

6 Models of Safe Applied Lambda Calculi 175

6.1 Categorical model 175
6.1.1 Safe lambda calculus with product 175
6.1.2 Incremental closed category 178
6.1.3 Categorical semantics Lo 180
6.1.4 Quotiented categoryo 181
6.1.5 The internal language of incremental closed categories 182

6.2 The game model L 183
6.2.1 Orderofamove 184

Contents 1ii

6.2.2 Well-bracketing 184

6.2.3 P-incremental justificationo oL 0oL 186

6.2.4 Closed P-incremental justification 186

6.2.5 Interaction sequences. e e 187

6.2.6 Preliminary results 189

6.2.7 Categories of closed P-i.j. strategies 197

6.3 Interpretation in the standard game model 198
6.3.1 Safe lambda calculus with product 198

6.3.2 Safe PCF e 199

6.3.3 Safe Idealized Algol 199

6.4 O-incremental justification L Lo 202
6.5 Full abstraction Lo 203
6.6 Algorithmic game semantics 208

7 Conclusion 213
7.1 Summary of contribution Lo Lo 213
7.2 Further works L 214
Bibliography 219
Index to Notations 227

Index 229

iv

Contents

List of Figures

2.1

4.1
4.2
4.3
4.4
4.5

6.1
6.2

Strategy denotation of the case construct. L. 40
Tree-representation of the revealed strategy in the application case. 126
Flow-diagram for interaction plays of (I' - a; Ny ... Np). 128
Example of a sequence u [A, B,C forue (M) and l=1. 143
Transformations involved in the Correspondence Theorem. 146
Computation tree of Axy.cond 1 x y. oo 151
Structure of an interaction sequence. Lo L 188
State diagram for plays of of. 197

vi

List of Figures

List of Tables

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5

6.1
6.2
6.3

Formation rules for PCF terms. 16
Big-step operational semantics of PCF. 16
Formation rules for TA. 18
Big-step operational semantics of TA. L L. 19
Algorithm LmdToHORS. 25
The complete complexity classification for observational equivalence in TA. 47
The safe lambda calculus ¢ la Curry. 51
Typing rules for long-safe terms-in-contexts. 59
Alternative definition of the safe lambda calculus a la Curry. 61
Alternative definition of the lambda calculus a la Curry. 78
Formation rules for safe PCF. 82
Formation rules for strongly safe TA. 0L 86
Formation rules for safe TA. &9
The tree 77 (M). . . o o o o 95
Type of the enabler node. 97
Traversal rules for the simply-typed lambda calculus. 101
Computation hypertrees of IA constructs. 154
Traversal rules for IA constants. 155
The safe lambda calculus with product safe. 177
Complexity of observational equivalence in safe IA. 211

Murawski representability. 211

viil List of Tables

Chapter 1

Introduction

1.1 Background

The safety condition was introduced by Knapik, Niwinski and Urzyczyn at FoSSaCS 2002
[| in a seminal study of the algorithmics of infinite trees generated by higher-order gram-
mars. The idea, however, goes back some twenty years to Damm | | who introduced an
essentially equivalent! syntactic restriction (for generators of word languages) in the form of
derived types. A higher-order grammar (that is assumed to be homogeneously typed) is said to
be safe if it obeys certain syntactic conditions that constrain the occurrences of variables in the
production (or rewrite) rules according to their type-theoretic order. Though the formal defini-
tion of safety is somewhat intricate, the condition itself is manifestly important. As we survey in
the following, higher-order safe grammars capture fundamental structures in computation, offer
clear algorithmic advantages, and lend themselves to a number of compelling characterizations:

e Word languages. Damm and Goerdt | | have shown that the word languages generated
by order-n safe grammars form an infinite hierarchy as n varies over the natural numbers.
The hierarchy gives an attractive classification of the semi-decidable languages: levels 0,
1 and 2 of the hierarchy are respectively the regular, context-free, and indexed languages
(in the sense of Aho |]), although little is known about higher orders.

Remarkably, for generating word languages, order-n safe grammars are equivalent to order-
n pushdown automata | |, which are in turn equivalent to order-n indexed grammars

[) J

o Trees. Knapik et al. have shown that the Monadic Second Order (MSO) theories of trees
generated by safe (deterministic) grammars of every finite order are decidable?.

They have also generalized the equi-expressivity result due to Damm and Goerdt |]
to an equivalence result with respect to generating trees: A ranked tree is generated by an
order-n safe grammar if and only if it is generated by an order-n pushdown automaton.

e Graphs. Caucal |] has shown that the MSO theories of graphs generated® by safe
grammars of every finite order are decidable. In a recent paper | |, however, Hague
et al. have shown that the MSO theories of graphs generated by order-n unsafe grammars
are undecidable, but deciding their modal mu-calculus theories is n-EXPTIME complete.

!See de Miranda’s thesis |] for a proof.

2It has recently been shown [] that trees generated by unsafe deterministic grammars (of every finite
order) also have decidable MSO theories. More precisely, the MSO theory of trees generated by order-n recursion
schemes is n-EXPTIME complete.

3These are precisely the configuration graphs of higher-order pushdown systems.

2 Chapter 1. Introduction

1.2 Overview

The aim of this thesis is to understand the safety condition in the setting of the typed lambda
calculus. Our first task is to transpose it to the lambda calculus and pin it down as an appropriate
sub-system of the simply-typed theory. A first version of the safe lambda calculus has appeared
in an unpublished technical report [|. Here we propose a more general and cleaner
version where terms are no longer required to be homogeneously typed. The formation rules
of the calculus are designed to maintain a simple invariant: Variables that occur free in a safe
lambda-term have orders no smaller than that of the term itself. We can now explain the sense
in which the safe lambda calculus is safe by establishing its salient property: No variable capture
can ever occur when substituting a safe term into another. In other words, in the safe lambda
calculus, it is safe to use capture-permitting substitution when performing G-reduction.

There is no need for new names when computing S-reductions of safe lambda-terms, because
one can safely “reuse” variable names in the input term. Safe lambda calculus is thus cheaper
to compute in this naive sense. Intuitively one would expect the safety constraint to lower
the expressivity of the simply-typed lambda calculus. Our next contribution is to give a precise
measure of the “expressivity deficit” of the safe lambda calculus. An old result of Schwichtenberg
[] says that the numeric functions representable in the simply-typed lambda calculus are
exactly the multivariate polynomials extended with the conditional function. In the same vein,
we show that the numeric functions representable in the safe lambda calculus are exactly the
multivariate polynomials.

Theorem 3.3.2 The numeric functions (Church-)representable in the safe lambda
calculus are exactly the multivariate polynomials.

We further obtain a similar characterization concerning representable word-functions.

Theorem 3.3.5 The word-functions definable in the safe lambda calculus is given by
the minimal set containing (a) concatenation, (b) substitution, (c) the projections, (d)
the constant functions; and closed by composition.

In order to get a better understanding of our calculus, it is interesting to recast common
problems studied in the literature on the simply-typed lambda calculus in the setting of the safe
lambda calculus. We show for instance that the type-checking and typability problems remain
decidable. We also consider the type-inhabitation problem: “Is there a term inhabiting a given
type?”. This problem is already relatively complex in the simply-typed lambda calculus—
Statman showed that it is PSPACE-complete. Because of the somewhat intricate way in which
safety constrains the occurrences of the variables, the inhabitation problem becomes even more
complex in the safe lambda calculus. We do not know whether the problem is decidable.

Another famous result by Statman is that deciding beta-equality of two simply-typed terms
is non-elementary. There are several proofs of this result in the literature. All of them proceed by
reduction of a non-elementary problem—such as quantifier elimination in finite type theory—
into the simply-typed lambda calculus. Interestingly, all these encodings make use of unsafe
terms in some place. This suggests that such encoding is impossible in the safe lambda calculus
and that the beta-equivalence problem may be simpler when restricted to safe terms. The
author has not been able to establish an upper-bound on the complexity of this problem but a
lower-bound is provided: the True Quantifier Boolean Formula (TQBF) problem (i.e., deciding
whether a quantified boolean formula is true) can be encoded in the safe lambda calculus. Since
the latter problem is PSPACE-complete, this implies:

Theorem 3.2.1 The beta-equivalence problem for safe lambda-terms is PSPACE-hard.

Chapter 1. Introduction 3

A particularity of this encoding is that it relies on the entire type hierarchy and thus we
only have PSPACE-hardness for the safe lambda calculus in its entirety. This contrasts with
another result by Statman which says that there exists a finite set of types such that the beta-eta
equivalence problem restricted to simply-typed terms of these types is PSPACE-hard.

Extensions

PCF is the simply-typed lambda calculus augmented with basic arithmetic operators, if-then-
else branching and a family of recursion combinator Y4 of type (A — A) — A for every type A.
We define safe PCF to be the fragment of PCF obtained by constraining the application and
abstraction rules in the same way as the safe lambda calculus. This language inherits the good
properties of the safe lambda calculus: No variable capture occurs when performing substitution
and safety is preserved by the reduction rules of the small-step semantics of PCF. Similarly, we
define safe IA as safe PCF augmented with the imperative features of Idealized Algol (IA for
short) |]. A version of the no variable capture lemma also holds in safe TA.

A concrete game semantics

Game semantics has emerged as a powerful paradigm for the study of higher-order functional
programming languages in general, and in particular for the mother of all functional languages:
the lambda calculus. The game approach was for instance the first to give rise to a fully abstract
model of PCF | ,]

A question inevitably arising is: Does the safety constraint noticeably impact on the game
denotation of a term? Answering this question can help us gain a better understanding of the
fundamental nature of the safety restriction.

In the traditional presentation of game semantics, attention is taken to abstract away entirely
the syntax of the language from the definition of the semantics. This syntax-independent aspect
of game models constitutes their salient feature. But when it comes to analyzing the game
semantics of the safety restriction, this turns out to be a complication rather than a benefit
because safety is precisely a syntactic constraint.

A substantial part of the thesis is therefore devoted to giving a presentation of game semantics
that is more concrete than the traditional one in the sense that the semantic denotation of a
term carries some information about its syntax. This presentation is based on ideas recently
introduced by Ong [|: A term is canonically represented by a certain abstract syntax
tree of its n-long normal form referred as the computation tree. A computation is then described
by a justified sequence of nodes of the computation tree respecting some formation rules and
called a traversal. Essentially, traversals allow us to model (-reductions without altering the
structure of the computation tree via substitution. A notable property is that P-views (in the
game-semantic sense) of traversals corresponds to paths in the computation tree. We show that
traversals are just representations of the revealed game semantic denotation (i.e., the set of
uncoverings of plays of the game-semantic denotation with respect to the syntax of the eta-long
normal form). The standard game denotation can then be recovered by extracting the cores of
the traversals, an operation that eliminates nodes that are “internal” to the computation—the
counterpart of the hiding operation of game semantics. This leads to an isomorphism between
the standard strategy denotation of a term and the set of traversal cores of its computation tree:

Theorem 4.2.2 (The Correspondence Theorem) The set of traversals of the compu-
tation tree of a simply-typed term-in-context I' = M : T is isomorphic to its revealed
denotation (I' = M : T),; the set of traversal cores is isomorphic to the standard game
denotation [I' = M : T].

We then extend our presentation of game semantics to PCF and Idealized Algol (PCF ex-
tended with block-allocated variables). We extend the notion of computation tree to recursively

4 Chapter 1. Introduction

defined terms as follows: The computation tree of a PCF term is defined as the least upper-
bound of the chain of computation trees of its syntactic approzimants | . Think of it
as the tree obtained by expanding Y combinators ad infinitum. For instance the computation
tree of Y (Afz.fx) is given by the abstract syntax tree of the n-long normal form of the infinite
lambda-term (A fz.fx)(Afz.fx)((Afz.fx)(.... It is possible to define traversal rules modeling
the arithmetic constants of PCF so that a version of the Correspondence Theorem holds for
PCF.

The extension to IA is complicated by the presence of the base type var used for reference
variables. Indeed, the game denotation of var has infinitely many initial moves, therefore there
is a mismatch between the tree representation of a term of type var and the arena underlying
the game induced by the type var. It is possible, however, to adapt the game-semantic cor-
respondence to IA by generalizing the notion of computation tree to computation hypertrees.
These are trees in which sibling nodes can be grouped together into a single hypernode.

On a more applied side, I have implemented a tool to illustrate the theory of traversals and
its correspondence with game semantics |]

This contribution in game semantics is a significant detour from the main topic of this thesis,
but it provides the key to a simple analysis of the game semantics of the safety constraint.

Game semantics of safety

Based on the correspondence between the game semantics of a lambda-term M and the set
of traversals over its computation tree, we are able to give a game-semantic characterization
of safety. We show that the safety syntactic restriction is semantically captured by the P-
incrementally justified strategies:

Theorem 5.4.1 Let b M : A be a closed simply-typed term. Then

M has a safe B-normal form <= [M : A] is P-incrementally justified strategies.

In a P-incrementally justified strategy, pointers emanating from the P-moves of a play are
uniquely reconstructible from the underlying sequence of moves and the pointers associated
to the O-moves therein. More precisely, a strategy is P-incrementally justified just if each P-
question in a play points to the last pending O-question of greater order in the P-view at that
point. Thus up to order 3, pointers are superfluous in the game semantics of safe lambda-terms;
from order 4 onwards, they are only necessary for O-questions.

A model of safe lambda calculi

Our last contribution is to establish a game model of the safe lambda calculus. A fundamental
result in theoretical computer science is the connection between Cartesian Closed Categories
(CCC) and models of typed lambda calculi: it was observed by Lambek [| that any
extensional model of the simply-typed lambda calculus is a CCC, and conversely, any typed
lambda calculus induces a CCC.

A similar categorical connection can be made for models of the safe lambda calculus. The
categorical counterparts of safe lambda calculi are the Incremental Closed Categories (ICC).
These categories are subcategories of CCC in which currying is restrained. By showing that
P-incrementally justified strategies compose, we can construct an ICC of games with morphisms
given by P-incrementally justified strategies. This gives rise to a categorical game model of the
safe lambda calculus:

Proposition 6.2.9 There is a Incremental Closed Category with games as objects and
(closed) P-incrementally justified strategies as morphisms that soundly models the safe
lambda calculus.

Chapter 1. Introduction 5

Full abstraction

A common concept in game semantics is that the pure functional core of a programming language
can be modeled by strategies satisfying the properties of visibility, innocence and well-bracketing.
Adding features to the language corresponds to relaxing one of these properties in the game
model. For instance adding imperative features breaks innocence, adding exceptions-handling
breaks well-bracketing and adding general references breaks visibility. Furthermore in each of
these cases, the game model gives rise to a fully abstract model of the considered language. For
instance the well-bracketed and visible strategies give rise to a fully abstract game model of the
language Idealized Algol (IA).

Conversely, restricting the language corresponds to imposing more constraints on the strat-
egy. As mentioned before, the strategy counterpart of the safety restriction is P-incremental
justification (P-i.j. for short). As expected, this restriction gives rise to a fully-abstract model
for the safe fragment of PCF and TA:

Theorem 6.5.5 (Full abstraction) Two safe (PCF or IA) terms are observationally
equivalent with respect to safe contexts if and only if their denotations are equivalent
with respect to the intrinsic preorder of the ICC games model.

These results are summarized in the following table:

Language ‘ Strategy constraints

Safe TA deterministic + visible + w.b. + P-i.j.

Safe PCF deterministic + visible + w.b. 4+ innocent + P-i.j.
PCF deterministic 4 visible + w.b. 4+ innocent

1A deterministic + visible + w.b.

IA + exceptions deterministic 4 visible

TA + exceptions + general references | deterministic

Algorithmic game semantics

The game-semantic approach has become a very successful paradigm after the resolution of the
long-standing full abstraction problem of PCF. For instance, researchers have been able to use
game semantics to derive decision procedures for the observational equivalence problem (Given
two terms, can they be used interchangeably?)—a research activity known as Algorithmic game
semantics. A major breakthrough was the Characterization Theorem | |: observational
equivalence of two Idealized Algol terms is characterized by equality of the set of complete plays
of their denotation. (Consequently, the game model of Idealized Algol is effectively presentable—
a property that is not enjoyed by any model of PCF |].) This result paved the way
to interesting characterizations of the game denotation of lower-order TA terms. Ghica and
McCusker observed | | that pointers are unnecessary for representing plays in the game
semantics of the second-order finitary fragment of Idealized Algol (IA; for short). Consequently
observational equivalence for this fragment can be reduced to the problem of equivalence of
regular expressions. Similar characterizations were later obtain for other finitary fragments. For
instance at order 3, although pointers are necessary, deciding observational equivalence of TAg is
EXPTIME-complete [,]. These results are all based on the same observation: At
lower orders, the justification pointers present in the game denotation are either not required
(e.g., at order 2) or can be encoded succinctly (e.g., at order 3). The possibility of representing
plays without some or all of their pointers under the safety assumption strongly suggests that
similar result can be obtained for the safe fragment of TA.

Our last contribution consists in studying the safety from the point of view of algorithmic
game semantics. We introduce a new notion of observational equivalence for TA: A safe context
is a safe IA term-in-context with a hole (a distinguished variable occurring exactly once in the
term); two terms are considered equivalent if no safe context can distinguish them. We show that

6 Chapter 1. Introduction

up to order 3 this notion of observational equivalence coincides with the usual one. A basic result
in algorithmic game semantics is the Characterization Theorem: Observational equivalence of
two TA terms is characterized by the equality of their set of complete plays. We show a version
of this theorem for our notion of observational equivalence:

Theorem 6.6.1 (Characterization Theorem) Two terms are observationally equivalent
with respect to safe contexts if and only if they have the same set of P-incremental
justified complete plays.

Finally, based on these results, we show that all the known results [, , ,
, | about the complexity of observational equivalence up to order 3 are also valid
for our new notion of observational equivalence:

Theorem (Sec. 6.6) The observational equivalence problem (with respect to safe con-
texts) for the safe finitary fragment of

(a) order-2 IA + iteration is in PSPACE;
(b) order-2 IA + order-1 recursion is undecidable;
(c¢) order-3 + iteration is EXPTIME-complete;

(d) order-3 + ground type recursion is reducible to the equivalence problem for deter-
ministic pushdown automata (DPDA), and is thus decidable.

This suggests that the restriction imposed on contexts kicks in at order-4. Murawksi has
shown that the problem for (not necessarily safe) terms is undecidable at order-4 | |. His
proof can be reused to show that the observational equivalence problem for safe order-4 terms
and unrestricted (i.e., not necessarily safe) contexts remains undecidable. We further make the
following conjecture:

Conjecture 6.6.6 The observational equivalence problem for safe terms with respect
to safe contexts reduces to the DPDA-equivalence problem and is thus decidable.

1.3 Organization of the thesis

The next chapter lays down the background for the rest of the thesis. It introduces briefly the
simply-typed lambda calculus and two of its extensions that will be studied throughout the
thesis, namely PCF and Idealized Algol. It then presents higher-order grammars, the original
setting in which the safety restriction firstly appeared, and presents the safety restriction with
some related results. Finally, the last section is devoted to the presentation of the basics and
main results of game semantics. It also fixes notations that will be used in other chapters.

Chapter 3 introduces the definition of the safe lambda calculus. It establishes basic prop-
erties of the calculus and gives an account of its expressivity and complexity. The chapter
concludes with a generalization of the safety restriction to other applied lambda calculi such as
PCF and Idealized Algol.

Chapter 4 takes a detour from the safety restriction. It presents and extends the theory of
traversals originally introduced by Ong |]. It defines the notions of computation tree of
a simply-typed term and traversals over this tree. The ultimate goal is to prove the Correspon-
dence Theorem, an important result that establishes a correspondence between traversals of the
computation tree and the game-semantic denotation of a term.

This correspondence theorem allows us to give in Chapter 5 an account of the game se-
mantics of safety using a very simple syntactic argument.

Chapter 1. Introduction 7

In Chapter 6 we look at categorical models for the safe lambda calculus, safe PCF and safe
Idealized Algol. A complete fully abstract game model is established. The chapter concludes
with application to algorithmic game semantics.

Chapter 1. Introduction

Chapter 2

Background

This chapter introduces in three sections the basic concepts that will be used throughout the
thesis. The first section presents the lambda calculus; the second gives a brief introduction
to higher-order grammars and presents the original definition of the safety restriction; the last
section is a condensed account of game semantics.

2.1 Lambda Calculus

We assume that the reader is familiar with the simply-typed lambda calculus, but for precision
and to fix notations we give here a brief overview of the basic definitions. For a detailed account
the reader is referred to the standard textbooks on the subject [, ,].

2.1.1 Terms

We fix a countable set of variables V.

Definition 2.1.1. The set A of terms of the untyped lambda calculus is given by the set of
derivations of the following grammar:

A=V|AA|AVA .

These three basic formation rules are used to construct terms that are respectively variables,
applications and lambda-abstractions.

A term is represented by an expression representing its derivation tree. It is computed as
follows: The leaves of the derivation tree are concatenated from left to right and additional
parentheses are added to indicate the order of the derivation. Parentheses ensure that the repre-
sentation is unique. For instance they allow us to distinguish the five different derivations whose
underlying concatenation of leaves is given by “Az.M NQ”; these derivations are A\z.((MN)Q),
M. (M(NQ)), (A.M)(NQ), (Ax.(MN))Q, and ((Az.M)N)Q. We further use the following

conventions:
(i) We use symbols z,y, ... to denote variables in V and M, N, ... to denote other terms;
(ii) Application associate to the left: M NQ stands for the term ((MN)Q);

(iii) Nested lambda abstractions are combined into a single one: Azyz.z stands for Az.\y.\z.x.
Also if T denotes a sequence of variables x7 ... x, then we write AT.M as a short-hand for
)\1‘1 e xn.M .

Example 2.1.1. \z.z, A\z.zy, (Av.zx)(Az.zz) are all valid terms.

10 Chapter 2. Background

Definition 2.1.2. The set of free variables FV (M) of a term M is given inductively by:

FV(z) = {x}
FV(MN) = FV(M)UFV(N)
FV(Ax.M)=FV(M)\ {z} .

An occurrence of a variable x in M is said to be free if it belongs to FV(M). Otherwise it is
said to be bound. A term M is closed if it has no free variable (i.e., FV (M) = ().

We write closure(M) to denote the closed term obtained from M by abstracting all its free
variables by order of appearance in the term.

A variable is fresh if it does not occur anywhere in the terms that we are considering. T'wo
terms M and N are a-conwvertible if one can be obtained from the other by renaming bound
variables to fresh names. We consider syntactic equality of terms modulo a-conversion and we
write M = N to denote this equality.

The set sub(M) of sub-terms of M is given by induction as:

sub(z) = {z}
sub(MN) = {MN} Usub(M) Usub(N)
sub(Ax.M) = {A\x.M} Usub(M) .

2.1.2 Substitution

Substitution refers to the transformation that replaces a free variable in a term by another term.
The naive way to implement substitution consists in textually replacing all free occurrences of
x in M by N. This is called capture-permitting substitution:

Definition 2.1.3. The capture-permitting substitution of N for x in M, written M {N/z},
is defined by induction as follows:

z; {N/z} = N;

y{N/z} = y ifz#y,
(M) {N/z} = (M {N/z})(M; {N/a})
M. M){N/z} = Iz.M

(AyM){N/xz} = My.M{N/z}ify#z

Although this definition is valid, it is not adequate in the sense that is not sound with
respect to syntactical equality: take the terms M; = Ay.x, My = Az.x and N = y. We have
M {N/xz} = Ay.y and My {N/x} = Az. Thus although M; and M are syntactically equivalent,
performing the same substitution on both terms gives terms that are not syntactically equivalent.

The source of the problem lies the last equation: in the abstraction case, when pushing the
substitution under the lambda, some care needs to be taken so that the free-variables in M do
not get “captured” by the abstraction. This is traditionally achieved by renaming all the free
variables in M afresh before continuing with the substitution:

Definition 2.1.4. The substitution of N for x in M written M [N/z] is defined by induction
as follows:

x[t/z] = t
ylt/z] = y ifz#y,
(MyMa) [t/z] = (My[t/a])(My[t/x])
Ae. M) [t/z] = .M
M) [t/x]

= Az.M [z/y][t/z]if x # y and where z is a fresh variable.

Chapter 2. Background 11

Observe that only the last equation differs from the previous definition.
The generalization of the above defined transformations to multiple variables is called simul-
taneous substitution:

Definition 2.1.5. The simultaneous capture-permitting substitution of Ny, ..., N, for
the (distinct) variables x1,...z, in M, written M {Ny/z1,..., N,/z,} and abbreviated here as
M {N/z} is defined by induction as follows:
Yy {N/E} = y if x #y; for all 4,

(MiMp) {N/z} = (Mi{N/z})(M2{N/T})

()\sz) {N/f} = ;.M {NlNz—lNH—l Nn/xlm,_lxz_ﬂ .%'n}

(Ay.M){N/z} = Iy.M{N/z}if y# x; for all i.
Definition 2.1.6. The simultaneous substitution of Ny, ..., N, for the (distinct) variables

T1,... T, in M, written M [Ny/z1,...,Ny/zy,] and abbreviated here as M [N/Z] is defined by
induction as follows:

T [W/f] = N;
y[N/z| = y ify#a foralli,
) [F/7) = O [N/ (/)
(Az;. M) [W/E] = Mg M[Ny...N;-1Niy1...NpJx1 .. %5 1Ti41 - - - T
(A\y.M) [N/z] = X2.M [z/y] [N/T]

if y # x; for all ¢ and where z is a fresh variable.

2.1.3 Conversion

A binary relation R over A is compatible if M R M’ implies MN —3 M'N, NM —g NM’
and \x.M —g Az.M' for all M, M',N € A. Tt is transitive if M —3 N and N —3 Q implies
M —g Q; reflexive it M —z M; and symmetric it M —g N implies N —g M, for all
M,N,Q € A.

The concept of computation in the lambda calculus is incarnated by a term-rewriting rule
called B-reduction:

Definition 2.1.7. We call f-redex any term of the form (Az.M)N. It contraction is defined
as M [N/x]. We define (3 as the relation mapping a redex to its contraction:

B = {((Ax.M)N, M[N/z]) |M,N € A,z € V} .

The one-step (-reduction relation — 3 is defined as the compatible closure of the relation
3. The relation — 3 denotes the reflexive transitive closure of —g3, and the relation =g, called
B-equality or also B-conversion, denotes the reflexive symmetric transitive closure of —g.

In addition to the 3-reduction rule the n-reduction —,, is defined as the smallest compatible
relation satisfying:
NeMz —, M if 2 FV(M) .

We define n-conversion =, as the reflexive symmetric transitive closure of —,,.
Definition 2.1.8 (Normal form). A term
(i) is a B-normal form, (-nf for short, if it does not contain any [-redex;

(ii) has a B-normal form, or is normalizable, if it is S-equal to a S-normal form;

(iii) is stromgly mormalizable if every sequence of reduction starting from it is finite (and
therefore ends with a normal form).

The notions of and Bn-normal form are defined similarly.

12 Chapter 2. Background

2.1.4 Properties

A reduction is weakly normalizing if every term is normalizable and strongly normalizing
if every term is strongly normalizable. The (untyped) lambda calculus is not even weakly
normalizing with respect to [-reduction since for instance the term Q = (A\zx.xz)(A\x.xz) (-
reduces to itself.

The lambda calculus satisfies the so-called Church-Rosser theorem:

Theorem 2.1.1 (Church-Rosser Theorem). If M —g Ny and M —g Ny then for some N we
have N1 —g N and Ny —5 N.

This is sometimes summarized as “— g satisfies the diamond property”. A consequence of
this theorem is that a term has at most one f-normal form. Furthermore:

Theorem 2.1.2 (Normalization Theorem [). The leftmost reduction strategy is normal-
izing (i.e., if M has a normal form then the reduction strategy consisting in contracting the
leftmost redex leads to that normal form).

2.1.5 Simple types

Simple types are objects that are constructed from atomic types using the function space arrow
operator —. Formally, we fix a set A of atomic types and we define the set Ty of simple
types over A as the set generated from the following grammar:

Ta i=A|Ty — Ty .

We will use the Greek letter symbols «, 3, ...to refer to atomic types and capital letters
A, B, ...to refer to other types. We further assume that A has a distinguished atomic type
denoted by the symbol o.

By convention, — associates to the right. Thus every type can be written as A1 — -+ —
A, — « for some atomic type «, which we shall abbreviate to (Ay,---, Ay, @) (in case n = 0,
we identify («) with «). The number n is called the arity of the type, it is written arity(7") for
every type T

CONVENTION 2.1.1 We use the following abbreviations for types:

(i) For every atom a and natural number n € N, we define the types n, as follows: 0, = a
and (n+ 1), =n, — a;

(ii) For every types A, B and positive natural number n > 0, the type A™ — B is defined by
induction as: A' — B=A — B and A""! — B= A — (A" — B). In other words:
n times

—N—
A" = B=A— ... - A— B;

The order of a type is given by orda = 0 for every atomic type o and ord (A — B) =
max(1 + ord A,ord B). We assume an infinite set of typed variables. The order of a typed term
or symbol is defined to be the order of its type.

Definition 2.1.9 (Type substitution). A type substitution is an expression [T} /aq,...,T,/ay]

where ay,...,a, are distinct atomic types in A and 73,...,7T;,, € T.
For every type T' € T and type substitution [11 /a1, ..., T, /ay] we define T[Ty /a1, ..., Ty/ay]
to be the type obtained from T by substituting 77 for ay, ..., 1) for a,. The resulting type is

called an instance of the type T.

Chapter 2. Background 13

2.1.6 Simply-typed lambda calculus a la Curry

There exist two styles of presentation of the simply-typed lambda calculus. In the Curry style,
typing is implicit. This means that each untyped term is assigned either no type or infinitely
many types. The other presentation, called Church style, makes the typing information explicit
in the structure of the term by introducing type annotations in it. Thus terms of this system
have a unique type. We present here the Curry version of the simply-typed lambda calculus.

We write M : A to denote that the term M can be assigned the type A € T in the typing-
system. A set I' of typing assumptions is a set of typing-assignments of the form x : T' where z
is a variable in V and T € T. It is consistent if all the variables names are distinct (i.e., each
variable name is assigned a unique type). The underlying set of variable names is called the
domain I" and is written dom(I"). We will write I', x : A to denote the set of typing assumptions
I'U{z: A}. We consider judgments of the form I' Fcy, M : A called terms-in-context where
I' is a consistent set of typing assumptions called the typing context, A is a simple type and
M is a term.

Definition 2.1.10. The simply-typed lambda calculus d la Curry, denoted by ACY, is defined
as the set of terms-in-context of the form I' oy, M : A that are derivable from the variable,
application and abstraction rules defined as follows:

Aer 'rceM:A—B T'keguyN:A Fx:Arcu M : B
Thregz:A " TFo, MN : B Tro, o.M :A— B

Whenever the context is empty we just write oy M : A instead of O oy M : A.

In the literature, the second and third rules are sometimes called the —-elimination and
—-introduction rules respectively.

The notion of “derivability” used in the above definition can be made more precise: A typing
derivation or typing deduction A of AC" is a tree labelled by terms-in-context of the form
I' Fou M : A where the leaves are axioms and the internal nodes are deduced from their children
nodes using the rules of A", The edges of the tree also have labels indicating the rule used to
make the deductions. The root of the tree is called the conclusion of the derivation. Such tree
is usually represented with leaves at the top and root at the bottom | |. Terms-in-context
of the simply-typed lambda calculus are then defined as the set of conclusions of derivations in
ACY,

An inhabitant of a type T € T is a term M € A such that for some typing-context I' we
have I’ l_Ch M:T.

The operation of type substitution from Def. 2.1.9 naturally extends to finite sequences of
types, contexts, terms-in-context and deductions. For instance for every context I', type B and
atomic type o we write I' [B/a] to denote the context obtained by performing the substitution
[B/a] on each type occurring in T

We now recall some standard results:

Proposition 2.1.1 (Weakening). Suppose I' bcy M : A and TV is a typing-context with T C T
then TV Foy M - A.

Proposition 2.1.2 (Typability of subterms). Let M’ be a subterm of M. Then if T oy M : A
then I" Foy M’ : A’ for some context T and type A’.

Lemma 2.1.1 (Substitution Lemma).
(i) IfT,x: Atcy M : B and T Foy N : A then T’y M [N/z] : B;
(i) If T Foy M : A then T'[B/a] oy N : A[B/a].

Theorem 2.1.3 (Subject Reduction). Suppose that M —5 N. Then

Fl—cuM:A - Fl—CuM/:A .

14 Chapter 2. Background

2.1.6.1 Typing problems

The three following problems are often considered in type theory:
e TYPE CHECKING: Given a term M, context I' and type A, do we have I' ¢, M : A?
e TYPABILITY: Given a term M and context I, is there a type A such that I' Fc, M @ A?
e INHABITATION: Given a type A, is there a term M such that Fq, M : A?

Definition 2.1.11 (Principality). A term M has principal type A if for every possible deriva-
tion oy M : A’, A is an instance of A. A principal deduction for a term M is a deduction A
of the term-in-context I' ko, M : T such that every other deduction with the same conclusion
is an instance of A, so in particular T is a principal type of M.

Theorem 2.1.4 (PT Theorem, Curry, Hindley, Milner). It is decidable whether a term is typable
in A_,. Moreover if M is typable then it has a principal deduction that is computable from
M.

This implies that both TYPE CHECKING and TYPABILITY are decidable.

Theorem 2.1.5 (Strong normalization, Tait |). Every term that is typable in A_ is
strongly normalizable (i.e., every reduction sequence leads to its (unique) normal form).

Theorem 2.1.6 (Statman |). The problem INHABITATION for types defined over an
infinite number of atoms is PSPACE-complete (and thus decidable).

2.1.7 Simply-typed lambda calculus a la Church

The simply-typed lambda calculus that we have introduced corresponds to the Curry-style ver-
sion. There is another approach called the Church-style presentation in which variable binders
are annotated with types'. The set of annotated-types At is formally given by the following
grammar:

Ar =V | ArAg | ArV: T.Ap .

Observe that in the abstraction case, the binder is annotated with a type. This is the only
difference with untyped terms from A. For every annotated term M € Ar, the untyped term
underlying M, written |M|, is obtained by erasing all the type annotations from M.

We can now introduce new judgments of the form

'teh M :Ael

where M ranges over annotated terms Ar. The simply-typed lambda calculus ¢ la Church,
written A°" is then given by the following typing system:

AerT 'rchkM:A—B T'kFegpa, N: A ax:Aren M : B
—_——— X .
Thepz: A 'ty MN: B Cben Mt M:A— B

In contrast with the Curry version, terms of the Church typed lambda calculus have a unique
type at most:

Proposition 2.1.3 (Uniqueness of types in A", If ' Fay, M : T and T ey M : T' then
T =T Further if T'tcy M : T, T Feyn M': T and M =g M’ then T =T".

The Curry-style and Church-style systems are related by the following result:

n fact in the original Church presentation, variable occurrences are also annotated. The version that we
present here is sometimes called the Bruijn-style simply-typed lambda calculus. These two presentations are
essentially equivalent.

Chapter 2. Background 15

Proposition 2.1.4. (i) Let M € Ar. ThenT'Fey M : A = T' by M| A.
(it) Let M € A. ThenT ey M : A = IM' € Ay s.t. Tkepy M AN |M'| = M.
In particular this implies
Corollary 2.1.7. Let T € T. Then T is inhabited in A" iff it is inhabited in A"

CONVENTION 2.1.2 In the rest of this thesis we will use judgments of the form I' ¢ M : A to
denote both ¢ la Curry and a la Church terms-in-context: if M is an annotated term in Ar then

the judgment stands to I' by, M : A whereas if M is an untyped term in A then it stands for
I'Fou M : A

2.1.8 Extensions

The simply-typed lambda calculus can be extended with a set of typed constants =. To allow
the use of constants, the syntax of A is modified with a new grammar rule: A = ... | 2. The
typing system is also augmented with the rule

(const) fee.

Feu f: A
A new notion of reduction is defined to allow contraction of terms whose head occurrence is
a Z-constant: Every constant ¢ in Z comes with a rewriting function f, : A¥ — A for some k € N
determining the interpretation of the constant. The following rule is then added to those of the
lambda calculus: ¢M; ... My — fo(Mq,..., M) for every closed normal forms My, ... M.

2.1.9 PCF

The Programming language for Computable Functions, PCF for short, is a simple programming
language based on the Logic of Computable Functions (LCF) devised by Dana Scott | . Tt
was introduced in a classical paper by Plotkin “LCF considered as a programming language”
[]. PCF can be viewed as the Church-like simply-typed lambda calculus extended with
arithmetic operators, conditional and recursion.

Syntax

The set of types is Teyxp, the simple types generated from the atomic type exp of natural numbers.
PCF terms are given by the grammar:

M=z | XM | MM |
| n | succ M | pred M
| cond MMM | Yq M

where x ranges over a set of countably many variables, n represents an integer constant ranging
over the set of natural numbers, succ represents the successor function on integer, pred is the
predecessor function, cond the conditional (i.e., if-then-else branching) and Y4 : (A — A) — A
for every type A is the recursion combinator.

The language is formally given by terms-in-context of the form I' = M : A defined by
induction over the rules of Table 2.1.

Example 2.1.2. The integer addition function is definable in PCF by:
PLUS =Y (A\p z y.cond z y (p (pred z) (succ y)))

so that for terms M and N, if M || m and N || n, m,n € N then PLUSM N || m + n.

16 Chapter 2. Background

e 1.
(var)xl:Al,xQ:Ag,...xn:Anl—xi:AiZG "
'rM:A— B I'EN:A x:A-M:B
(app) , (abs) g
'-M N:B '-X“M:A—B
I'EM :exp I'EM:exp
t) ———— d
(ConS)Fl—n:exp (Succ)Fl—such:exp (pre)Fl—predM:exp
(Cond)Fl—M:exp I'ENj:exp I'E Ny:exp 'EFM:A—- A

T cond M N; Ns : exp (rec) T vaar - A
Table 2.1: Formation rules for PCF terms.

Equality on integer is also definable by:

EqQ = Y()\fexpﬂexpaexp %P yexp. cond a
(cond b 1 0)
(cond b 0 (f (pred a) (pred b))))

so that EQ M N |} 1 if M and N evaluate to the same value, and EQ M N |} 0 otherwise.

Operational semantics

The operational semantics of the language is given using a big-step style semantics. We call
canonical form a term that is either a number or a function:

Vi=n| .M .

The notation M |} V means that the closed term M evaluates to the canonical form V. We
write M | if the judgment M |} V is valid for some canonical form V. The full operational
semantics is given in Table 2.2. Since the evaluation rules are defined for closed terms only, the
context I' is omitted in the rules.

——— provided that V is in canonical form.

VIV
My Xz M M'[z/N] LV
MN ||V
M{n Myn+1 M0

succ M yn+1 pred M | n pred M |} O

MU0 NV MIn+1 Nyl V
cond MNiNy ||V cond MN1Ny || V

M(YM) 4V
YM |V

Table 2.2: Big-step operational semantics of PCF.

Case constructs

PCF is sometimes extended with a family of k-ary conditionals formed with the rule:

' M :exp 'FNi:exp ... I'FNi:exp

(case) I'casey M N1 Ny...Np :exp

Chapter 2. Background 17

The resulting language is referred as PCF,. Its operational semantics is given by that of PCF
together with the rule:

Mi N1V

s NN N, N, v 0k

Syntactic sugar

For every integer k € N and term M : exp we write “M + k” as syntactic sugar for “PLus M k”.
For every terms M, Ny and Ny of type exp we write “N; = No” for “EqQ N1 No”, “Ny # Ny’
for “cond (EQ Ny N2)107”, and “if M then Nj else Ny” for “cond M Ny N;”. We will also use
the construct

match M with
ap — N1

lag — Ny
-—R

for distinct integers ay,...aq, ¢ > 1, as syntactic sugar for “case,, M Nji...N]” where m =
1+ maxi<i<qa; and for 1 < j <m, N]'» = N, if j = a; for some 1 < i < ¢ and N]’- = R otherwise.

2.1.10 Idealized Algol

Idealized Algol, TA for short, is an extension of PCF with imperative features that was introduced
by J.C. Reynold | |. It adds imperative features such as local variables and sequential
composition. Its types is given by the simple types over the basis {com, exp, var} where com
denotes the type of commands and var the type of local variables.

The most basic command is given by the constant skip of type com which performs no
computation. Commands can be composed using the sequential composition operator seq, for
every base type A. The sequential composition of two terms Ny : com and Ny : A is given by
the term M = seq,NoN; : com which is interpreted operationally as follows: Nj is evaluated
first and if it terminates then the term Ny is evaluated. In the case where A = exp, the result
of the evaluation of Ny is returned; otherwise A = com and the command N; is just evaluated
after Ny and the expression yields no result. Terms formed with the operator seq,, are called
active erpressions.

Local variables are declared using the new operator, their content is modified using assign
and retrieved using deref. Operationally, these variables behave like memory cells.

In addition to these local variables, IA features the so called “bad variable construct” mkvar.
This operator can be used to construct a special variable by specifying custom assignment
and dereferencing functions. (This addition to the language may seem a little bit artificial
but its presence has semantic importance.?) It takes two arguments: The first one, called the
acceptor, is the function that is responsible of affecting a value to the variable. The second
one is an expression that returns the value hold by the variable. This mechanism is similar to
the “set/get” object programming paradigm used by C++ programmers. An example of such
variable is the term mkvar (Av.skip) 0. Variables created that way are called “bad variables”
because they do not necessarily behave like a memory cell: reading the content of the variable
does not necessarily gives you the last value that was written. For instance the variable defined
above always yield 0 whichever value was written to it previously.

2McCusker showed that the standard game model of IA is only equationally fully abstract for the language
without bad variables, whereas for full IA, it is also inequationally fully abstract [].

18 Chapter 2. Background

The syntax

The typing system for IA is an extension of that of PCF. The additional rules are given in Table
2.3.

I'FM:com I'FN: A
I'-seqqMN: A

A € {com,exp}

I'EM:var TI'EN:exp I'EM:var
I'Fassign M N :com I' - deref M : exp

Ix:var-M: A
I'tnew x in M

A € {com,exp}

I'FM;:exp—com I'F Ms:exp
I' b mkvar My My : var

Table 2.3: Formation rules for TA.

We will sometimes use the ML-like syntactic sugar: “X := v” for “assign X v”, “!X” for
“deref X”, and “M;N” for “seq M N”.

Finitary fragments of Idealized algol

We call Finitary Idealized Algol the recursion-free sub-fragment of IA defined over finite
ground types (i.e., the atomic type exp inhabits the set {0..M} for some fixed natural number
M € N).

Definition 2.1.12 (i* order IA term). A term T' - M : T of finitary Idealized algol is an
ith-order term if any sequent I' = N : A appearing in the typing derivation of M is such that
ord A < ¢ and all the variables in I are of order strictly less than 7.

The fragment of finitary Idealized Algol consisting of the collection of i**-order terms is
denoted IA; and is called the order-i finitary fragment of IA. If we add the iteration
construct defined as

I'+ M :bool I'N:com

h T':ord)
I' - while M do N : com where Va € ordr <t

we obtain the fragments IA; + while for ¢ € N. Finally IA; +Y; for j <4 denotes the fragment
IA; augmented with a set of fixed-point iterators Y4 : (A — A) — A for every type A of order
j at most, whose syntax is defined by the rule:

TFMAM:A - A
T-YAM: A

where Vx € I' : ordx < ¢ and ord A < j.

Operational semantics of TA

To define the operational semantics of IA we proceed slightly differently than for PCF. Instead
of giving the semantics for closed terms, we consider terms whose free variables are all of type
var. A context I" whose variables are all assigned the type var is called a var-context. Terms
are “closed” by means of stores. A store is a function mapping free variables of type var to
natural numbers. It is called I'-store just if its domain of definition is precisely the domain of
the typing-context I'. If s is a store then s | z — n denotes the store that maps = to n and acts
according to s for other variables.
The set of IA canonical forms is given by the grammar:

V u=skip | n | \e.M | z | mkvar M N

Chapter 2. Background 19

where n ranges over natural number and x over variable names.
An TA program is a term together with a I'-store such that I' - M : A. The evaluation
semantics is expressed by the judgment form:

s, M| s,V

where s and s’ are I'-stores, V is a canonical form and I' -V : A.
The operational semantics for IA is given by the rule of PCF (Table 2.2) together with the
rules of Table 2.4 in which the following abbreviation is used:

My Vi Ma Ve s, My |} s\ Vi & Myl s" Vs

f
MUV o s MUs,V
Sequencing: Myskip NULV
4 & seq M N|V
s, NIls'n s MI|s z s, M| s z

Variables:
s,assign M N || (s" | x — n), skip s,deref M | §',s'(x)

N{n M| mkvar My My, M; n | skip N | mkvar M; My My |n
assign M N | skip deref M | n

Bad-variables:

(s|z—=0),M{(s|x—n)V
s,new x in M | s,V

Block:

Table 2.4: Big-step operational semantics of IA.

Small-step semantics

The operational semantics of IA can equivalently be defined by means of a small-step semantics:
We use reduction rules are of the form s, M — s’, M’ where s and s’ denote the stores and M
and M’ denotes TA terms. The relation — is defined by the following rules (We write M — M’
as an abbreviation for s, M — s, M'.):

e (B-reduction: If MBM' then M — M’;

e PCF constants:

succn — n+1
predn+1 — n
pred0 — O
cond 0 NNy — N
cond (n+1) NyNo — No
YM — M(YM) :
o [A constants:
seqskip M — M
s,newx in M — (slz— 0),M
s,assignxn — (s|lz— n),skip
s,deref r — s,s(x)
assign (mkvarMN)n — Mn
deref (mkvarMN) — N ,

20 Chapter 2. Background

where n ranges over the natural numbers.

The rederes—the expressions occurring in the left-hand side of the reduction rules—can be
reduced when occurring as part of a larger expression. The locations where such reduction can
occur are defined by means of evaluation contexts—expressions containing a hole denoted by

‘—’ indicating a position where a reduction can take place. They are given by the grammar

E[-] == —|EN |succ F |pred E | cond E N1 N, |
seq E N | deref E | assign F n | assign M E |
mkvar M E | mkvar E M |new z in E .

The small-step semantics is then completed with the rule:
M — N
E[M] — E[N] ~

Substitution

The substitution operation naturally extends to IA: it is done inductively on the structure of
the term. For the block-variable case this gives:

(new x in M) [N/y] = new z in M [z/x] [N/y] if x # y, z fresh;
(new z in M) [N/xz] = new x in M
For capture-permitting substitution, the former equation becomes:

(new x in M) {N/y} = new x in M {N/y} if z #£y.

2.2 Higher-Order Grammars and the Safety Restriction

We present the safety restriction in the context of higher-order grammars as it was originally
defined []. We give a brief introduction to the concept of higher-order grammars. A more
detailed introduction on the subject is de Miranda’s thesis |]

2.2.1 Higher-order grammars

We consider simple types over a single atom o. Given a set of typed symbols S, the set of
applicative terms generated from S, written A(S) is defined as the closure of S under the
application rule (i.e., if M : A — B and N : A are in A(S) then so is M N : B).

Definition 2.2.1. A higher-order grammar is a tuple (X, N, R, S), where

- ¥ is a ranked alphabet (in the sense that each symbol f € ¥ has a positive arity written
arity (f)) of terminals;

- N is a finite set of typed non-terminals;

S is a distinguished ground-type symbol of N, called the start symbol;

- R is a finite set of production (or rewrite) rules. For each non-terminal F': (Ay,...,A,,0) € N
there is (at least) one rule of the form:

Fzi...2pp — €

where each z; (called parameter) is a variable of type A; and e is an applicative term of type
o generated from the typed symbols in X UN U{z1 : A1,...,2m : A}

We say that the grammar is order-n just in case the order of the highest-order non-terminal is
n.

An applicative term generated from the terminals 3 only (without non-terminals), and
viewed as a Y-labelled tree, is called a value term.

Chapter 2. Background 21

Higher-order grammars as generators of term tree languages

From now on we will consider higher-order grammars in which the ranked-alphabet 3 is restricted
to terminals of order 1 at most so that each terminal f € ¥ has type 0" — o where r > 0 is the
arity of f. The idea is that the base type o inhabits the set of trees. An order-0 terminal thus
represents a leaf-constructor while an order-1 terminal represents a node-constructor.

A higher-order grammar G determines a tree language denoted L(G) consisting of all the
finite value terms that can be obtained by normalizing the start symbol S using the reduction
relation induced by the rewriting rules of G. This normalization can be done using different
reduction strategies, also called derivation modes. The main ones are: outside-in (OI), inside-out
(I0), and unrestricted. As the names suggest, in the OI derivation mode the outermost redex
is reduced first, in IO mode the innermost redex is reduced first; and in unrestricted mode, no
particular choice of redex is imposed. It can be shown that the OI derivation is sufficient in the
sense that every value term obtained from an IO derivation can also be obtained from an OI
derivation. The converse however does not hold |]-

Higher-order grammars as word language generators

Higher-order grammars can be used as generators of word languages by imposing the following
constraints on the set of terminals X:

e 3 contains a special symbol e : o,
e all other constant f € ¥ are of type (o, 0).

The idea is that the type o represent the type of strings >*, the symbol e marks the end of the
word and a constant f : (0,0) represents the operation that appends the letter ‘f’ as a prefix to
a string.

Higher-order grammars as tree generators

In order to generate infinite trees, higher-order grammars are specialized into a device called
recursion scheme. A higher-order recursion scheme, HORS for short, is a higher-order
grammar where the set of rewrite rules is deterministic (i.e., for each non-terminal F' € N there
is exactly one production rule with F' on the left-hand side).

A recursion scheme R defines a (potentially infinite) value tree denoted [R] obtained by
unfolding its rewrite rules ad infinitum, replacing formal by actual parameters each time, starting
from the start symbol S. Formally, [R] is defined as the least upper bound of the schematological
tree grammar induced by R in the continuous algebra of ranked trees with the appropriate
ordering | ,].

Example 2.2.1. Let G be the following order-2 recursion scheme:

S — Ha a/g\g
Hz — F(g2) o
Fo — ¢(6(Fh) !

\

with non-terminals S : o, F' : ((0,0),0), H : (0,0) and terminals g, h,a of
arity 2,1,0 respectively. Then the tree generated by G is defined by the
infinite term ga (ga (h(h(h ---)))) pictured on the right.

2.2.2 The safety restriction

Safety is a syntactic restriction for higher-order grammars introduced by Knapik et al. in order
to study the Monadic Second Order (MSO) theory of infinite trees generated by higher-order

22 Chapter 2. Background

pushdown automata [|. The safety restriction has appeared under different forms in the
literature. The first formulation, due to Damm, appeared under the name restriction of derived
types | |. De Miranda’s thesis contains a comparison of the two formulations []. The
presentation given here follows that of Knapik et al. |]

Type homogeneity

We say that a type is homogeneous if it is o or if it is (Ay, - , A, 0) with the condition that
ord A; > ord As > -+ > ord A, and each Ay, ..., A4, is homogeneous |].
NoOTATION 2.2.1 (Type partitioning) Suppose that Ay, As, ..., A, are n lists of types, where

A;; denotes the 4% type in the list A; and I; the size of A;. We introduces the following notation
that partitions the A;;s according to their order:

A= (Ar] - |4 o)
to mean that
o Ais the type (A11, A12,--- , Ay, Ao, Aoty - Ant, o+ 5 A, 0),
e Vi:Vu,veA;:ordu=ordo,

o Vi,jVuec A;.Vve Aj.i <j = ordu > ordw.

So in particular A is homogeneous. If further we have B :_(@ -]B—m_\o) then we use the
notation (A;| ---|Ay,|B) as an abbreviation for (A; |-+ |Ap|[B1] -+ | B |0).
Definition

Definition 2.2.2 (Safe grammar). (All types are assumed to be homogeneous.) A term of order
k > 01is unsafe if it contains an occurrence of a parameter of order strictly less than k, otherwise
the term is safe. An occurrence of an unsafe term ¢ as a subexpression of a term ¢’ is safe if it
is in the context - - (ts) - - -, otherwise the occurrence is unsafe. A grammar is safe if no unsafe
term has an unsafe occurrence at a right-hand side of any production.

This definition is a bit opaque and does not seem to make a lot of sense at first. One can
reformulate this definition in a slightly clearer way: A higher-order grammar G whose non-
terminals are of homogeneous type is unsafe if and only if there is a rewrite rule F'z1 ...z, — €
where e contains a subterm that:

1. occurs in operand position in e,

2. contains a parameter of order strictly less than its order.

(By “operand position” we mean “in the second position of some occurrence of the implicit
application operator of the lambda calculus”.) A grammar is safe if it is not unsafe.

Example 2.2.2 (][). Let f : (0,0,0), g,h : (0,0) and a,b : o be ¥ constants. The
grammar of level 3 with non-terminals S : 0 and F : ((0,0),0,0,0) and production rules:
S — Fgab

Fory — f(F(Fex)y(hy))(f(ez)y)

is not safe because the subterm Fyx, in the right-hand side expression of the second rule, is of
type (0,0), contains a ground-type variable and occurs at an operand position.
On the other hand, the following production rules are safe:

S — G(ga)b
Gzy — [(G(Gzy)(hy))(fzy) -
It can be shown | | that these rules are equivalent to the ones given above in the sense

that the induced recursion schemes generate the same infinite tree.

Chapter 2. Background 23

Example 2.2.3. Let F' : ((0,0),0,0,0), G : (0,0) and H : ((0,0),0) be non-terminals and
f :(0,0,0) be a terminal. Then the following rewrite rules are unsafe. (The unsafe occurrences
of unsafe subterms are underlined.):

Gz — H(fz)
Fzxy — f(F(Fzy)y(zx))z .

Example 2.2.4. The order-2 grammar defined in Example 2.2.1 is unsafe.

2.2.3 Automata-theoretic Characterization

Although very technical, the safety restriction for higher-order recursion schemes has an ap-
pealing machine characterization. Knapik, Niwinski and Urzyczyn showed that for generating
infinite ranked trees, safe higher-order recursion schemes are as expressive as higher-order push-
down automata (PDA) |].

A pushdown automaton (PDA) is an infinite-state transition system that can manipulate
the content of a stack when performing a transition. Higher-order pushdown automata were
introduced as a generalization of PDA | |. Instead of manipulating a simple stack, a
higher-order PDA manipulates iterated stacks. An order-1 PDA is an ordinary PDA, an order-2
PDA manipulates order-2 stacks which are stacks of order-1 stacks. In addition to the usual
push and pop transitions of a PDA, an order-2 PDA has order-2 variants: a pusho operation
that duplicates the top order-1 stack, and a popy that pops the entire top order-1 stack. This
definition generalizes to any order n € N.

Theorem 2.2.1 (Knapik, Niwinski and Urzyczyn, |). Let L be a X-labelled term tree
language. L is the language of a safe order-n grammar (using the OI derivation) if and only if
it is accepted by an order-n pushdown automaton.

So in particular, a (potentially) infinite tree ¢ is generated by a safe order-n recursion scheme
if and only if it is accepted by an order-n pushdown automaton.

A similar characterization has subsequently been obtained for unrestricted grammars: Hague,
Murawski, Ong and Serre have introduced a new kind of pushdown automata called collapsible
pushdown automata (CPDA) and showed their equivalence with unrestricted higher-order gram-
mars. The internal structure manipulated by a CPDA is a stack in which every symbol has a
link pointing to some other substacks situated below it. There is an additional stack-operation
called collapse whose effect is to replace the content of the stack by the sub-stack indicated by
the link attached to the top symbol of the stack.

Theorem 2.2.2 (Hague, Murawski, Ong and Serre, |). A potentially infinite (ranked)
tree t is generated by an order-n recursion scheme if and only if it is accepted by an order-n
collapsible pushdown automaton.

We have defined higher-order grammars as generators of word languages and tress. Thanks
to the machine characterization, it is possible to define the notion of graph generated by a higher-
order grammars: the graph generated by a grammar is defined as the configuration graph of the
corresponding collapsible higher-order pushdown automaton. In particular, the graph generated
by a safe grammar is the configuration graph of the corresponding higher-order PDA.

2.2.4 Expressivity

Higher-order PDA /grammars can be used as generating device for word-languages, trees, or
graphs, thus inducing strict infinite hierarchies as the order of the PDA varies. For word-
languages this is known as the Maslov hierarchy: orders 0, 1 and 2 correspond respectively to
the regular, context-free and indexed languages. For trees, orders 0, 1 and 2 are respectively the
regular, algebraic and hyperalgebraic trees.

24 Chapter 2. Background

2.2.5 Is safety a genuine restriction?

The implications that the safety constraint has on the expressivity of higher-order grammars
are not completely understood. A partial answer has been given for word languages: Aehlig,
de Miranda and Ong showed that up to order 2, there is no intrinsically unsafe word language
[|: any word language generated by an unsafe order-2 grammar can also be generated
by some (potentially non-deterministic) order-2 safe grammar. For trees, Urzyczyn conjectured
[| that safety constrains expressivity. He even proposed a tree—known as Urzyczyn’s
tree—generated by an unsafe order-2 recursion scheme that he conjectured to not be generated
by any safe order-2 recursion scheme. At the time of this writing, this still remains a conjecture.

A similar question can be asked from a verification point of view: Are the structures generated
by safe higher-order grammars easier to verify that those generated by unrestricted grammars?
The reason why the safety constraint was introduced in the first place was precisely to be able to
show that the generated trees have decidable Monadic Second Order (MSO) theories |]
In fact, it was subsequently shown that this result also holds in the general unrestricted case

[I

Theorem 2.2.3 (Ong, 2006). The modal mu-calculus model checking problem for trees generated
by order-n recursion schemes is n-EXPTIME complete for each n > 0.

This result implies that these trees have decidable MSO theories since the two logics are
equi-expressive over trees. The proof of this theorem relies on a game-semantic argument based
on the theory of traversals (that will be presented in Chapter 4) which radically differs from
the argument used by Knapik et al. for the case of safe grammars | |. A generalization of
Theorem 2.2.3 for graphs was later obtained by Hague et al. | |:

Theorem 2.2.4 (Hague et al., 2008). For each n > 0, the modal mu-calculus model check-
ing problem for configuration graphs of order-n collapsible pushdown systems is n-EXPTIME
complete.

For graphs, the MSO logic is strictly more expressive than the modal mu-calculus. In the
same paper it is shown that MSO theories of collapsible pushdown graphs are undecidable while
those of pushdown graphs are decidable |]. Hence from a verification point of view,
safety can indeed be considered as a genuine constraint.

2.2.6 Higher-order grammars and the simply-typed lambda calculus

There is a natural correspondence between higher-order grammars and the simply-typed lambda
calculus: deterministic higher-order grammars (i.e., recursion schemes) are essentially closed
simply-typed lambda-terms of ground type extended with mutual recursion and generated from
the terminal symbols 3 of the grammar. A similar correspondence holds between (possibly
non-deterministic) higher-order grammars and the simply-typed lambda calculus extended with
a non-deterministic branching operator. We now show how this correspondence works in the
deterministic case.

Let A™“(3) denote the simply-typed lambda calculus extended with mutual recursion and
generated from the set of typed constants . The syntax of the mutual recursion operator is
given by the typing-rule

by My A— Ay ke M;:A— A
FI—E Ymut(Mly---qu):Al

(Ymut) qA:Alx...qu,qZO

whose semantics is given by

Ymut(Mla---qu) H7T1(Y<M1Mq>) 5
Y(My, ..., M) — (My(Y{(My, ..., Mp)),..., My(Y{(My,..., M)

Chapter 2. Background 25

where 71 denotes the first projection for g-tuples. (The operator Y denotes the usual Y-
combinator of PCF extended to product types.)

Let R = (X,N,R,Fp) be a higher-order recursion scheme with N' = {Fp,...,F,} and
R={F z1...0, — ¢ | 0 < i < ¢} for some ¢ > 0. We define the closed A™%(X)-term
HORStoLmd(R) as follows:

HORStoLmd(R) = Yt (Fo, ..., Fy)
EE)\FO...qul...xn.ei for 0 <i<gq

Conversely, every A™%(X)-term can be reformulated as a higher-order recursion scheme.
The algorithm LmdToHORS of Table 2.5, described in an ML-like pseudo-code, takes a closed
A™(¥)-term and returns the corresponding higher-order recursion scheme. It proceeds in-
ductively over the syntax of the term. The local variables AV and R are used to accumulate
respectively the non-terminals and rewrite rules of the recursion scheme being built. The aux-
iliary function createRules is responsible for creating the rules for a given open lambda-term; it
adds them to the set R and returns and applicative term from A(N U X) corresponding to the
input lambda-term. (The symbol ‘@’ denotes the data-constructor used to build lambda-term
applications.)

Input: A closed A™%(X)-term Fx M : T.
Output: A higher-order recursion scheme (X, NV, R, S).

let LmdToHORS(Fx M : T)
let createRules : A"“(¥) — AN UX) = fun

| Ty a: T withaeT'UX —

| Tk MN : B — createRules(I' -z, M : A — B)
@createRules(I' Fy, N : A)

| T Abs Pyl M (Byo) — letD=%: A,y :B1,...,yn: By

where M is not an abstraction, for some fresh names ypi1...yp in

B=(By...B,), and 1 <k <n, let e = createRules(I" s M [yk11]--- [yn] : 0)
and F be a fresh non-terminal name in
R—“Fxy—e =R
N — “F: (A B,o) =N

“F E”
’f:Zl—Zymut(Ml,...,Mq):Bl — fori=1. gdo
where M; : B; fori € {1..q}, createRules(Z : A -y M; : B;)

let “F'ZT f1...f;y— € «—hd R in
R« “F; Ty — e[F1T/f1] - [FyT/ fy]”

stail R
N — “F;: (A, B;)" i tail N
done
uﬁ 7
in
N, R[]

appterm « createRules(bFx, M : T')
(3,4S:0" = N,“S — appterm” : R, S)

Table 2.5: Algorithm LmdToHORS converting a mutually recursive lambda-term into a higher-
order recursion scheme.

It is straightforward to check that for every higher-order recursion scheme R the recursion
scheme LmdToHORS(HORSToLmd(R)) is the same as R (up to renaming of the non-terminals
and rule parameters).

26 Chapter 2. Background

Example 2.2.5. Let R denote the recursion scheme of Example 2.2.1. We have:

HORSToLmd(R) = Ynu(S, H, F)
where S = A\SHF.H a
H=\SHFz.F (gz)
F=\SHF$.¢ (¢ (Fh)) .

Converting this term back to a HOG gives LmdToHORS(HORSToLmd(R)) = (X, N, R, S) where
N ={S:0,F :0,F:(0,0),Fs5:((0,0),0)} and

R={S—F, F—Fa Fz—TFlgz), Fp— ()} .
The following intermediary rules are created during the execution of the algorithm:
FWSHF - Ha, F,SHFz— F(g9z), F3SHF¢—p(Fh)),

where F7 : (o, (0,0),((0,0),0),0), Fs: (o, (0,0),((0,0),0),0,0), Fs : (0, (0,0),((0,0),0), (0,0),0).

2.3 Game Semantics

Game semantics is a very powerful paradigm for giving models of programming languages. It
was the first kind of semantics able to provide a fully abstract model of the language PCF,
a result which was subsequently extended to other languages. In a nutshell, the term “full
abstraction” means that the model provides a faithful mathematical characterization of the
language. A natural way to give a semantic account of a language consists therefore in giving
a game-semantic characterization of it. A question that we will try to answer in this thesis is:
How does a syntactic restriction such as safety impact on the on the game model of a language?
A substantial part of this thesis is devoted to this question (Chapter 4 and 6).

This chapter introduces the basic notions of game semantics including the categorical inter-
pretation, the game interpretation of PCF and TA, and the full abstraction results. It concludes
by giving a brief summary of some important results in algorithmic game semantics. For an
introduction, we recommend the tutorial by Samson Abramsky [| on which this chap-
ter is based. Many details and proofs will be omitted; we refer the reader to other literature
[,] for a complete account. The reader familiar with game semantics may very well
consider skipping this chapter altogether as all the definitions and notations introduced here are
standard.

2.3.1 Historical remarks

We give an outline of the history of game semantics. Cardone and Hindley gave a more detailed
survey |]

Logic

Game semantics finds its origin in various works | , , ,]. Paul Lorenzen
introduced a game semantics for logic in the 1950s to study intuitionistic logic [| where
the notion of logical truth is modeled using game-theoretic concepts such as the existence of
a winning strategy. Four decades later, this approach was used by Andreas Blass [| to
establish a connection with Girard’s linear logic. Joyal | | later presented his “combinato-
rial” calculus of strategies, establishing the first categorical account of two-player games. In the
1990s, Samson Abramsky and Radha Jagadeesan [| on one hand, Martin Hyland and Luke
Ong [] on the other hand, used game semantics to prove full completeness of Multiplicative
Linear Logic (MLL).

Chapter 2. Background 27

Models of programming languages

Subsequently, game semantics emerged as a new paradigm for the study of formal models for
programming languages. Three different independent research groups: Samson Abramsky, Rad-
hakrishnan Jagadeesan and Pasquale Malacaria | |; Martin Hyland and Luke Ong | l;
and Nickau | | introduced a new kind of model based on game semantics in order to solve a
long standing problem in the semanticists community: finding a fully abstract model for PCF.

Many approaches were used to define models for programming languages before the intro-
duction of game models. Among the successful ones were the:

e operational semantics: The meaning of a program is defined by describing the behaviour
of a machine executing it. This is formally done by means of a state transition system:;

e axiomatic semantics: The behaviour of the program is defined by means of axioms. This
kind of semantics lends itself well to proving correctness of the program by static analysis
of the program code;

e denotational semantics: Programs are mapped to mathematical objects with good prop-
erties (such as compositionality). This mapping is done by structural induction on the
syntax of the program.

In game semantics, the idea is to model the program as a game played by two protagonists:
the Opponent, representing the environment, and the Proponent, representing the program.
The meaning of the program is then modeled by a strategy for the Proponent.

The problem of full abstraction for PCF

The problem of the Full Abstraction for PCF goes back to the 1970s. Scott constructed a
model of PCF based on domain theory |] which gives a sound interpretation of observa-
tional equivalence: if two terms have the same domain theoretic interpretation then they are
observationally equivalent. However the converse is not true: There exist two PCF terms which
are observationally equivalent but have different domain theoretic denotations—we say that the
model is not fully abstract.

The reason why the domain theoretic model is not fully abstract lies in the fact that the
parallel-or operator defined by the following truth table

p-or ‘ 1 tt ff
€ 1 ott L
tt tt tt tt
ff 1 tt ff

is not definable by any PCF term. Indeed, it is possible to define two different PCF terms
that have the same behaviour except when applied to a term computing p-or. Since p-or is not
definable in PCF, these two terms will have the same denotation, hence the model is not fully
abstract.

One solution to the problem is to “patch” PCF by adding the p-or operator. The resulting
language “PCF+p-or” was shown to be fully-abstracted by Scott domain theoretic model |].
The language that we are now dealing with, however, is strictly more powerful than PCF—it
allows parallel execution of commands whereas PCF only permits sequential execution.

Another approach involves the elimination of the undefinable elements (like p-or) by strength-
ening the conditions on the function used in the model. This approach was followed by Berry
who gave a model based on stable functions |) |, a class of functions smaller than the
class of strict and continuous function. Unfortunately this approach did not succeed.

Fully abstract models for PCF were found at the same time and independently by three
research teams: Abramsky, Jagadeesan and Malacaria | |, Hyland and Ong | | and
Nickau [|. These three approaches are all based on game semantics.

28 Chapter 2. Background

The game-semantic approach has subsequently been adapted to other varieties of program-
ming paradigms leading to fully abstract models of languages featuring stores (Idealized Al-
gol), call-by-value [, | and call-by-name, general references | |, polymorphism
[|, control features (continuation and exception), non determinism, concurrency, etc.

2.3.2 Definitions

We now introduce formally the notion of game that we will use in later sections to model pro-
gramming languages. We consider a two-player game. The players are named O for Opponent
and P for Proponent. The game played by these two players is constrained by an arena. The
arena defines the possible moves of the game. By analogy with real board games, the arena
represents the board together with rules indicating which are the legal moves for each player.
The analogy with board game will stop here; instead it is preferable to regard our games as
dialogs between the two players. The dialog unfolds as follows: The Opponent interviews the
Proponent; P’s goal is to answer the initial question asked by O. P can also ask intermediary
questions to O in order to request more precision about O’s initial question; O can subsequently
ask further questions to P. We thus distinguish two kinds of moves in our games: the questions
and the answers. This process induces a flow of questions and answers between O and P which
can possibly last forever. In game semantics, attention is given to the study of this flow of
questions and answers; the notion of ‘winning a game’ or ‘winner of the game’ is not a concern.

2.3.2.1 Arenas

The arena defines the bases of the game for the players. It is formally given by a directed
acyclic graph (DAG) whose internal nodes correspond to question moves and leaves correspond
to answer moves.

Definition 2.3.1 (Arena). An arena is a structure (M, \,+) where:
e M is the set of possible moves;

e \: M — {O,P} x {Q, A} is a labelling function specifying which are the question and
answer moves, and which moves can be played by O and P. Formally, it is given by a
pair of functions \°F : M — {0, P} and \?4 : M — {Q, A} such that X is the pairing
(AOFP A@A) " An element m of M is an O-move if A" (m) = O and a P-move otherwise; it
is a question if A?4(m) = Q and an answer otherwise.

e b is an enabling relation on M x M such that (M,F) is a directed acyclic graph (DAG)
satisfying the following conditions:

(el) The roots are O-questions: For every DAG’s root r, A(r) = 0Q);

(e2) Internal nodes of the DAG are questions: m - n = \94(m) = Q (thus answers
moves are necessarily leaves);

(e3) A player move can only enable moves played by the other player: m F n —
XOP(m) # AP (n).

We abbreviate the set {O, P} x {Q, A} as {0OQ,0A, PQ,PA}. X denotes the labelling
function obtained by swapping the role of the Opponent and Proponent in \:

(— 0Q <= \(m)=PQ

and A\(m) = OA <= A(m)=PA .

>

The roots of the DAG (M,) are called the initial moves.
The simplest possible arena is the one with an empty set of moves; it is written 1.

Chapter 2. Background 29

Example 2.3.1 (The flat arena). Let A be any countable set. The flat arena over A is defined
as the arena (M, A, F) such that M has one move ¢ with A(¢) = OQ and for each element in A,
there is a corresponding move a; in M with A\(a;) = PA for some ¢ € N. The enabling relation +
is defined to be {q I a; |i € N}. This arena is represented by the tree /(‘1 whose vertices

(LO (Ll e e
represent the moves and edges represent the enabling relation. In the rest of this thesis we will
just write N to mean the flat arena over N:

q
071
Definition 2.3.2 (Justified sequence of moves). A justified sequence is a sequence of moves s
together with an associated sequence of pointers. Any move m in the sequence that is not initial
has a pointer that points to a previous move n that enables it (i.e., n - m).
(Formally we can regard a justified sequence as a sequence of pairs, each pair encoding an

element of the sequence together with an index indicating the position where the element points
to.)

Since initial moves are all O-moves, the first move of a justified sequence is necessarily an
O-move.

CONVENTION 2.3.1 Justification pointers are graphically represented with arrows as follows:

FERE P
We will sometimes omit the justification pointers altogether if they do not play any role in the
argument.

NOTATION 2.3.1 We write s-t, or just st, to denote the justified sequence obtained by concate-
nating s and ¢t. The empty sequence is written e. Given a justified sequence s = my - mso...my,
(where pointers are not represented) we write s¢,,, for my - mg...m; (the prefix sequence of s
up to the move m;); and s<,,, for my - ma...m;_;.

Definition 2.3.3 (Hereditary projection). Let s be a justified sequence of moves. We say that
a move mg occurring in s is hereditarily justified by a move n occurring in s if there exist moves
mi, ..., Mg occurring in s for ¢ > 0 such that n justifies m, and my, justifies my_q for 1 <k < gq.
Suppose that n is an occurrence of a move in the sequence s then s [n denotes the subse-
quence of s consisting of the moves hereditarily justified by n. If I is a set of initial moves then
s [I denotes the subsequence of s consisting of the moves hereditarily justified by moves in I.

Justified sequences of moves will be used to record the history of all the moves that have
been played so far in the (yet to be defined) game. Two particular subsequences called the
P-view and the O-view are of interest. These subsequences correspond to restricted views that
each player has of the history of the game in a given position.

Definition 2.3.4 (View). Given a justified sequence of moves s, the Proponent view (P-view)
written "s7 is defined by induction as follows:

Tel =k,
Ts.mT="s7- m if m is a P-move,
Fs-ml=m if m is initial (O-move) ,
Csmi-t-n1="sT-mi-n if n is a non initial O-move .

The O-view LsJ is defined similarly:
LEL =€,
LS -Mi=1LS1- m if m is a O-move,

N . .
Ls-m-t-nao="s'-m-n if n is a P-move .

30 Chapter 2. Background

2.3.2.2 Games

Only certain kinds of justified sequences will be of interest in our games. We call legal position
any justified sequence that satisfies two conditions: alternation and visibility. Alternation says
that players O and P play alternatively. Visibility expresses that each non-initial move is justified
by a move situated in the local context at that point. Formally:

Definition 2.3.5 (Legal position). A legal position is a justified sequence of moves s respecting
the following constraints:

e Alternation: For every subsequence m - n of s, AT (m) # \9F(n).

o Visibility: For every subsequence t-m of s where m is not initial, if m is a P-move then m
points to a move occurring in "s'; and if m is a O-move then m points to a move occurring
in s

The set of legal positions of an arena A is denoted by L 4.

Definition 2.3.6 (Game). A game is a structure (M, \, I, P) such that
e (M, \}F) is an arena,
e P, called the set of valid positions, is:

— a non-empty prefix closed subset of the set of legal positions,

— closed by initial hereditary projection: If s is a valid position then for every set I of
occurrences of initial moves in s, s [I is also a valid position.

The empty arena 1 together with the empty set of valid positions defines the simplest possible
game; we will also denote it by 1.

Example 2.3.2. Consider the flat arena N. The set of valid positions P = {¢,q} U{q-a; |i € N}
defines a game on the arena N.

2.3.2.3 Constructions on games

We now present basic transformations that are used to construct games.

Consider the two functions f: A — C and g : B — C, we write [f, g] to denote the pairing
of f and g defined on the direct sum A + B. Given a game A with a set of moves M4, we
use the projection operator s [A to denote the subsequence of s consisting of all moves in M 4.
Although this notation conflicts with the hereditary projection operator, it should not cause any
confusion.

Tensor product Given two games A and B the tensor product A ® B is defined as:

Magp = Ma+ Mp

Mg = [Ma,\B]

l_A®B = F4 U Fp

Pagp = {SELA®B|SfAEPA/\SfBEPB}.

In particular, n is initial in A ® B if and only if n is initial in A or B. And m 455 n holds
if and only if m 4 n or m -5 n holds.

Chapter 2. Background 31

Function space The game A — B is defined as follows:

Ma—p = Ma+ Mp

M—oB = [Aa,)B]

Fawp = Fa U Fp U{(m,n)|m initial in B A n initial in A}
Pagp = {s€Laspls | A€ PANs|Be¢€Pg}.

Cartesian product The game A x B is defined as follows:

Maxp = Ma+ Mp

AaxB = [Aa,AB]
Faxp = Fa U FpB
Paixp = {SGLA@B‘SrAGPA/\S TBZG}

U{SELA®B‘STA€PBAS fAZE} .

Note that a play of the game A x B is either a play of A or a play of B, whereas a play of
the game A ® B may be an interleaving of plays of A and B.

2.3.2.4 Representation of plays

Plays of the game are usually represented in a table diagram. The columns of the table corre-
spond to the different components of the arena and each row corresponds to one move in the
play. The first row always represents an O-move, this is because O is the only player who can
open a game (since roots of the arena are O-moves).

For example the play q@ on the game N —o N is represented by the following diagram:

N — N
qg O
q P
8 0]
9 P

We sometimes also represent the justification pointers on the diagrams.

2.3.2.5 Strategy

During the game, a player may face several choices when it is his turn to play. A strategy is a
guide telling the player which move to make when the game is in a given position.

Definition 2.3.7. A strategy for player P on a given game (M, \,F, P) is a non-empty set of
even-length positions from P such that:

1. if sab € o then s € o (no unreachable position);

2. if sab, sac € o then b = ¢ and b has the same justifier as ¢ (determinacy).

(Alternatively, a strategy can be viewed as a partial function mapping odd-length legal positions
to P-moves.)

The idea is that the presence of the even-length sequence sab in o tells the player P that
whenever the game is in position s and player O plays the move a then it must respond by
playing the move b. The first condition ensures that the strategy o only considers positions that
the strategy itself could have led to in a previous move. The second condition in the definition
requires that this choice of move is deterministic (i.e., there is a function f from the set of odd
length position to the set of moves M such that f(sa) =b).

For every game A, the smallest possible strategy is called the empty strategy and written L.
It is formally defined by {e}, which corresponds to a strategy that never responds.

32 Chapter 2. Background

REMARK 2.3.1 There is an alternative definition for strategies in which a prefix-closed set is
used as opposed to the above definition which relies on even-length prefiz-closed sets. If o
denotes a strategy in the sense of Def. 2.3.7 then the corresponding strategy in the alternative
definition is given by o U dom(o) where dom(o) is the domain of o defined as

dom(c) = {sa € P§ | 3b.sab € o} .

Copy-cat strategy For every game A there is a strategy id4 on the game A — A called the
copy-cat strategy. We write A1 and As to denote the first and second copies of the sub-game A
of A — A.

Let A be one of the arena A; or As. We write A+ to denote the game A; if A = Ay and A
otherwise. The copy-cat strategy proceeds as follows: Whenever P has to respond to an O-move
played in A, it first replicates this move in the game A+. O then responds in A" and finally P
replicates O’s response back in A.

It is formally defined by:

idg={s € P, | V<" s .t [A =t] Ay} |

where P3"°" denotes the set of valid positions of even length in the game A, and ‘¢ <®V" s’
denotes that ¢ is an even-length prefix of s.
The copy-cat strategy is also called the identity strategy on A because it acts as the unit

for the operation of strategy composition defined in the next paragraph.

Example 2.3.3. (a) The copy-cat strategy on N is given by the following generic play:

N — N
q
q
n
n

(This type of diagram was originally introduced to represent plays but as we see here, by
giving a generic play, it can also be used to represent a strategy.)

(b) The copy-cat strategy on N — N is given by the following diagram:

(N — N) — (N — N)
q

2.3.2.6 Composition

One of the salient features of game-semantic models is compositionality, the ability to compute
the denotation of a composite program by composing the denotation of its constituent programs.
This notion of composition happens at the level of strategies. We now formally define this
operation.

Definition 2.3.8 (Interaction sequence). Let u be a sequence of moves from games A, B and
C together with justification pointers attached to all moves except those that are initial in C.

Chapter 2. Background 33

The projection of s on the game A — B, written u [A, B is the subsequence of s obtained
by removing from u the moves in C' and pointers to moves in C. The projection on B — C' is
defined similarly.

An interaction sequence is a sequence of moves with pointers from A, B and C' such that
u [A, B and u | B,C are legal positions of the game A — B and B — C respectively. We write
Int(A, B,C) for the set of all such sequences.

We define the projection on the game A — C as follows: u [A, C is the subsequence of
consisting of the moves from A and C with some additional pointers: we add a pointer from
a € A to ¢ € C whenever a points to some move b € B itself pointing to ¢; all the pointers to
moves in B are removed.

Given two strategies 0 : A — B and 7 : B — C, the interaction o||7 of ¢ and 7 is defined
as

ot ={ueInt(A,B,C) |ul A, BeoAu|B,CerT} .

Strategy composition is performed by “parallel composition plus hiding” as defined in the
trace semantics of CSP | |. Formally,

Definition 2.3.9 (Strategy composition). Let 0 : A — B and 7 : B — C be two strategies.
The composite o; 7 is defined as:

or={ulAC|uecao|r} .

It can be verified that composition is well-defined, associative and that the copy-cat strategy
idy4 is the identity for composition []

2.3.2.7 Constraint on strategies

Different classes of strategies will be considered depending on the features of the language that
we want to model. Here is a list of restrictions that are commonly considered:

o Well-bracketing: We call pending question the last question in a sequence that has not
been answered. A strategy o is well-bracketed if for every play s-m € o where m is an
answer, m points to the pending question in s.

e History-free strategies: a strategy is history-free if the Proponent’s move at any position
of the game where he has to play is determined by the last move of the Opponent (i.e., P
ignores the complete history up the last move).

e History-sensitive strategies: The Proponent follows a history-sensitive strategy if he needs
to have access to the full history of the moves in order to decide which move to make.

e Innocence: In these strategies, the Proponent determines his next move based solely on a
restricted view of the history of the play, namely the P-view at that point. It always plays
the same move for a given P-view. Innocence plays an important role in the modeling of
purely functional languages.

The formal definition of innocence is:

Definition 2.3.10 (Innocence). Given positions sab,ta € L where sab has even length and
Fsa' = "ta’!, there is a unique extension of ta by the move b together with a justification pointer
such that "sab™ = "tab™. We write this extension match(sab, ta).

The strategy o : A is innocent if and only if:

Fsa‘l — rtaj
sab € o = match(sab,ta) € o .
teoANta € Py

34 Chapter 2. Background

Since the next move is determined by the P-view, an innocent strategy induces a partial
function mapping P-views to P-moves called the view function. Not every partial function
from P-views to P-moves gives rise to an innocent strategy, however. (Hyland and Ong [|
gave a sufficient condition.)

2.3.3 Categorical interpretation

This section recalls briefly the categorical interpretation of games [, ,]
We consider the category [| G whose objects are games and morphisms are strategies. A
morphism from A to B is a strategy on the game A — B. Composition of morphisms is given by
strategy composition. We also consider sub-categories of G corresponding to various restrictions
imposed on strategies: G; is the sub-category whose morphisms are the innocent strategies, G,
has only the well-bracketed strategies and G;; has the innocent and well-bracketed strategies.

Proposition 2.3.1. G, G;, G, and G, are categories.

In particular this means that composition of strategies is well-defined, associative, has a unit
(the copy-cat strategy), preserves innocence and well-bracketedness | ,]

2.3.3.1 Monoidal structure

In Sec. 2.3.2.3 we have defined the tensor product on games. We now define the corresponding
transformation on morphisms. Given two strategies 0 : A — B and 7 : C' — D the strategy
o®7:(A®C) — (B® D) is defined by:

o®T7={s€ Lagc—-oBap S| A, BeEaNs|C,Dert} .

It can be shown that the tensor product is associative, commutative and has I = (0, 0,0, {e})
as identity. Hence the game category G is a symmetric monoidal category. Moreover G; and G,
are sub-symmetric monoidal categories of G, and G;; is a sub-symmetric monoidal category of

Gi, Gp and G.

2.3.3.2 Closed structure

Let A, B and C be three games. Given a strategy on A ® B — C' we can clearly convert it
into a strategy on A —o (B —o C') by performing the appropriate retagging of the moves. This
transformation defines an isomorphism written Ap and called currying. Thus the hom-set
G(A ® B, () is isomorphic to the hom-set G(A, B — ('), which makes G an autonomous (i.e.,
symmetric monoidal closed) category. The categories G; and Gy are sub-autonomous categories
of G, and G;, is a sub-autonomous category of G;, G, and G.

We write evap : (A — B) ® A — B to denote the evaluation strategy obtained by
uncurrying the identity map on A — B. The evaluation strategy is in fact the copy-cat strategy
for the game (A — B)® A — B.

2.3.3.3 Cartesian product

The cartesian product from Sec. 2.3.2.3 defines indeed a cartesian product in the category G,
Gi, Gy and G;. The projections m; : A x B — A and w1 : A X B — B are given by the obvious
copy-cat strategies. Given two category morphisms ¢ : C' — A and 7 : C — B, the pairing
morphism (o, 7) : C — A x B is given by:

(0,7) = {s€Lcoaxp|sIC,AcoNns|B=¢}
U {s€Llooaxp|s|C,BeTAs|A=¢} .

Chapter 2. Background 35

2.3.3.4 Cartesian closed structure

To obtain a cartesian closed category it remains to define a terminal object as well as the
exponential construct for every two games A and B. The category G itself is not cartesian
closed but it is possible to define a new category of games that is cartesian closed.

For every game A the exponential game !A is given by:

Ma = My
Ala = Aa
Fla = Fa
Py = {s € L4 for each initial move m, s | m € P4} .

Think of it as the multi-threaded version of the game A in which a new copy the game can be
spawned at any time. Plays of !A are thus interleavings of plays of A. We have the following
identities:
(Ax B) = !AR!B
1 = 11.

A game A is said to be well-opened if for every position s € P4 the only initial move in s is
the first one. In a well-opened game, plays contain a single “thread” of moves. Given a strategy
on a well-opened game, one can turn it into a “multi-threaded” strategy using the promotion
operator:

Definition 2.3.11 (Promotion). Consider a well-opened game B. Given a strategy on !A — B,
its promotion o' : |A — | B is the strategy which plays several copies of 0. Formally:

ol = {s € Ligy_oqp | for all initial m, s [m € o} .

It can be shown that promotion is a well-defined strategy and that it preserves innocence
and well-bracketing. We now introduce the category of well-opened games:

Definition 2.3.12 (Category of well-opened games). The category C of well-opened games, also
called the co-Kleisli category of G, is defined as follows:

The objects are the well-opened games.

A morphism o : A — B is a strategy for the game !4 — B,

The identity map for A is the copy-cat strategy on !A — A (which is well-defined for well-
opened games). It is called dereliction, denoted by der4 and defined formally by:

derA:{SGP'aliA|vt<evenStr'A:trA} .

Composition of morphisms ¢ : !A — B and 7 : !B — C denoted by o §7 :!A —o C is defined

as of;7.
C is a well-defined category and has three sub-categories C;, Cp, C;;, corresponding respectively
to sub-category of innocent, well-bracketed, and innocent well-bracketed strategies.
The empty game 1 is a terminal object for the category C. Further for every two games
A and B, we define their product as A x B and their exponential as !A — B. The hom-sets
C(A x B,C) and C(A,!B — () are isomorphic. Indeed:
C(AxB,C) = G((AxB),QC)
= G(lA®!B,0)
~ G(lA,!B — (O) (G is a closed monoidal category)
C(A,!B— () .
Hence C is a cartesian closed category. Furthermore C; and Cp, are sub-cartesian closed categories
of C, and C;, is as sub-cartesian closed category of each of C, C; and Cp.

36 Chapter 2. Background

2.3.3.5 Order enrichment

Strategies can be ordered using the inclusion ordering. Under this ordering, the set of strategies
on a given game A is a pointed directed complete partial order; the least upper bound is given
by the set-theoretic union and the least element is the empty strategy {e}.

Moreover all the operators on strategies that we have defined so far (composition, tensor
product, etc.) are continuous. Hence the categories C and G are cpo-enriched.

2.3.3.6 Intrinsic preorder

Let ¥ denote the Sierpinski game with a single question ¢ and single answer a. There are only
two strategies on 3: 1L = {e¢} and T = {¢,qa}, both innocent and well-bracketed. For every
object A, the intrinsic preorder <, on the set of strategies on the game A is defined by:

cSaT < Va:A—-X.o37=T = 175a=T .

This indeed defines a preorder | |. The quotiented category C/< is defined as follows.
The objects of C/< are those of C, and the morphisms are the equivalence classes of morphisms
in C modulo the equivalence relation induced by <.

We will consider the quotiented categories Cg/ <S¢ where $ ranges in {7,b,ib}. (The full
abstraction of the game-semantic model of PCF holds in the quotiented category C;/<;, rather
than Cj.)

2.3.4 The fully abstract game model of PCF

In this section we show how game semantics can be used to model the programming language
PCF and we recall the full abstraction result |].

It is well known that cartesian closed categories are models of typed lambda calculi. We have
just seen in the previous section that games and strategies form a cartesian closed category, they
can therefore be used to model typed lambda-calculi.

The idea is as follows. The game played is induced by the type of the term. The Opponent
(O) incarnates the environment while the Proponent (P) incarnates the term to model. The
Proponent’s strategy is determined by the term itself; it is computed inductively on its syn-
tax. This means that O is responsible of providing the values of the term’s input parameters,
whereas P is responsible for performing the computation of the term itself. A play of the game
unfolds as follows: The Opponent opens the game by asking the question “What is the result
of the execution of the term?”. The Proponent may then request further information by asking
questions such as “What is the input given to the term?”; O can provide P with an answer—the
value of the input—or can continue by asking another question. This dialog goes on until O
obtains an answer to his initial question.

2.3.4.1 Modeling the simple types

Each simple type A is interpreted by a game from the category C denoted [A]. A program
context I' = 1 : Ay,...x, : A, is interpreted by the game [I'] = [A;1] x ... x [4,]. The empty
context is interpreted by the terminal object 1 of the cartesian closed category C: [0] = 1.

The base type exp is interpreted by the flat game N over the natural number. Given the
interpretation of the base type, the interpretation of the function space type A — B is given by
the exponential object of [A] and [B] in the cartesian closed category C:

[A— B] =![A] — [B] .

Chapter 2. Background 37

2.3.4.2 Lambda calculus fragment

A term-in-context I' = M : A is interpreted in the model by a strategy on the game [I'] — [A].

For instance take the game [exp]. It has only one question (the initial O-question) and
P-moves are answers corresponding to each possible value of a natural number. There exist only
two kinds of strategies for the game [exp]:

(i) The empty strategy where P never answer the initial question. This corresponds to a non
terminating computation;

(ii) The strategies where P always answers by playing the same number n. This models a
numerical constant of the language.

The strategy denotation of a term-in-context is defined inductively on the structure of the term:
e Variables are interpreted by projection:

[[.%'1141,,annl—I'ZAZ]]:T(Z[[AZ]]XX[[AZ]]XX[[An]]ﬁ[[Al]] .

e Abstraction: The term-in-context I' - Az4.M : A — B is modeled by a morphism [I'] —
(![A] — [B]) obtained by currying:

[T FXeAM:A— B)=Al,z: A+ M: B]) .
e Application is modeled using the evaluation map evs p: (!1A — B) x A — B:
[’FMN:B]=(I'FM:A— BTFN:A])sevan .

Example 2.3.4 (Kierstead terms). In Sec. 2.3.6 we have shown that there exist two different

strategies on the game [((N! — N?) — N3) — N*] containing a play whose underlying sequence

of move is ¢*¢®¢%¢>¢%¢' but whose justification pointers differ.

These two strategies are precisely the denotation of the Kierstead terms defined as follows:
My = A fOa.fOyy) s (N = N) = N) = N
My = Af.f(Az.f(Ayx)): (N—-N)—-N) - N .

Suppose that ¢! is justified by the first occurrence of ¢ then it means that the Proponent is
requesting the value of the variable bound in the subterm Az.f(\y....). If P needs to know the
value of z, this means that P follows the strategy induced by the subterm Ay.x: this corresponds
to a play of the strategy [Mz]. Otherwise ¢! is justified by the second occurrence of ¢, which
corresponds to a play of [Mi].

2.3.4.3 PCF fragment

We now show how to model PCF constructs. In the following, we tag the sub-arenas of the
games considered to make it possible to distinguish identical arenas from different components
of the game. We also tag moves (in exponent) to identify the component in which the move
belongs. We will omit the pointers in the play when no ambiguity arise.

The arithmetic constants of PCF are interpreted as follows:
e The successor arithmetic operator is modeled by the following strategy on [N! — N°J:
[succ] = Pref*"{¢" . ¢* . n' - (n+1)° | n € N} .
where Pref®*" X denotes the set consisting of the prefixes of even length of plays of X.
e The predecessor arithmetic operator is denoted by the strategy

[pred] = Pref®*" ({¢° - ¢' -n' - (n—1)° | n >0} U{¢" - ¢" - 0' - 0"})

38 Chapter 2. Background

e Given a term-in-context I' - succ M : exp we define:
[I'F suce M :exp] =[I'+ M : exp] § [succ]
[T+ pred M : exp] = [I'+ M : exp] § [pred] .
e The conditional operator is denoted by the following strategy on [N® x N? x N! — N]:

[cond] = Pref*e"{¢°.¢*-0-¢*-n*-n® | n € N}UPref"*"{¢"-¢3-m-¢*-n*-n° | m > 0,n € N} .

Given a term-in-context I' - cond M N; N : exp we define:

[I'F cond M Ny Ny:exp] = ([I'+ M :exp],[I' F Ny : exp],[I' F Ny : exp]) § [cond] .

The interpretation of the Y combinator is slightly more complicated. Consider the term
' M:A— A Tts denotation f is a morphism [['] x [A] — [A]. We define the chain g, of
morphisms [I'] — [A] as follows:

g = L1
In+1 = Flgn) = (idry, gn) 3 f

where | denotes the empty strategy {e}. It is easy to see that (g,)nen forms a chain. The
denotation [Y M] is defined as the least upper bound of the chain g,, which is also the least fixed
point of F'. Its existence is guaranteed by the fact that the category of games is cpo-enriched.

Since all the strategies encountered up to now are innocent and well-bracketed, the game
model of PCF can be interpreted in any of the four categories C, C;, Cp, Ci. The category C;p is
referred as the intentional game model of PCF.

2.3.4.4 Observational preorder

A context denoted C[—] is a term containing a hole denoted by the symbol ‘—’. If C[—] is a
context then C[M] denotes the term obtained after replacing the hole by the term M. C[M]
is well-formed provided that M has the appropriate type. This substitution is done capture-
permitting, as opposed to the capture-avoiding substitution used to contract beta-redexes in the
lambda calculus.

Definition 2.3.13. The observational preorder is a relation & on terms defined as follows:
For every two closed terms M and N of the same type,

ML N <= for all context C[—] such that C[M] and C[N] are well-
formed closed PCF term of type exp, C[M] | implies C[N] ||

The reflexive closure of L, denoted 2, is called the observational equivalence relation.

The intuition behind this definition is that two terms are observationally equivalent if there
is no context that distinguishes them; in which case they can be safely interchanged in any
program context.

2.3.4.5 Soundness

We say that a model is sound for evaluation if the denotation of a term is preserved by the
evaluation relation |} of the big-step semantics of the language. For every term M and value V
we have:

MYV = [M]=[V].

Chapter 2. Background 39

Lemma 2.3.1 (]). The game model of PCF is sound for evaluation.
Definition 2.3.14 (Computable terms).
e A closed term F M : B of base type is computable if [M] # L implies M J}.

e A higher-order closed term - M : A — B is computable if M N is computable for every
computable closed term - IV : A.

e An open term z : Ay,...,x, : Ay b M : A — B is computable if b M[Ny/x1,... N, /x,]
is computable for all computable closed terms Ny : Aq,..., N, : A,.

A model is computationally adequate if all terms are computable.
Lemma 2.3.2 (]). The game model of PCF is computationally adequate.

A model of a programming language is said to be sound if whenever the denotation of two
programs are equal then the two programs are observationally equivalent; formally for every
closed terms M and N of the same type we have:

[M]=[N] = M=N .

Soundness is the least condition one can require from a model of programming language: it
guarantees that we can reason about terms by manipulating objects in the denotational model.
The model is said to be inequationally sound if the following stronger condition holds

[M]C[N] — MEN .
The inequational soundness of the game model of PCF follows from the last two lemmas:
Proposition 2.3.2. The game model of PCF is inequationally sound.

Proof. Take two closed PCF terms M and N. Suppose that [M] C [N] then by compositionality
of the model we have [C[M]] C [C[N]]. Suppose that C[M] || for some context C[—] then by
soundness (Lemma 2.3.1) we have [C[M]] # L, which implies [C[N]] # L. The adequacy of
the model (Lemma 2.3.2) then gives us C[N] . Hence M L N. O

2.3.4.6 Definability

We now work in the category C;; of innocent and well-bracketed strategies. The definability
property is the key to the full-abstraction result. It says that every compact element of the
model is the denotation of some term. In C;, the compact morphisms are the innocent
strategies with finite view-function. Due to its economical syntax, PCF does not satisfy the
definability result: there are strategies that are not the denotation of any term in PCF. For
instance consider the ternary conditional strategy acting as follows: It tests the value of its first
parameter, if it is equal to 0 or 1 then it returns the value of the second or third parameter
respectively, otherwise it returns the value of the fourth parameter. This is illustrated in the left
diagram of Fig. 2.3.4.6. Such computation can be operationally simulated in PCF by the term
T3 = cond M Nj(cond (pred M) Ny N3). The term T3, however, is not denoted by the ternary
conditional strategy. Its denotation is instead given by the right diagram on Fig. 2.3.4.6.

In PCF,, however, the ternary conditional strategy is definable by the term cases. In fact,
the definability result holds for PCF_:

Proposition 2.3.3 (Definability). Let A be a PCF type and o be a compact innocent and
well-bracketed strategy on A. There exists a PCF. term M such that [M] = o.

The definability only holds for PCF. but this suffice to prove full abstraction of PCF. This
is because the casej constructs of PCF. can all be simulated by PCF terms with the same
operational semantics, and consequently PCF, is a conservative extension of PCF (i.e., if M
and N are terms such that for every PCF-context C[—], C[M] | = C[N] | then the same is
true for every PCF.-context.)

40 Chapter 2. Background

IN ® IN ® IN ® IN — IN

q
IN ® N ® N @ N — IN q
q 0
q q
0 n
q n
n q
n q
q 1
q q
1 0
q q
n n
q q
q q
m>1 m > 1
q q
n m—1>0
n q
n
n

Figure 2.1: Strategy denotation of cases (left) and T3 (right).

Chapter 2. Background 41

2.3.4.7 Full abstraction

The converse of soundness is called completeness. A model is complete if:
M=>=N = [M]=][N] .

Further, if the stronger relation
MLN = [M] C|[N]

holds then the model is said to be inequationally complete.

A model is fully abstract if it is both sound and complete, and inequationally fully
abstract if it is inequationally sound and inequationally complete.

Full abstraction of PCF cannot be stated directly in the category C;,. Instead we need to
consider the quotiented category C;,/ <. But first we need to make sure that Cy,/<;p, is a model
of PCF. C;/<i is a poset-enriched cartesian closed category. The denotation of the basic types
and constants of PCF can be transposed from Cj, to Cip,/<;p. Although it is not known whether
Civ/ Sip is enriched over the category of CPOs, it can be proved that it satisfies a condition
called rationality [| and this suffices to ensure that C;;/ <; is indeed a model of PCF.
This category will be referred as the extensional game model of PCF. The full abstraction
of the game model then follows from Proposition 2.3.2 and 2.3.3:

Theorem 2.3.1 (Full abstraction | , ,). Let M and N be two closed PCF
terms.
[M] Sy [N] <= MEN,

where <;, denotes the intrinsic preorder of the category Cy.

2.3.5 The fully abstract game model of Idealized Algol

We now describe the fully abstract game model of TA | -

All the strategies used to model PCF are well-bracketed and innocent. To obtain a model of
IA, however we need to introduce strategies that are not innocent. This is necessary to model
the memory cell variable created with the new operator. The intuition is that a cell needs to
remember the last value which was written in it in order to be able to return it when it is
subsequently read, and this can only be done by looking at the whole history of moves, not only
those present in the P-view. We therefore restrict our attention to the categories C and Cp.

Base types

The type com is modeled by the flat game with a single initial question run and a single answer
done. The idea is that O can request the execution of a command by playing run, P then
executes the command and if it terminates, acknowledges it by playing done.

The variable type var is modeled by the game com“ x exp illustrated below:

writeg write; writes read

N T N

Modelling the constants

e The constant skip is interpreted by the strategy {e, run - done}.

42 Chapter 2. Background

e Sequential composition seqeyp is interpreted by the following strategy:

SeGesp
lcom ® lexp — exp
q
run
done
q
n
n

e Assignment assign and dereferencing deref are denoted by the following strategies:

assign
lvar ® lexp —o com dores
q lvar — exp
q q
n read
write,, n
ok n

done

e mkvar is modeled by the paired strategy (mkvarg,., mkvar.,,) where mkvar,.. and mkvare,,
are the following strategies:

mkvargce mkvaregzp

(lexp — com) ® lexp —o com” I(lexp — com) ® lexp —o exp
write, read
run q
q n
n n
done
ok

e Block-allocated variable (new): The strategies introduced until now are all innocent. In
order to model the new operator, it is necessary to introduce non-innocent strategies, also called
knowing strategies. We call memory-cell strategy the knowing well-bracketed strategy written
cell : I —olvar behaving as follows: It responds to write with ok and to read with the last
value written or 0 if no value has been written yet. The denotation of a term-in-context I' -
new x in M : A is then defined as the strategy:

[['Fnewx in M : A] = (idjry @ cell) § [I',z : var = M : A] :IT' —o com .

Full abstraction

Inequational soundness can also be shown for TA. Proving soundness of the evaluation requires
slightly more work than in the PCF case due to the fact that stores need to be made explicit.
Also, one needs to define an appropriate notion of computable term that takes into account the
presence of stores in the evaluation semantics. It is also possible to prove that the model is
computational adequate. We then have:

Proposition 2.3.4 (Abramksy and McCusker |). The game model of IA is inequation-
ally sound.
A result called the Innocent Factorization Theorem | | shows that the strategies in

Gy can all be obtained by composing the non-innocent strategy cell with some innocent strat-
egy. The strategy cell can therefore be viewed as a generic non-innocent strategy. Using this
factorization argument, it is possible to prove the definability result:

Chapter 2. Background 43

Proposition 2.3.5 (Definability). For every compact well-bracketed strategy o on a game A
denoting a IA type, there exists an IA-term M such that [M] = o.

Full abstraction for the model Cp is then a consequence of inequational soundness and defin-
ability:

Theorem 2.3.2 (Full abstraction). Let M and N be two closed IA-terms.
[M] <y [N] <= MLTN,

where <y denotes the intrinsic preorder of the category Cp.

2.3.6 On the necessity of justification pointers

For every legal justified sequence of moves s, we write ?(s) to denote the subsequence consisting
of the unanswered question moves of s. It is easy to check that if s satisfies alternation then so

does ?(s).

Lemma 2.3.3. If s - q is a legal position (i.e., a justified sequence satisfying visibility and
alternation) satisfying well-bracketing and q is a non-initial question then q points in ?(s).

Proof. By induction on the length of s-g. The base case s = € is trivial. Let s = s - ¢, where ¢
is not initial.

Suppose ¢ is a P-move. We prove that ¢ cannot point to an O-question that has been
answered. Suppose that an O-move ¢’ occurs before ¢ and is answered by the move a also
occurring before g. Then we have s = s; - ¢’? - so - a”’ - s5 - ¢* where a is justified by ¢’. a is not
in the P-view "s.,". Indeed this would imply that some O-move occurring in s3 points to a,
but this is impossible since answer moves are not enablers. Hence the move a must be situated
underneath an O-to-P link. Let m denote the link’s origin, the P-view of s has the following
form: Ts7="s1-¢9 - s9-af...mP7...qF where m is an O-move pointing before a.

If m is an answer move then it must point to the last unanswered move (the last move
in ?(s<p)). If m is a question move then it is not initial since there is a link going from m.
Therefore by the induction hypothesis, m must point to a move in ?(s<,).

Since s is well bracketed, all the questions in the segment ¢’ ...a are answered. Therefore
since m points to an unanswered question occurring before a, m must point to a move occurring
strictly before ¢’. Consequently ¢ does not occur in the P-view "s7. By visibility, ¢ must point
in the P-view " s therefore ¢ does not point to ¢'.

A similar argument holds if ¢ is an O-move. O

This means that in a well-bracketed legal position s-m where m is not initial, m’s justifier is a
question occurring in ?(s). Also if m is an answer then its justifier is precisely the last question
in ?(s). Furthermore, if m is a P-move then by visibility it should point to an unanswered
question in "m™ therefore it should also point in ?("m ™). Similarly, if m is a non initial O-move
then it points in 7(Lm.).

Lemma 2.3.4. Let s be a legal well-bracketed position.
(i) If s = € or if the last move in s is not a P-answer then 7("s™) ="7(s)7;
(ii) If s = € or if the last move in s is not an O-answer then ?(Ls1) = L7(s)J.

Proof. (i) By induction on the length of s. The base case is trivial. Step case: Suppose that
s-m is a legal well-bracketed position.
e If m is an initial O-question then ?("s-m™) =?(m) =m ="7(s) - m7 ="7(s-m)".

44 Chapter 2. Background

(@] P

e If m is a non initial O-question then s-m©® = s' - ¢¥ - 5" - m© where m is justified by
q. We have 7("s™) =?("s'7-q-m) =?7("s'7) - ¢ - m. If ¢’ is not empty then its last move must
be an O-move (by alternation), therefore by the induction hypothesis ?("s'™") =?("?(s')"). By
the previous lemma, m’s justified occurs in ?(s) therefore ?(s-m) =?(s') - ¢ - u - m® for some
sequence u and thus "?(s -m)7 = "2(s')7 - ¢¥ - mO.

e If m is an O-answer then s-m = s - ¢© - s” - m© where m is justified by ¢q. We then have
?(Ts-m™) =7("s'ga) =?("s'7) and since s is well-bracketed, we have ?(s) =?(s’). The induction
hypothesis permits us to conclude.

e If m is a P-question then "s-m™ = "s7-m and ?("s - m™) =?("s7) - m. Moreover
(s -m)? ="2(s)-m? = "7(s)7 - m. By alternation if s is not empty it must end with an
O-move so we can conclude using the induction hypothesis.

(ii) The argument is similar to (i). O

Note that in (i) and (ii), it is important that s does not end with a P-answer. For instance
consider the legal position T~
s=a5 af 6§ ¢f afa”
ending with a P-answer. We have "?(s)" = "go-q1 - q2- 3" = qo-q1 - g2 - g3 but ?("s7) =
g0 q1-qs-a)=qo-q1-

By the previous remark and lemma we obtain the following corollary:
Corollary 2.3.3. Let s-m be a legal well-bracketed position.
(i) If m is a P-move then it points in 7("s7) ="7(s)™.
(ii) If m is a non initial O-move then it points in ?(Lsy) = L?(s).

Definition 2.3.15 (Order). Let (M, \,I-) be a game. The order of a question move q € M,
written ord ¢, is given by the length (1) of the longest enabling chain of question moves starting
fromq (¢g=q¢ F g2+ ... F ¢) minus one (i.e., ordq = | — 1); the order of an answer move is
defined as —1. The order of a game (M, \,|-), written ord(M, A, F), is defined as max;,eps ord m
with the convention max () = —1.

For instance the initial question in the game N has order 0.

Proposition 2.3.6 (Pointers are superfluous up to order 2). Let A be a game of order at most
2 where each question move enables at least one answer move (Therefore an order-0 move is
necessarily a question enabling answer moves only). Let s be a justified sequence of moves in
the game A satisfying alternation, visibility, well-openedness and well-bracketing. If s contains
a single initial move then the pointers of the sequence s can be uniquely reconstructed from the
underlying sequence of moves.

Proof. Let A be an arena of order 2 at most and let s be a legal well-bracketed position in
L4. W.lo.g. we can assume that the game A has a single initial move gg. Indeed, since s is
well-opened, its first move mg is the only initial move in the sequence, thus myg is the root of
some sub-arena A’ of A. Hence s can be seen as a play on the game A’ instead of A.

Since A is of order 2 at most, all the moves in s except gg are of order 1 at most. We prove
by induction on the length of s that ?(s) corresponds to one of the cases 0, A, B, C, D shown on
the table below, and that the pointers in s can be recovered uniquely. Let L denote the language
L={pq|gtpFqgnrnordp=1Aordqg=0}.

Case | dop(m) | 7(s) € where...
0 @) {e}
A p 0
B O g -L*-p | qFpordp=1
C P q-L*pqg| gtFptqordp=1ordg=0
D O g -L*-q | g@Fqordg=0

Chapter 2. Background 45

Base cases: If s is the empty play then there is no pointer to recover and s corresponds to case
0. If s is a singleton then it must be the initial question ¢g, so there is no pointer to recover.
This corresponds to case A.
Step case: If s = u - m for some non empty legal well-bracketed position uv and move m € My
then by the induction hypothesis the pointers in v can all be recovered and u corresponds to
one of the cases 0, A, B, C or D. We proceed by case analysis:

case 0 7(u) = e. By Corollary 2.3.3, m points in "7(u)" = e. Hence this case is impossible.

case A ?(u) = qo and the last move m is played by P. By Corollary 2.3.3, m points to
go. If m is an answer to the initial question gy then s is a complete play and ?(s) = €, which
corresponds to case 0. If m is a first order question then ?(s) = gop and it is O’s turn to play
after s therefore s falls into category B. If m is an order 0 question then s falls into category D.

case B 7(u) € qo- L* - p where ordp = 1 and m is an O-move. By Corollary 2.3.3, m points
in "?(u)? = gop. Since m is an O-move it can only point to p. If m is an answer to p then
?(s) =7(u-m) € qo - L* which is covered by case A and C. If m is an order 0 question pointing
to p then we have ?(s) =?(u)-m € qo - L* - pm and s falls into category C.

case C 7(u) € qp - L* - pg where ordp = 1, ordq = 0, qo justifies p, p justifies ¢ and m is
played by P.
Suppose that m is an answer, then the well-bracketing condition implies that ¢ is answered first.
The move m therefore points to g and we have 7(s) =?(u-m) € qo - L* - p. This corresponds to
case B.
Suppose that m is a question, then it is a P-move and therefore is cannot be justified by p. It
cannot be justified by ¢ either because ¢ is an order 0 question and therefore enables answer
moves only. Similarly m is not justified by any move in L*. Hence m must point to the initial
question gg. There are two sub-cases, either m is an order 0 move and then s falls into category
D or m is an order 1 move and s falls into category B.

case D 7(u) € qo - L* - ¢ where ord ¢ = 0 and m is played by O.
Again by Corollary 2.3.3, m points in (?(u)1 = gog. Since m is a P-move it can only point to
q. Since ¢ is of order 0, it only enables answer moves therefore m is an answer to q. Hence
?(s) =7(u-m) € qo - L* and s falls either into category A or C. O

Consequently for order-2 games, plays are entirely determined by the underlying pointer-
less sequence of moves. At order 3, however, eliminating pointers causes ambiguities. Take for
instance the game ((N! — N?) — N3) — N* and sequence of moves s = PP Pqt, where the
superscripts indicate the component of the game in which each move is played. What are the
valid plays whose underlying sequence of moves is s? By the visibility condition, the pointers of
the first five moves are uniquely determined:

5205
$=q 9 999 qg .

For the last move, however, there is an ambiguity: its justifier can be any of the two occurrences
of ¢?. The visibility condition does not eliminate this ambiguity since both occurrences of ¢?
appear in the P-view "s™ = s. These two possibilities correspond to two different strategies for
the Proponent.

2.3.7 Algorithmic game semantics

Game semantics has proved to be a very successful paradigm in fundamental computer sci-
ence. Following the resolution of the full abstraction problem for PCF, game semantics was
subsequently used to obtain fully abstract models of a variety of programming languages. More
recently, game semantics has emerged as a new approach to program verification and program
analysis. Ghica and McCusker identified a fragment of Idealized Algol for which the game deno-
tation of programs can be expressed using regular expressions. Consequently, the observational
equivalence problem for this fragment is decidable | ,]. This development opened

46 Chapter 2. Background

up a new branch of research called Algorithmic game semantics which has interesting applica-
tions in program verification [, |. This section gives a quick overview of some
important results in the field.

2.3.7.1 Effective presentability

The starting point of algorithmic game semantics is a result shown by Abramsky and McCusker
called the Characterization Theorem | , Theorem 25]. We say that a play is complete if
it is maximal and all questions have been answered. One can show that for every IA type T,
the complete plays on the game [T] are precisely those in which the initial question has been
answered. A game satisfying this condition is said to be simple |]. The characterization
theorem can then be stated as follows:

Theorem 2.3.4 (Characterization Theorem for simple games (Abramsky, McCusker | D).
Let o and 7 be strategies on a simple game A. Then:

o <71 <= comp(o) C comp(T) .

Thus in the game model of Idealized Algol, observational equivalence is characterized by
equality of the set of complete plays.

This result implies that the fully abstract model of Idealized Algol is effectively presentable
[| (i.e., the denotation of a term can be computed by a Turing Machine). The proof
crucially relies on the presence of imperative features in IA. Indeed, Loader has shown that even
on compact strategies, observation equivalence of PCF is undecidable []. This implies that
there is no fully abstract model of PCF that is effectively representable.

Algorithmic game semantics is concerned with deriving decision procedures for the observa-
tional equivalence problem for various fragments of IA. This problem can be stated as follows:
Given two (B-normal forms M and N in a given fragment of IA, does M = N hold? By the
Characterization Theorem 2.3.4, this problem reduces to comparing the set of complete plays of
two given terms. Observational equivalence is undecidable in the general case, but it becomes
decidable when restricted to some lower-order fragments of IA. This question has now been fully
investigated and there is now a complete classification of decidability results for the finitary
fragments of IA.

2.3.7.2 The order-2 fragment of IA

Ghica and McCusker were the first to show that the observational equivalence problem becomes
decidable when restricting the language IA to some finitary fragment. They showed that for the
second-order finitary fragment of Idealized Algol, written IAs, the set of complete plays of the
strategy denotation can be expressed as an extended regular expression | |:

Lemma 2.3.5 (Ghica and McCusker, |). For every IAs-term I' = M : T, the set of
complete plays of [I'+ M : T is regular.

Since equivalence of regular expressions is decidable with complexity PSPACE, by the Char-
acterization Theorem this gives a decision procedure for observational equivalence of IAo-terms.
In the same paper they show that the same result holds for the IA; + while fragment. At order
2, this result cannot be extend further as Ong showed that observational equivalence is already
undecidable for TAs +Y; |].

2.3.7.3 Other fragments of TA

Other finitary fragments were subsequently considered. Ong considered the order-3 finitary
fragment, denoted IA3. He showed that the set of complete plays is a context-free language,
thus observational equivalence reduces to the Deterministic Pushdown Automata Equivalence

Chapter 2. Background 47

(DPDA) problem |]. This problem was shown to be decidable [| but its complexity
is still unknown; we only know that it is primitive recursive |]-

Even for IA3 + while, the fragment obtained by throwing in iteration, the problem remains
decidable. Moreover the problem lies in EXPTIME []. For the fragments IA; + Yj for
i = 1,2, 3, observational equivalence is as difficult as DPDA equivalence (i.e., there is a reduction
in both directions) []. Finally, Murawski showed that the problem becomes undecidable
beyond order 3 (IA; with i > 4) []

The complete classification of complexity results for IA is recapitulated in Table 2.6. Unde-
fined fragments are marked with the symbol x.

Fragment pure +while +YO0 +Y1
TAg PTIME X X X
1A, coNP PSPACE DPDA EQUIV X

1A, PSPACE PSPACE DPDA EQUIV undecidable
IA; EXPTIME EXPTIME DPDA EQUIV undecidable
IA;,i > 4 wundecidable undecidable undecidable undecidable

Table 2.6: The complete complexity classification for observational equivalence in TA.

The coNP and PSPACE results are due to Murawski |]

48

Chapter 2. Background

Chapter 3

The Safe Lambda Calculus

The safety constraint was originally introduced as a syntactical restriction in order to study
decidability of Monadic Second Order theories over infinite trees generated by higher-order
recursion schemes []. The good algorithmic properties of safety in the setting of higher-
order recursion schemes (see background chapter) motivate further investigations in the more
general setting of the simply-typed lambda calculus. In this chapter, we adapt and generalize
the safety syntactic restriction to the lambda calculus, giving rise to what we call the “safe
lambda calculus”.

The first part introduces the typing system of the safe lambda calculus. As remarked in the
background chapter, a higher-order grammar can be viewed as a closed simply-typed lambda-
term; however this term has a particular shape owing to the structure of the grammatical rules:
the right-hand side of a rule is an applicative term (i.e., containing no lambda abstraction) of
ground type. An adaptation of safety to the lambda calculus setting, however, ought to handle
all possible terms, including those containing lambda-abstraction. Our notion of safety is defined
in such a way.

The typing system of the safe lambda calculus is a small variation of the simply-typed
lambda calculus where the abstraction rule is able to abstract more than one variable at a time
but with an extra constraint: the free variables in the resulting term must have order greater
than the term itself. The application rule is similarly constrained. The connection with safe
higher-order grammars is then made evident by restricting our calculus to pure applicative term:
an applicative term of ground type is typable in the safe lambda calculus if and only if it is safe
in the sense of Knapik et al.

We study how terms of this language behave with respect to the term conversions commonly
studied in the lambda calculus: we adapt the notion of beta-reduction to ensure that a version
of the context-reduction lemma holds—safe terms reduce to safe terms—and we show that the
conversion to eta-long normal form preserves safety.

Next, in an attempt to quantify the impact of the safety constraint, we look at the complexity
of the beta-equivalence problem—Given two safe terms, are they beta-equivalent?. The problem
is known to be non-elementary for unrestricted terms |]. We show PSPACE-hardness for
the safe case by reduction from the True Quantifier Boolean Formula problem (TQBF). This
PSPACE-complete problem is encodable in the order-3 fragment of the simply-typed lambda
calculus, but our encoding in the safe lambda calculus makes use of the entire type-hierarchy.
We conjecture the problem to be elementary.

The loss of expressivity caused by safety is then characterized in terms of the numeric
functions that are representable: we show that they are precisely the multivariate polynomials
without the conditional operator. We then give a similar characterization in terms of word-
functions representable.

We then consider classical typing problems in the setting of the safe lambda calculus: we
show that type-checking and typability are decidable and we observe that type inhabitation is
(at least) semi-decidable.

50 Chapter 3. The Safe Lambda Calculus

We conclude the chapter by looking at extensions of the simply-typed lambda calculus. We
look at how the safety restriction can be defined for languages featuring recursion and imperative
feature. This allows us to derive notions of safe sub-language of PCF and Idealized Algol.

REMARK 3.0.2 (Related work) A first attempt to adapt the safety restriction to the lambda
calculus was made by Aehlig et al. in an unpublished technical report []. The calculus
that we present here is both simpler (the typing system is just a slight variation of the simply-
typed lambda calculus) and more general (no condition is imposed on types and use of -
constants of any order is allowed).

3.1 Definition and properties

3.1.1 Safety adapted to the lambda calculus

We use sequents of the form I g M : A to represent term-in-context where I is a typing-context
(a consistent set of typing assumptions), A is the type and M is a term (either annotated or
untyped). As defined in Sec. 2.1, we write A for the set of untyped lambda-terms and At for
the set of lambda-terms annotated with simple types T. We will introduced various subscripts
$ to represent terms-in-context from different typing systems. The subscript ‘st’ refers to the
(Curry-style or Church-style) simply-typed lambda calculus (see Convention 3.1.1).

We fix an atomic type symbol o and for every natural number n € N we use type notation
n to refer to the type n, defined in Sec. 2.1.5 (0 = o and (k+1) =k — o for k > 0). A type
Ay — -+ — A, — B, where B is not necessarily ground, will be written (Ay,--- , A,, B).

Definition 3.1.1 (The safe lambda calculus).

(i) The safe lambda calculus d la Curry, denoted “safe AC"”, is a sub-system of the simply-
typed lambda calculus a la Curry. It is defined as the set of judgments of the form
I' = M : A, where M ranges over untyped term, that are derivable from the system of
rules of Table 3.1.

(ii) The safe lambda calculus d la Church, denoted “safe A°P” is the typing system obtained
by adding type annotations in the A-binders in the abstraction rule of the safe lambda
calculus a la Curry (see Sec. 2.1.7). In this system, M ranges over annotated term.

(iii) The sub-systems defined by the same rules in (i) and (ii), such that all types that occur in
them are homogeneous (Sec. 2.2.2), are called the homogeneous safe lambda calculus
d la Curry and ¢ la Church respectively.

We will consider extension of the safe lambda calculus with constants. For every set = of
higher-order constants, we introduce sequents of the form I' I—? M : A, for some subscript $, to
denote the typing system obtained by adding the rule:

t Y GE.
(cons)l_g?f:Af

For convenience, we shall omit the superscript from I—% whenever the set of constants = is clear
from the context.

The safe lambda calculus deviates from the standard definition of the simply-typed lambda
calculus in a number of ways. First the application and abstraction rules can respectively perform
multiple applications and abstract several variables at once. (Of course this feature alone does
not alter expressivity.) Crucially, the side-conditions in the application rule and abstraction
rule require the variables in the typing context to have orders no smaller than that of the term
being formed. Safe terms can be applied together using the rule (appas), but the resulting term
is only “almost-safe”; it can then be turned into a safe term using the abstraction rule. We do

Chapter 3. The Safe Lambda Calculus 51

'ksM: A 'FsM: A
- @ Ky —2"" """ T cA §) —— 7 7
(Var)x:A}—sx:A (W)AI—SM:A = ()FH—appM:A
()FI—SM:(Al,...,An,B) I'EsN1:Ay ... THN,: A,
PPas T Happ MNy... Ny, : B
ks M:(Ay,...,A,,B) T'FsN1: Ay ... THEsN,: A,
dI' > ord B
(app) TF MN;...N,: B ordl = or
T'zy Ay, 20 Ay Hape M B
bs) = o dT > ord (4y,..., A, B
(a s)FI—S)\xl...xn.M:(Al,...,An,B) ordl' 2 ord (A, ..., An, B)
where ordI" denotes the set {ord A | y: A €T’} and for S C N, u € N, “S > «” means that u
is a lower-bound of S.
Table 3.1: The safe lambda calculus ¢ la Curry.

not impose any constraint on types. In particular, type-homogeneity, which was an assumption
of the original definition of safe grammars |], is not required here. Another difference is
that we allow the addition of =-constants with arbitrary higher-order types.

Definition 3.1.2 (Safe terms).

(i) An untyped term M € A is safe if the judgment I' g M : T is derivable in the safe lambda
calculus a la Curry for some context I' and type 1. Otherwise it is said to be unsafe.

(ii) A type-annotated term M € At is safe if the judgment I" ¢ M : T is derivable in the safe
lambda calculus @ la Church for some context I' and type T. Otherwise it is said to be
unsafe.

(iii) An untyped term M € A is universally safe if all its valid type annotations are safe (i.e.,
for every M’ € Ar, context T and type A such that ' by, M’ : A and |[M'| = M, M’ is
safe). It is universally unsafe if all its valid type annotations are unsafe.

(iv) A term M that is typable as I' Hppp M : T for some I',T is called an almost safe
application.

(v) A term-in-context I' g M : T of the Curry-style (resp. I' ke, M : T of the Church-
style) simply-typed lambda calculus is said to be safe if I' ¢ M : T is also typable in the
Curry-style (resp. Church-style) safe lambda calculus.

CONVENTION 3.1.1 To avoid cumbersome notations, we will use sequents of the formI' -5 M : A
to refer to judgments of both versions of the safe lambda calculus (Curry and Church). When
we specify that M is an untyped term in A then it is understood that the judgement refers to
a term-in-context typed in the Curry-style safe lambda calculus; if M ranges over annotated
terms in At then it refers to a term-in-context typed in the Church-style safe lambda calculus.
When the domain of M is not specified then it means that the current argument, definition,
lemma or proposition is valid in both systems.

Example 3.1.1 (Kierstead terms). Consider the annotated terms M; = Af2.f(Az°. f(\y°.y))
and My = M\f2.f(\x°.f(\y°.x)). My is unsafe because in the subterm f(A\y°.z), the free variable
x has order 0 which is smaller than ord (Ay°.z) = 1. On the other hand, M; is safe as the

52 Chapter 3. The Safe Lambda Calculus

following proof tree shows:

y:Ol—sy 0] (var)
- (3
. PO V0 (o)
O JEEALIEY AL oty ilo
f:2,x:0kg f:2 f:22:0Fs Ny 1,
f32,3330|_sf(>\y0.y):o (az)
(i\;apr)) f:2Fksf:2 Fi2Fs M® f(0%y) : (0,0) (abs)
(abs) fi2Fs fOa. f(\yy)) < o

Fo My = A2 f(Ax°.f(MyCy)) = 3

Now consider the untyped terms underlying M; and My: |Mi| = Af.f(Az.f(M\y.y)) and
|Ms| = Af.f(Az.f(Ay.x)) both have for principal type a3 = ((a¢ - «) — a) — «a. Further,
every typing derivation for |M;| and |Ma| in the simply-typed lambda calculus assigns the same
type a to the occurrences of the variables = and y. Hence |Mj| is universally safe and |Mj]| is

universally unsafe.

Example 3.1.2. The term-in-context f : (1,1,0) Happ (A\p?03.0(A2°.2))(f(A\2°.2)) = M : 3 is
almost safe. Abstracting f produces the safe term-in-context ¢ A f(11:0) AL - ((1,1,0),3).

The basic properties of the simply-typed lambda calculus also hold in the safe lambda cal-
culus:

Lemma 3.1.1. () ’H{M:B ANTCI" = I"+M:B
(ii) DFs M : B = FV(M) C dom(I)
(iti)) TFe M : B = I'pybs M : B where 'yy ={2: A€l | z€ FV(M)}.

Proof. Trivial. O

It is easy to see that valid typing judgements of the safe lambda calculus satisfy the following
simple invariant that we will later refer as the “basic property of the safe lambda calculus”:

Lemma 3.1.2 (Basic property). LetT' g M : B be a valid judgment of the Curry or Church-like
safe lambda calculus. Then

Vz:Ael: 2z€e FV(M) = ordA > ordB .

Note that the converse does not hold: Take the annotated term Ay°z°.(Az°.y)z. Since it is
closed, it trivially satisfies the condition in the conclusion of the previous lemma, but it is not
safe because the variable y is not abstracted by the abstraction ‘Az’. The converse does not even
hold for applicative terms: for instance the term-in-context f: 2,9 : (0,0,0),y : otFs f(gy) : 0
satisfies the condition of the lemma but it is unsafe because the term gy of type 1 occurs in
operand position and contains a free occurrence of a ground-type variable y.

Subterms

The Subterm Lemma of the simply-typed lambda calculus does not hold anymore: a safe term
may contain unsafe subterms. For instance the term Afz.fz is universally safe however its
subterm Az.fz is universally unsafe. There is, however, a subclass of subterms for which this
result holds:

Chapter 3. The Safe Lambda Calculus 53

Definition 3.1.3 (Large subterms). Let M be an untyped term, the set QlB(M) of large
subterms of M is defined inductively by

sub(z) = {z}
sub(MN) = {N} Usub(M) U sub(N)
sAuB()\EM) ={\Zz.M}U sAuB(M) where M is not an abstraction.
The set of large subterms of an annotated type is defined identically.

Lemma 3.1.3 (Subterm lemma for safe A" and safe ACY). Let M range over A or At. Then
TheM:T A M €sub(M) = I' s M' . T' for some I",T".
Proof. The proof is a trivial induction on the structure of the term O

To indicate that a term is unsafe we will sometimes highlight the source of its unsafety by
underlining one of its large subterm as well as some free occurrence of a variable in that subterm
that does not satisfy the condition of the previous Lemma; we may underline just the variable
if the large subterm is clear. For instance the term Af2.f(A\z°.f(\y°.2)) is unsafe because the
subterm Ay°.x has order greater than the order of the variable x mring free in it.

The applicative homogeneously-typed fragment of the safe lambda calculus captures the
original notion of safety due to Knapik et al. in the context of higher-order grammars (Def. 2.2.2):

Proposition 3.1.1 (Correspondence with safe grammars). Let G = (X, N, R, S) be a grammar
and let e be an applicative term generated from the symbols in N UX U { zf‘l, e ,z,‘;‘bm }. A rule
Fzi...zym — e in'R is safe (in the original sense of Knapik et al.) if and only if z1 : A1, -+, 2m :
A I—SEUN e : o0 is a valid typing judgement of the homogeneous (Curry or Church-style) safe
lambda calculus.

Proof. First we observe that since e is an applicative term, the distinction between Curry and
Church-style lambda calculus does not matter. We show by induction that

(i) #z1,...,2m Happ t : A is a valid judgment of the homogeneous safe lambda calculus
containing no abstraction if and only if in the Knapik sense, all the occurrences of unsafe
subterms of ¢ are safe occurrences.

(ii) z1,...,2m Fst: Ais a valid judgment of the homogeneous safe lambda calculus contain-
ing no abstraction if and only if in the Knapik sense, all the occurrences of unsafe subterms of
t are safe occurrences, and all parameters occurring in ¢ have order greater than ordt.

The constant and variable rules are trivial. Application case: By definition, a term tg. .. %, is
Knapik-safe iff for all 0 < i < n, all the occurrences of unsafe subterms of ¢; are safe occurrences
(in the Knapik sense), and for all 1 < j < n, the operands occurring in ¢; have order greater
than ordt;. The (appas) rule and the induction hypothesis permit us to conclude.

Now since e is an applicative term of ground type, the previous result gives: z1,...,zn Fse: o0
is a valid judgment of the homogeneous safe lambda calculus iff all the occurrences of unsafe
subterms of e are safe occurrences, which is in turn equivalent to “Fz; ...z, — e is safe” by
definition of Knapik-safety for grammar rules. O

REMARK 3.1.1 This result was first proved by de Miranda | | for a different notion of safe
lambda calculus. See Remark 3.1.7.

In what sense is the safe lambda calculus safe?

It is an elementary fact that when performing G-reduction in the lambda calculus, one must use
capture-avoiding substitution, which is standardly implemented by renaming bound variables
afresh upon each substitution. In the safe lambda calculus, however, variable capture can never
happen (as the following lemma shows). Substitution can therefore be implemented simply by
capture-permitting replacement, without any need for variable renaming.

54 Chapter 3. The Safe Lambda Calculus

CONVENTION 3.1.2 (Safe variable typing convention) We say that a set I of typing assumptions
of the form x : A, for some variable x and simple type T, is order-consistent if all the types
assigned to a given variable are of the same order:

r: A€l N z:Ayel’ = ordA; =ord Ay .

Let M € At be an annotated term. We define the set Ass(M) as the set of type-assignments
induced by the type annotations in M:

Ass(xz) =0
Ass(M N) = Ass(M) U Ass(N)
Ass(\axl . M) = {x: T} U Ass(M) .

By extension, the set of type-assignments induced by a term-in-context I' ¢, M : T is given by
Ass(T'Fen M : T) =T U Ass(M). A type-annotated term M is said to be order-consistent
just if the set Ass(M) is; a countable set of terms My, M, ... is order-consistent just if
U;>0 Ass(M;) is. This notion naturally extends to (countable sets of) terms-in-context.

“We now adopt the safe variable typing convention: In any definition, theorem or proof
involving countably many terms, it is assumed that the set of terms involved is order-consistent.

Example 3.1.3. The set of typing assumptions {x : 0,z : 1} is not order-consistent. Therefore
the annotated term Ax!.x(\z°.z) is not order-consistent; however, it is alpha-equivalent to the
term Ay'.y(Az°.z) which is order-consistent.

The set of terms {\z%.z, Ax!.x} is not order-consistent.

In the following, we write M {N/x} to denote the capture-permitting substitution that tex-
tually replaces all free occurrences of x in M by N without performing variable renaming (see
Def. 2.1.3) and M {N/Z} to refer to its simultaneous variant (Def. 2.1.5).

Lemma 3.1.4 (No-variable-capture lemma). In the safe lambda calculus a la Church, there
18 no variable capture when performing simultaneous capture-permitting substitution provided
that we adopt the safe variable typing convention (Convention 3.1.2): IfT,Z : B ks M : A,
I'ks Ny : By, - ,I'ks Ny 2 By, where |T| = n then

M{N/z} = M[N/z] .

Proof. We prove the result by structural induction on M. The variable, constant and weakening
cases are trivial. Otherwise, M is of the form A\g“.My ... M, where § = y; ...yp, m,p > 0 and
for every 0 < i < m, M; is safe. The simultaneous capture-permitting substitution gives:

M{N/z} =X Mo {N 1 I[)Z [T} ... My, {N | [/Z | T}

where I = {i € 1.n | z; ¢ y} and for every list s, s [I denotes the sublist of s obtained by
keeping only elements in s whose position index in the list belongs to 1.

Suppose for contradiction that a variable capture occurs in M {N/f} By the induction
hypothesis there is no variable capture in M; {N [I/T | I} for 0 < ¢ < m. This means that we
are in the following situation: For some ¢ € I and 1 < j < p the variable y; occurs freely in IV;,
and x; occurs freely in M. Since y; € FV(N;) we must have y; : D € I for some type D, and
by the safe variable typing convention, we necessarily have ord D = ord Cj. Therefore:

ord D = > ord B; by Lemma 3.1.2 since y; € FV(IV;),
> ord A by Lemma 3.1.2 since z; € FV(M),
=1+ max{ordCy | 1 <k <p}
> ord C}
=ord D by the safe variable typing convention,

which gives us a contradiction. O

Chapter 3. The Safe Lambda Calculus 55

Example 3.1.4. (i) In order to contract the S-redex in

f:(0,0,0),x:0Fch (Agp(o’o)xO.gpx)(f_g) : (0,0)

one should rename afresh the bound variable x to prevent the capture of the free occurrence
of x in the underlined subterm during substitution. Consequently, by the previous lemma,
the term is not safe. And indeed the basic property of the safe lambda calculus is not
satisfied because ordx =0 < 1 = ord fz.

(ii) Adopting the safe variable typing convention is crucial for the lemma to hold. For instance
take the safe terms M = Ay°zand N =y. Wehavez : 1M :0—1landy:1Fs N : 1.
But

M{N/z} = M’y # \a°.y = M [N/z]

Alternatively, the following version of the No-variable capture Lemma does not rely on
Convention 3.1.2:

Lemma 3.1.5. Let I',\T: BFs M : A, T ¢ Ny : By,--- ,I' Fs N, : B, with |T| = n, be valid
judgements of the safe lambda calculus & la Church. Then if further T oy M{N/Z} : A is a
valid Church simply-typed term-in-context (not-necessarily safe) then

M{N/z} = M[N /] .

Proof. The proof is the same as for the previous Lemma except that to show that ord C; =
ord C' we use the assumption I' o, M{N/Z} : A instead of the safe typing convention: Since
the annotated term AyC.M, {NI11/z|I}...My,{N |I/z|I} is typable in the Church-like
lambda calculus, the free variables y; in IV; must be bound by the abstraction)@6. Consequently
its type must be Cj. Hence D = C}; and ord D = ord Cj. U

REMARK 3.1.2 A version of the No-variable-capture Lemma also holds in safe grammars, as is
implicit in (for example Lemma 3.2 of) the original paper |]

Note that lambda-terms that do not require variable-capture when being reduced are not
necessarily safe. For instance the (-redex in Ay°z°.(Az°.y)z can be soundly contracted using
capture-permitting substitution, even though the term is not safe.

Lemma 3.1.6 (Substitution Lemma). Let I'ts N : A. Then
(i) T,o: AFe M :B = T M [N/a]: B,
(1) I'yz : AH4pp M : B = I'H4pp M [N/z] : B.

Further if T'Fs N : A and T' g M : A are homogeneously safe then so is 't M [N/z] : B, and
ifThs N: A and T M : A are homogeneously almost-safe then so is T'Fg M [N/x] : B.

Proof. Let I'=¢ N : A. We show (i) and (ii) simultaneously by induction on the derivation tree
of o : AF¢ M : BorI',x : AH,pp M : B. The base cases (var) and (const) are trivial. The
cases () and (wk) follow immediately from the induction hypothesis.

Case (abs): We have ',z : A s A\y©.Q = M : (C, D). Suppose that = belongs to 7 then the
substitution is not pushed inside the lambda so the result holds trivially. Otherwise suppose that
Iae:A7:C H-app @ : D. Applying the induction hypothesis (ii) on this term-in-context gives:
[,7: C Happ Q[N/x] : D and by the rule (abs) we obtain: T' s Ay©.Q [N/z] : (C, D). We can
then conclude since A\g©.Q [N/z] = (A\y©.Q) [N/x] under the safe variable naming convention
(Convention 3.1.2).

56 Chapter 3. The Safe Lambda Calculus

Case (appas): We have M = MoM; ... M, for p > 1 and I' b M}, : Ay for 1 < k < p. By
the induction hypothesis, we have I' ¢ My [N/z] : Ay for all k. The rules (appas) permit us to
conclude.

Case (app): Again it is proved by applying the induction hypothesis on the premises of the
rules.

Finally, term substitution preserves types so in particular it preserves type homogeneity. U

REMARK 3.1.3 (i) This result naturally extends to simultaneous substitution: If I" - Ny, : Ay
for 1 <k<nthen T,z :Ay,...2,: Ay ts M : B implies I' ¢ M[Ny/x1,...,Ny/x,] : B
and ',z 0 Ay, .. .2+ Ay Happ M 2 B implies I' Happ M [Ny /21,...,Np/zy] @ B.

(ii) Observe that the type substitution lemma of the simply-typed lambda calculus does not
hold in the safe lambda calculus. This is because type substitution allows one to alter
the order of the variables occurring in the term. For instance take M = Afy.f(Az.y). Its
principal type in the lambda calculus is A = ((« —) —) — [— ~ for some atomic
types «, § and 7. Then the judgement ¢ M : A is unsafe (because ordy = ordx), the
judgment F¢ M : A[B — (B/0] is safe, and the judgment g M : A[B — B/0] [— a/q]

is unsafe.

3.1.2 Safe beta reduction

It is desirable to have an appropriate notion of reduction for our calculus. The standard -
reduction rule is not adequate, however, because safety is not preserved by g-reduction as the
following example shows: The safe term)\f(w’o)zowo.()\acoyo.fxy)zw [B-reduces in one step to
A f(0:0:0) z0q 0 .(Ay°.fzy)w, which is unsafe since the underlined order-1 subterm contains a free
occurrence of a ground variable; but if we perform one more reduction we obtain the safe term
Af(0:0:0) 20040 2. This suggests simultaneous contraction of “consecutive” fB-redexes. In order
to define this notion of reduction we first introduce the corresponding notion of redex.

In the simply-typed lambda calculus a redex is a term of the form (Az.M)N. In the safe
lambda calculus, a redex is a succession of several standard redexes:

Definition 3.1.4 (Safe redex). An untyped safe redex is an untyped almost safe application
of the form (Azy...x,.M)Ny ... N, for some [,n > 1 such that M is an almost safe application.
(Consequently Az ...x,.M is safe and each Nj is safe for 1 <i < n.) The notion of annotated
safe redex is defined similarly.

For instance, in the case n < [, a safe redex has a derivation tree of the following form:

(abs) ———=
(k)F,ﬂ::AI—SM:(An+1,...,Al,B)
(W) T \T.M : (Ay1,..., Ay, B) TF.Ni:4, TF.N:A
°PP [ts (AZ.M)N,...N,: B
where the abbreviations T and Z : A stand for z; ...z, and 1 : A1,..., 2, : A, respectively.

Example 3.1.5. The term (Af1.((Ag'ht.h)(A2°.2))) (A\2°.2) (A\2°.2) is a safe redex of type 0 — o.
This example shows that there exist safe redexes of the form (Azy...z,.M)Ny ... N; with [> n.

A safe redex is by definition an almost safe term, but it is not necessarily a safe term. For
instance the term (Az°y°.x)z is a safe redex but it is only an almost safe term. The reason
why we call such redexes “safe” is because when they occur within a safe term, it is possible
to contract them without breaking the safety of the whole term. Before proving this result, we
first define how safe redexes are contracted:

Chapter 3. The Safe Lambda Calculus 57

Definition 3.1.5 (Safe redex contraction). We use the abbreviations # = x1...2,, N =
Ny...Nyand § = yp...yim for n,l,qg > 1. The relation s (when viewed as a function) is
defined on the set of safe redexes as follows:

Bs ={ (ANT.M)Ny...N; = Azpy1... 2. M [N/zy .. 2] | n>1}

where the notation M [Ry ... Ry/z1 ... 2] denotes the simultaneous substitution (Def. 2.1.6).
Lemma 3.1.7 ([, preserves safety). Suppose that My 35 My. Then

(i) Ms is almost safe;

(ii) T s My: A = Ty My : A.

Proof. Let My Bs My for some almost safe redex M7 and term Ms of type A. By definition, M;
is of the form (Azy ...x,.M)N7 ... N for some safe terms Ny, ..., N; of type By, ..., By; almost
safe term M of type C; and such that (Azy...x,.M) is a safe term of type (By,..., By, C).

- Suppose n > [then A = (Bj41,...,By,C). (i) By the Substitution Lemma 3.1.6(ii), the

term M [W/xla:l] : C is an almost safe application: I',z;y1 @ Bjpq,...2n @ By Happ
M [W/xl . xl] : C. Thus by definition, Az;yq ... x,. M [N/xl e xl] = M, is almost safe.
(ii) Suppose that M; is safe. W.l.o.g we can assume that the last rule used to form M;
is (app) (and not the weakening rule (wk)), thus we have domI' = FV(M;), and Lemma
3.1.2 gives us ord A < ordI'. This allows us to use the rule (abs) to form the safe term
s Azpgq ..oy M [N/xl e xl] =M, : A.

- Suppose n < [. (i) Again by the Substitution Lemma we have that M [N;...N,/Z] is an
almost safe application: I' H-,pp M [N1...N,/Z] : C. If n = [then the proof is finished;
otherwise (n < 1) we further apply the rule (appas) [— n times which gives us the almost safe
application I' H—5,, My @ A.

(ii) Suppose that M is safe. If n = then My = M [Ny ... N, /| is safe by the Substitution
Lemma; if n < [then we obtain the judgement I' b5 My : A by applying the rule (appas)
Il —n—1times on I't~s M [Ny ...N,/z]: C followed by one application of (app). O

We can now define a notion of reduction for safe terms:

Definition 3.1.6 (Safe beta-reduction). The safe 3-reduction, written —g_, is the compatible
closure of the relation (s with respect to the formation rules of the safe lambda calculus (i.e.,
it is the smallest relation such that if M; B My and C[M] is a safe term for some context
C[—] formed with the rules of the simply-typed lambda calculus then C[M;] —3, C[Ms]). The
relation =g, is defined as the reflexive, symmetric, transitive closure of —4,.

Lemma 3.1.8. The safe reduction relation —g,:
(1) is a subset of the transitive closure of —g (—3,C—g);
(ii) is strongly normalizing;

(iii) has the unique normal form property;

(iv) has the Church-Rosser property.

Proof. (i) Immediate from the definition: The safe S-reduction is just a multi-step S-reduction.
(ii) This is because —,C—g, and —g is strongly normalizing in the simply-typed lambda
calculus. (iii) It is easy to see that a safe term has a beta-redex if and only if it has a safe
beta-redex (Because a beta-redex can always be “widen” into consecutive beta-redexes of the
shape of those in Def. 3.1.5). Therefore the set of Ss;-normal forms is equal to the set of (-
normal forms. The unicity of S-normal form then implies the unicity of Ss-normal form. (iv) is
a consequence of (i) and (ii). O

58 Chapter 3. The Safe Lambda Calculus

Since —g, is by definition the compatible closure of 3¢ by the formation rules of the safe
lambda calculus, Lemma 3.1.7 implies

Lemma 3.1.9 (Subject Reduction). Let My —p, My. Then
(i) T My :B = I's My : B,
(11) T'Happ M1 : B = T'H—pp My : B.

Proof. Suppose that M; — g, M>. Then we have M; = C[R1] and My = C[N3] for some context
C[—] and safe redex N7 with Ny 35 No.

(i) If the safe redex N is a safe term IV k¢ N; : A then by Lemma 3.1.7(ii) we have
I" k¢ Ny : A. We can therefore deduce T' g C[N2] = M, : B by replacing the derivation subtree
of I k¢ Ny : A by the derivation tree of I - N7 : A in the derivation tree of T' g C[Ny] : B.

Otherwise Nj is an almost safe application that is not safe and therefore Nj is a strict
subterm of M. In the derivation tree of a safe term, an almost safe application that is not safe
can only occur as a premise of the abstraction rule. Thus the context C[—] must be of the form
C’'[M\y.—] for some context C’'[—] and such that A\y.N; is a safe term: I ¢ A\y. N : C for some
I',C. Applying the abstraction rule on Ny gives I ¢ A\.Ny : C. Hence as in the previous
case we can deduce I' k¢ C[Ny] = C'[\y.No] = M, : B by substituting the derivation tree of
I s \y.Ns : C for the derivation tree I'' s A\ij. N1 : C' in the derivation tree of I s M : B.

(ii) If Ny is a safe term the we conclude as in (i). Otherwise, NV; is an almost safe application:
if C[—] = — then we can conclude immediately by Lemma 3.1.7(i); otherwise N; necessarily
occurs as a subterm of a safe subterm of M; so we can conclude as in (i). O

REMARK 3.1.4 —g_ does not preserve “unsafety”: Take any safe annotated-term S and unsafe
annotated-term U of the same type 7, then the term (Az"y".y) U S : 7 is unsafe but it Js-reduces
to S which is safe.

3.1.3 Eta-long normal form

We now restrict our attention to the Church-style (safe) lambda calculus. Since terms are anno-
tated, their type as well as the types of their subterms are uniquely determined. The n-expansion
of M : A — B is defined as the annotated term Az?4.Mz : A — B where z : A is a fresh vari-
able. The n-long-expansion of a term M : (A1,..., Ay, 0) is defined as)\apfl . gplA’.Mgpl c
where each ¢; is a fresh variable. The n-long normal form (or just n-long nf) of an annotated
term (also referred in the literature as long reduced form, n-normal form or extensional form
[, ,]) is obtained by hereditarily n-expanding the body of every lambda ab-
straction as well as every subterm occurring in an operand position (i.e., occurring as the second
argument of some occurrence of the binary application operator). Formally,

Definition 3.1.7. The n-long normal form, written [M| or sometimes n¢(t), of an anno-
tated term M of type (A1,...,Ay,0) with n > 0 is defined by cases according to the syntactic
shape of M (A simply-typed term is either an abstraction or it can be written uniquely as
5081 - - - Sm where m > 0 and sg is a variable, a ¥-constant or an abstraction.):

[A2".N] = Xa".[N]
[aN;...N,] = A@f.a[]\m...(wam...ﬂpn}
[A2"™.N)Ni...N,] = Mg O™ [ND[N1]...[Ny][e1] - [n]

where m > 0, p > 1, x is a variable, © = ¢; ..., and each ¢; : A; is a fresh variable, and « is
either a variable or a constant.

REMARK 3.1.5 The n-long normal form is defined for every simply-typed lambda-term, whether
B-normal or not. Furthermore, the transformation does not introduce any new redex therefore
the n-long normal form of a S-normal term is also -normal.

Chapter 3. The Safe Lambda Calculus 59

Definition 3.1.8. We say that a safe annotated term is long-safe just if it is typable in the
Church-like safe lambda calculus without using the rule (appas) from Def. 3.1.1. Equivalently,
it is long-safe just if the judgment I' = M : T for some I', T can be derived from the system of
rules of Table 3.2.

THM:A
4. AeT k) — 2 peA
(van) pr—g ©i4€ Wh) X374 T'C
T M:(Al,...,Ay,B) TH N : A, ... THNy:A,
AT > ord B
(appi) I MN,.. N, B orét = or
(absy) Doy iAo A M B ordT’ > ord (A, ..., A, B)

LAzt oz M (Ay,..., A, B)

n

Table 3.2: Typing rules for long-safe terms-in-contexts.

The terminology “long-safe” does not mean that those terms are in 7-long normal form; the
name is deliberately suggestive of a forthcoming lemma (Lemma 3.1.13). By definition, if an
annotated term is long-safe then it is safe:

Lemma 3.1.10. TH M:T — I'tks M - T.

In general, long-safety is not preserved by m-expansion: for instance we have | Ay°z°.y :
(0,0,0) but t/ Az°.(A\y°z°.y)x : (0,0,0). On the other hand, n-reduction (of one variable)
preserves long-safety:

Lemma 3.1.11. TH A" Myp: A N 9o FV(M) = T'H M : A.

Proof. Supposel' F Ap™.M ¢ : A. If s is an abstraction then by construction the annotated-term
s is necessarily safe. If M = Ny ... N, with p > 1 then again, since Ap”.Ny ... Ny is safe, each of
the N; is safe for 0 < i < p and for every z € FV(Ap™.M ¢), ord z > ord \p™.M ¢ = ord s. Since
¢ does not occur free in M we have FV (M) = FV(Ap™.M), thus we can use the application
rule to form I'ps by Ny ... N, : A where I'j is the subset of I' satisfying dom(I') = FV(M). The
weakening rules permits us to conclude I' | M : A. U

Lemma 3.1.12 (Long-safety is preserved by n-long expansion). ' - M : A = T'H [M] : A.

Proof. We first show that for every variable or constant = : A we have x : A k| [x]| : A by
induction on ordz. For ground type variable we have z = [x] thus the property clearly holds.
Step case: A = (Ai,...,A,,0) with n > 0. Let ¢; : A; be a fresh variable for 1 < i < n.
Since ord A; < ord z the induction hypothesis gives ¢; : A; by [p;] : A;. Using (wk;) we obtain
v: A : AF [¢i] : A;. The application rule gives x : A, % : A x[p1]...[,] : 0 and the
abstraction rule gives z : A Ap.z[p1] ... [on] = [z] ¢ A.

We now prove the lemma by induction on s. The base case is covered by the previous

observation. Step case:

e M = xNy...Ny, with : (By,...,Bmn,A), A = (A1,...,A,,0) for some m > 0, n > 0
and N; : B; for 1 < i < m. Let ¢; : A; be fresh variables for 1 < i < n. By the
previous observation we have ¢; : A; F| [@;] : A;, the weakening rule then gives us
I''g : AR [¢i] @ A;. Since the judgement I' | zNy...N,, : A is formed using the
(appy) rule, each N; must be long-safe for 1 < j < m, thus by the induction hypothesis
we have I' b [N;] : B; and by weakening we get I : A b [N;] : B;. The (app)
rule then gives I',% : A | 2[N1]... [N |[¢1] ... [¢n] : 0. Finally the (abs|) rule gives
L AG.2[Ni]...[Nnlle1] ... [en] = [M] : A, the side-condition of (abs)) being satisfied
since ord [M]| = ord M.

60 Chapter 3. The Safe Lambda Calculus

e M = Ny...N,, where m > 1 and Ny is an abstraction. The the eta-long normal form of
M is [M| = Xg.[No|...[Nm|[e1] .- [¢n] for some fresh variables o1, ..., ¢,. Again,
using the induction hypothesis we can easily derive [s] : A.

e M = \jP.N where A = (B,C) and N is not an abstraction. The induction hypothesis
gives 1,7 : B [N] : C and using (abs|) we get T' - Mi.[N] = [M] : A.

O

REMARK 3.1.6

1. The converse of this lemma does not hold: performing n-reduction over a large abstraction
does not in general preserve long-safety. This does not contradict Lemma 3.1.11 which
states that safety is preserved when performing n-reduction on an abstraction of a single
variable. The simplest counter-example is the term f(®%°) ¢ \z°. fz which is not long-safe
and whose eta-long normal form f(©%9 - X\z°y°. fzy is long-safe. Even for closed terms
the converse does not hold: \f(2:0:0) g((0:0,0),0) .g(Az°.fx) is not long-safe but its eta-long
normal form \ f(0:0:0) g((0:0,0),0) .g(Az°y°. fxy) is long-safe. In fact even the closed Bn-normal
term A f(©:(0:0),0,0) 4((0:0),0,0,0),0) .g()\y(o’o)xa.fgy) which is not long-safe has a long-safe n-long
normal form!

2. In an eta-long normal term, applications occurring in it can always be chosen large enough
so that the side-condition of the rule (app)) is satisfied. Hence if a term is still not long-safe
after n-long expansion, then it is necessarily due to some occurrence of an abstraction in
the term for which the side-condition of the abstraction rule is not satisfied.

Lemma 3.1.13. An annotated term M € Ar is safe if and only if its n-long normal form is
long-safe; formally:
PbeM:T < T'H [M]|:T .

Proof. (Only if) Let T' ¢ M : (A1, ..., A;,0). We show the result by induction on the structure
of M. The base cases and weakening case are trivial. Abstraction: M has the form \y.My ... M,
for some safe terms My, 0 < k < p, p > 0. By the subject reduction lemma we have I'p; s
M : (Ay,...,A;,0) where I'js is the subset of I' containing only typing for free variables in M.
The n-long expansion of M is A\yzy..x;.[M|[z1] ... [z;]| for some variables z1 : A1,..., 21 A
fresh in M. Let k range in {1..l}. By Lemma 3.1.12 and 3.1.10, each [xj] is safe, and by the
LLH. [M] is also safe. Therefore by (appas), so is [M][z1]...[x;]. By Lemma 3.1.2, all the free
variables of M have order greater than ord (41, ..., A;,0), hence we can use the abstraction rule
to form the judgment I'p; Fs Agxy..xp. [M][z1] ... [z] : (A1,...,A;,0) and the weakening rule
permits us to conclude. The application case is treated identically.

(If) By induction on the structure of the Church term-in-context I' F¢, M : T The vari-
able, constant and weakening cases are trivial. Suppose that M is an application of the form
ZNy...Np, = A for m > 1. Its n-long normal form is x[Ni]...[Np|[e1]...[em] : o for
some fresh variables 1, ... ;. By assumption this term is long-safe term therefore we have
ord A < ordT and for 1 < i < m, [N;] is also long-safe. By the induction hypothesis this implies
that each N; is safe. We can then form the judgment I' ¢ Ny ... Ny, : A using the rules (var)
and (app) (this is allowed since we have ord A < ordTI'). The case M = (Az.N)N;...N,, for
m > 1 is treated identically. o

Suppose that M = A\TP.N : A. By assumption, its n-long n.f. \e2@C.[N][p1] ... [om] : A
(for some fresh variables = ¢1 ... ¢y,) is long-safe. Thus we have ord A < ordI'. Furthermore
the long-safe subterm [M][¢1] ... [¢m] is precisely the eta-long normal form of My ... ¢p, : 0
therefore by the induction hypothesis we have that Mp; ..., : o is safe. Since the ¢;’s are
all safe (by rule (var)), we can “peal-off” m applications of the rule (appas) (or (app)) from the
sequent I',T : B,% : C k¢ 501 ..., : 0 which gives us the sequent I',7 : B,% : C H-app M : A.
Since the variables @ are fresh for M, we can further peal-off one application of the weakening
rule to obtain the judgment I',Z : B s M : A. Finally we obtain I' s AZ2.M : A using the rule
(abs) (which is permitted since we have ord A < ordT"). O

Chapter 3. The Safe Lambda Calculus 61

Proposition 3.1.2. An annotated term M € At is safe if and only if its n-long normal form
is safe; formally:
'tsM:B < I's[M]:B .

Proof.
(If): P [M|:T = TH[M]:T By Lemma 3.1.13 (only if),
— 't [M]:T By Lemma 3.1.13 (if).
(Only if): 'ksM:T = I'H [M]:T By Lemma 3.1.13 (only if),
= ' [M]:T By Lemma 3.1.10. O

3.1.4 Almost safety

We now give an alternative presentation of the safe lambda calculus. Consider the Curry-style
system of rules of Table 3.3. (The Church-style version of this system is obtained by annotating
the A-binder in the abstraction rule.)

I'Happ M - A
AMapp M A

TheM: A

(Varas) I . A c T (Wkas) m

TcA (wk
T Happ o A CAa (wh)

'cA

F'hoppM:A—B TI'FsN: A
I'Happ M N : B

TH M: A b T Heapp M A THM:A
(5)rhppM:A) F1ar-4) FEar4

Fx: A+ M:B
'tXeM:A— B

(appas) (absas)

ordI" > ord A .

Table 3.3: Alternative definition of the safe lambda calculus ¢ la Curry.

It is easy to see that these (Curry-style and Church-style) systems of rules are equivalent to
the ones from Def. 3.1.1 in the sense that they generate the same set of judgments of the form
I' s M : T. The above systems, however, have the advantage of decomposing the application
and abstraction rules into atomic steps where only one variable is abstracted at a time and only
two terms are applied together at a time.

Definition 3.1.9. Terms typed with the entailment operator H- are called almost safe terms.
Terms typed with the entailment operator H-,p,, are called almost safe applications.

The intuition behind these rules is that almost safe terms represent terms that are not safe
but which can become safe if sufficiently many safe terms are applied to them or if sufficiently
many variables are abstracted. The rule (appas) is used to form applications in which each
applied term is safe:

Lemma 3.1.14.
1. IfT' Happ M : T then M = Ny ... Ny, for some m > 0 where N; is safe for every 0 <1 < m;

2. IfTH M :T then M = Axy...x5.Ny ... Ny, for some n,m > 0 where N; is safe for every
0<:<m.

This result follows immediately from the definition of the rules.

The rule (abs,s) is nothing less than the standard abstraction rule of the lambda calculus.
As soon as the context and the type of the term being formed respect the safety condition (i.e.,
all the context variables have order greater than the order of the type), the term can be marked
as safe. This is done using the rule (p). Together with the rule (¢’) this implies that the closure
of an almost safe term is always safe:

62 Chapter 3. The Safe Lambda Calculus

Lemma 3.1.15. ' M : T A dom(I') = FV(M) = tsclosure(M):T.

The two weakening rules (wk) and (wk,s) permit one to extend the context of a safe term
or an almost safe application. We could have added a third rule to allow weakening for almost
safe terms I' = M : T as well. This is however not necessary because this kind of weakening can
always be eliminated. (In particular if the term is an abstraction then we can instead apply the
rule (wkas) just before the abstraction rule).

An annotated term is almost safe if and only if its eta-long normal form is safe:

Lemma 3.1.16. Let M € Ar. Then T'H= M : T if and only if T H- mns(M) : T'.

Proof. Only if: Let I' H= M : T be an almost safe term. We proceed by induction on M.
Suppose that the last rule used is (6"). Then by Lemma 3.1.14 M is an application NoNy ... Ny :
(A1,...,Ay) with £ > 0. Let ¢; for i € {1..n} be fresh variables, using the rules (var,s), (Wkas),
(appas) and (abs,s) we can build the almost safe term I" H-)\gpfl . cpf".NoNl oo Ngp1 .o T

If the last rule used is (§) then M is safe therefore by Proposition 3.1.2, its eta-long normal
form is safe and therefore by () it is also almost safe.

If the last rule used is (abs,s) then by the induction hypothesis the eta-long nf of the premise
is almost safe so we can conclude using (abs,s).

If: Tt is again a proof by structural induction on the eta-long normal form. The basic idea
is that we can “peal-off” applications of the rules (abs,s) and (appapp) introduced during the
eta-expansion. O

The two preceding lemmas show that the closure of the eta-long normal form of an almost
safe term is safe. This explains the expression “almost safe”: an almost safe is semantically
safe in the sense that it is (extensionally) equivalent to a safe term; on the other hand it is
syntactically unsafe since it cannot appear as an operand of an application inside a larger safe
term.

Lemma 3.1.17 (Safe beta reduction preserves almost safety). Let M —g, M'. Then
T't+-M:A = THM:A.

Proof. Suppose that M —, M' and I' - M : A. By Lemma 3.1.14, M = Azy...2,.No... Np,
for some n,m > 0 where N; is safe for every 0 < i < m. There are two cases: If the redex
occurs in some N; for 0 <4 < m then we have N = Azy...2,.Ny... N/ ... Ny, where N; — 3, N/
for some N/. Since safety is preserved by safe reduction (Lemma 3.1.9), N/ is safe. Hence we
can conclude using the application and abstraction rule. The second case is when the redex
is Ni...N, for some 1 < ¢ < m. This means that Ny is of the form Ay;...y,.P for some
safe term P, and M’ = P[N1/yi1 ... Ng/Yq)Ng+1 - - - Npm. The Substitution Lemma 3.1.6 and the
application and abstraction rules permit us to conclude. O

3.1.5 Safety with respect to other type-ranking functions

We call type-ranking function any function rank : T — (L, <) mapping the set T of simple
types over a set of atomic types A to some preorder (L, <).

Example 3.1.6. The followings are examples of type-ranking functions T — (N, <):

e The type-order defined by ord(a) = 0 for @ € A, and ord(A — B) = max(ord(A) +
1,ord(B));

e The height defined by height(A — B) = 1 4 max(height(A), height(B)) and height(a) =0
for a € A;

e The type-arity defined by arity(A — B) = 1 + arity(B) and arity(a) = 0 for a € A;

Chapter 3. The Safe Lambda Calculus 63

e The size defined by size(a) = 0 for o € A and size(A — B) = size(A) + size(B).

The pairing of two type-ranking functions is also a type-ranking function. For instance the pair-
ing (ord, arity) : T — (N x N, <) is a type-ranking function where < denotes the lexicographic
ordering.

We have defined the safe lambda calculus as a restriction on the simply-typed lambda calculus
obtained by restricting the occurrences of variables according to their order. Would it make
sense to define a version of the safe lambda calculus where the constraint relies on a different
type-ranking function?

In the safe lambda calculus, the application and abstraction rules permit us to perform
multiple abstraction or application at a time. For the abstraction rule, the idea is that the
side-condition might not be satisfied after one abstraction but it may become after consecutive
abstractions, and similarly for the application rule. So by design, the typing system implic-
itly assumes that abstracting variables increases the order of the term’s type, and inversely
performing application decreases its order:

rank(A — B) > rank(B) . (3.1)

On the other hand, in order to prove the No-variable-capture Lemma we need the following
property:

rank(A — B) > rank(A) . (3.2)

The minimal function satisfying the two previous equations is precisely the function ord
(i.e., any function rank : T — (L, <) satisfying (3.1) and (3.2) is greater than ord by pointwise
ordering). Hence the typing-system defining the safe lambda calculus is only of interest if the
ranking function used is the type-order function ord.

3.1.6 Homogeneous safe lambda calculus

Our version of the safe lambda calculus does not make any assumption on types. In its original
form however—in the setting of higher-order grammars—the safety restriction makes a further
assumption on types called homogeneity. We recall from Sec. 2.2.2 that a type (41,... Ay, 0)
is said to be homogeneous whenever ord A; > ord Ay > ... > ord A, and each of the A;
is homogeneous. As defined in Sec. 3.1.1, the homogeneous safe lambda calculus denotes the
restriction of the safe lambda calculus where types occurring in the derivation trees are all
homogeneous. We now give a presentation of this calculus by means of a proper system of rules
in which type homogeneity is implicitly enforced by the typing rules themselves.

We call stratified context any context of the form x11 : A1, -+ , 21, ¢ A1, To1 @ Aoq,. ..
such that variables are listed in decreasing order and such that for every k,l and ¢ > j, ord z;; >
ordzj;. In other words, the context is stratified into lists of variables of the same orders, and the
stratifications are arranged in strict decreasing order. Such stratified context will be abbreviated
as

T Ay | T Ay

For every unstratified context I', we write strat(I') to denote any possible valid stratification of

r.

Definition 3.1.10. We define typing judgements of the form: @7 : Ay | -+ | T : Ay b M = B
by induction over the following rules:
'y M: A
h-const) ———— f: Ae€eX h-var — — 0) ——m —
()l_thf ()x_1A1||x_nAnl_hx2]Az] ()FH_h.appMZA
I'-wM:B rcaA I'hM:B I')h
(h-wk) h C (perm) h o(T") homogeneous

A, M:B o)k, M : B

64 Chapter 3. The Safe Lambda Calculus

P}—hS:(Al,...,An,B) P}—htltAl Fl—htn:An
FHhappsti...th: B

(h-appas)

Fl_hNO:(Bllg---,Bll’E’]B—m\o) Pl—thiBn Fl—th:Bll
I'Ep NoNy -+ Np: (Bz| -+ | B o)

(h'a ppstrat)

Dby M:(By,...,BulBz| - |Bylo) ThywN:Bp
Pl—h MN:(BH,...,BU’32’ \Bmlo)

(h'apppartial) ordI' > ord Bi;

T1: AL | Ty Apr | [< A Hopapp M2 B

(h-abs) ——= — — — —
1’1:A1‘ ‘xp:Apl_h)‘xp-l—l---xn-M:(Ap—i—l‘---‘An‘B)

ordA,, > ord B—1

where A is an homogeneously-typed alphabet, 3 is a set of homogeneously-typed constants, and
o ranges over permutations on lists of type-assignments.

The main changes compared to the rules of the non-homogeneous safe lambda calculus are:
(i) The contexts are stratified;
(ii) All the types appearing in the rule are homogeneous;

(iii) The rule (h-appas) is the counterpart of rule (appas) in the safe lambda calculus: you can
form an homogeneous almost safe term by applying several safe terms together;

(iv) The original application rule (app) is split into two rules: (a) (h-appstrat) is a “stratified
application”. It applies an entire level of the type stratification. Because of type homo-
geneity, sufficiently many terms are applied to make the order of the term decrease, so no
side-condition is necessary. (b) (h-apppartial) is @ partial application: it applies only two
terms together provided that some condition on types is satisfied;

(v) Type-homogeneity constrains the order in which the variables are abstracted: in the rule
(h-abs), if a variable of a given order is abstracted then all the lower layers in the stratified
context need to be abstracted as well;

(vi) Because of the previous point and because contexts are stratified, the side-condition present
in the rule (abs) of the original safe lambda calculus is always satisfied and is not required
here. Instead the side-condition in (h-abs) ensures that the type (A,|B) is homogeneous.

Lemma 3.1.18 (Basic properties). Let I' -, M : B be a valid judgment then
(i) B is homogeneous;
(1) Vz: AeTl: z€ FV(M) = ord A > ord B;

(iii) (Context reduction) T'py b M : B where T'pyy ={z: A€T | z€ FV(M)}.

Proof. (i) and (ii) are proved by a trivial induction. (iii) Variables in I" not occurring free in M
are necessarily introduced by the weakening rule. The derivation of I'j; F, M : A can thus be
obtained by removing all the unnecessary applications of the weakening rule from the derivation
tree of I' by, M : A. O

Proposition 3.1.3. The judgement strat(I') bn M : T (resp. strat(I') Hpapp M : T) is valid
if and only if there is a derivation tree for I' ¢ M : T (resp. T' Happ M : T) in the Curry-style
safe lambda calculus (Def. 3.1.1) such that all the types appearing in the derivation tree are
homogeneously-typed.

Chapter 3. The Safe Lambda Calculus 65

Proof. Only if: The proof is by a trivial structural induction on I' =, M : T. If: We proceed
by structural induction on the derivation tree of I' s M : T'. The cases (var), (const), (wk) and
(appas) are trivial. Suppose that the rule (app) is used. Then we can form the equivalent homo-
geneous term by using the I.H. and applying (appstrat) several times followed by one application
of (apppartial)-

Abstraction: The sequent is of the form T' b Az ...xp.5 : (A1,..., Ay, B) with ordT" >
ord (Ay,...,A,, B). By the induction hypothesis we have strat(I',z1 : A1,..., 25 : Ap) Hhapp
s : B. Since we have ordT" > ord (A4, ..., A,, B), all the variables in I" have order strictly greater
than the variables x1,...,x,. Therefore there exists a stratification of I', z1, ..., x, of the form

strat(D) |gg: Y1 |-+ |7 : Y}

for some [> 1 such that the sequence of variables 771, ...,%; is equal to x1,...,z,. Hence using
the permutation rule (perm) we can form the judgment

strat(F)]m:?ﬂ---\@:?ﬁ—h_apps:B .

We can now apply the rule (h-abs) to form strat(I') H-napp Az1...25.5 1 (A1,..., Ay, B). The
side-condition of the rule is satisfied because (41, ..., 4,, B) is homogeneous by assumption. [

Example 3.1.7.
(i) The untyped term (Afz.z)gy is homogeneously safe. One possible derivation is:

(var) ———
%) r:obphx:o0
(abs) Hh.app T : 0
(k) FnAz.z: 1
(avl\)ls) fi(o,0)FhAzx:1
(wh) Fn Afz.z: (1,0,0) (var)
()g:(o,o)l—h)\fx.x:(l,o,o) g:1lkhg:1 (var)
2PPstrat g: 1k, (Afrx)g:1 y:olbhy:o v
(wk) (wk)
(3ppura) g:Ly:obpy (Afzx)g:1 g:Ly:okhy:o
strat

g:Ly:oby (Afz.x)gy:o

(ii) The annotated-terms Ag(®(®:9) 20 gz and \g(®(©9):9) 30 gz(Az.z) are both safe but not
homogeneously safe because they are not homogeneously typed. This shows that the safe lambda
calculus strictly contains the homogeneous safe lambda calculus.

(iii) The annotated-term Az°flp2.p is safe but not homogeneously safe because its type
(0,1,2,2) is not homogeneous. On the other hand, the untyped term Az f¢.p is homogeneously
safe because the annotation Az°f9x0. is safe and homogeneously typed.

Example 3.1.8. Take the following term:
E = (Aa.a(Ab.a(Aed.d)))(Ae.e(Af.f)) .

(It was used by Sereni [| as a counter-example to show that not all simply-typed terms
are size-change terminating [|.) The untyped term E is universally safe. Indeed, let
E' € At be a type-annotation of E (i.e., |E’| = E) such that E’ is typable in the Church
simply-typed lambda calculus. Then it is easy to check that we have

l—ChE/:A—>A

66 Chapter 3. The Safe Lambda Calculus

for some type A € T (and thus E has for principal type o — «)) and the type assignments for
the bound variables in E’ are of the form:

a:C—A— A

b:B— B

c:B— B

d: A
e:C=(B—B)—A— A
f:B

for some for some types A, B € T (not necessarily atomic). It is then an easy exercise to check
that for every type A, B € T, we can form the following term-in-context:

FoE :A— A .

On the other hand, F is only homogeneously safe (and not universally homogeneously safe).
More precisely, its annotation E’ is homogeneously safe if and only if ord B > ord A—1. Formally:

Fhn B/ A— A — ordB>ordA—1 .

(In particular, the condition in the right-hand side implies that A, B and the types of a, b, ¢, d, e, f
are all homogeneous.)

REMARK 3.1.7 (Related work) In her thesis, de Miranda proposed a different notion of safe
lambda calculus []. This notion corresponds to (a less general version of) our notion of ho-
mogeneous safe lambda calculus: the applicative fragment (i.e., without lambda-abstraction) of
de Miranda’s typing system coincides with the applicative fragment of the system of Def. 3.1.10.
In particular a version of Proposition 3.1.1 is shown by de Miranda []. In the pres-
ence of lambda abstraction, however, our system is less restrictive. For instance the judgment
Fh Af(@00)g0 fg (0,0) is derivable in the homogeneous safe lambda calculus but not in the
safe lambda calculus ¢ la de Miranda. One can show that the system introduced by de Miranda
is in fact equivalent to the fragment of the long-safe lambda calculus (Def. 3.1.8) restricted to
homogeneous types.

3.2 Complexity

This section is concerned with the complexity of the beta-eta equivalence problem for the safe
lambda calculus: Given two safe lambda-terms, are they equivalent up to Bn-conversion?
Let expy,(m) denote the tower of exponential function defined by:

expq(m) = m

expy 41 (m) = 2774

Recall that a program is elementary recursive if its run-time can be bounded by exp(n) for
some constant K where n is the length of the input.

3.2.1 Statman’s result

A famous result by Statman states that deciding the (n-equality of two first-order typable

lambda-terms is not elementary recursive |]. The proof proceeds by encoding the Henkin
quantifier elimination of type theory in the simply-typed lambda calculus. Simpler proofs have
subsequently been given: one by Mairson | | and another by Loader |]. Both proceed

by encoding the Henkin quantifier elimination procedure in the lambda calculus, as in the original

Chapter 3. The Safe Lambda Calculus 67

proof, but their use of list iteration to implement quantifier elimination makes them much easier
to understand.

It turns out that all these encodings rely on unsafe terms: Statman’s encoding uses the
conditional function sg which is not definable in the safe lambda calculus []; Mairson’s
encoding uses unsafe terms to encode both quantifier elimination and set membership, and
Loader’s encoding uses unsafe terms to build list iterators. We are thus led to conjecture that
finite type theory (see definition in Sec. 3.2.2) is intrinsically unsafe in the sense that every
encoding of it in the lambda calculus is necessarily unsafe. Of course this conjecture does not
rule out the possibility that another non-elementary problem is encodable in the safe lambda
calculus.

We start this section by presenting an adaptation of Mairson’s encoding. We show that
quantifier elimination can be safely encoded and explain why it is problematic to encode set-
membership safely. We will then use this encoding to interpret the True Quantifier Boolean
Formula (TQBF) problem in the safe lambda calculus, thus showing that deciding beta-eta
equality is PSPACE-hard.

3.2.2 Mairson’s encoding

We recall the definition of finite type theory. We define Dy = {true,false} and Dy;1 =
powerset(Dy). For k > 0, we write z*, y¥ and z* to denote variables ranging over Dj. Prime
formulae are 20, true € y', false € y!, and zF € y**t1. Formulae are built up from prime
formulae using the logical connectives A, V, —, = and the quantifiers V and 3. Meyer showed
that deciding the validity of such formulae requires nonelementary time |]

In Mairson’s encoding, boolean values are encoded by terms of type B = ¢ — ¢ — o for
some type o, and variables of order & > 0 are encoded by terms of type Ay defined as Ag = B
and Api1 = Ag™ where for every type a, a* = (&« — 7 — 7) — 7 — 7 for some type 7. Using
this encoding, unsafety manifests itself in two different ways.

k+1

1. First in the encoding of set membership. The prime formula z*F € y is encoded as

¥ Ag, Rt Agiq Fst yk+1()\yk : Ap.OR(eqy, zF yk) F:Ap— Apip — Ay (3.3)

for some terms OR, F, eq,. This term is unsafe because of the underline occurrence of z*
which is not abstracted together with 7"

2. Secondly, quantifier elimination is performed using a list iterator Dy,1 of type Agyo which
acts like the fold_right function from functional programming over the list of all elements of
Dy,. Thus for instance the formula V2. 3y%.2% v 0 is encoded as

Fot Do(AzY : Ag. AND(Do(M\y° : Ag.OR(z° v 4°))F)) T : B

where the type 7 is instantiated as B. This term is unsafe since the underlined occurrence is
unsafely bound. This is due to the presence of two nested quantifiers in the formula, which are
encoded as two nested list iterations. More generally, nested binding will be encoded safely if
and only if every variable z in the formula is bound by the first quantifier 3z or Vz in the path
to the root of the AST of the formula satisfying ord z > ord z. For instance, assuming that
set-membership can be encoded safely, the interpretation of Yz# 3y**! 2k e yFt!
whereas the encoding of Vy*+1.32% 2F € y#+1 is safe.

is unsafe

Surprisingly, the ‘unsafety’ of the quantifier elimination procedure can be easily overcome.
The idea is as follows. We introduce multiple domains of representation for formulae. An element
of Dy, is thereby represented by countably many terms of type A} where n € N indicates the
level of the domain of representation. The type A} is defined in such a way that its order
strictly increases as n grows. Furthermore, there exists a term that can lower the domain of

68 Chapter 3. The Safe Lambda Calculus

representation of a given term. Thus each formula variable can have a different domain of
representation, and since there are infinitely many such domains, it is always possible to find an
assignment of representation domains to variables such that the resulting encoding term is safe.

For set-membership, however, there is no obvious way to obtain a safe encoding. In order to
turn Mairson’s encoding of set-membership (3.3) into a safe term, we would need to have access
to a function that changes the domain of representation of an encoded higher-order value of the
type-hierarchy. Unfortunately, such transformation is intrinsically unsafe!

We now present the encoding in details.

3.2.2.1 Encoding basic boolean operations

Let o be a base type and define the family of types o9 = o, 0,41 = 0, — 0, satisfying ord o,, = n.
Booleans are encoded over domains B,, = 0, — 0 — 0 — o for n > 0, each type B,, being of
order n + 1. We write 7,,,; to denote the term A\z".x : 0y,41 for n > 0. The truth values true
and false are represented by the following closed terms parameterized by n € N:

" = Mu’"z%y°.x : B,

F" = u"z°y°y: B, .
Clearly these terms are safe. Moreover the following relations hold for all n,n’ > 0:
)\uan/.Tn-i-l Zn—f—l —g Tn/
Ayl it Ipi1 =8 F" .

It is then possible to change the domain of representation of a Boolean value from a higher-level
to another arbitrary level using the conversion term:

/ .
Cytt=™ = AmBrtiy m i,y Bpy1 — By

so that if a term M of type B,,, for n > 1, is beta-eta convertible to 7" (resp. F") then Cg'_’"/ M
of type B, is beta-eta convertible to T (resp. F”/).
Observe that although CnglH" is safe for all n,n’ > 0, if we apply a variable to it then the

resulting term
!
x: Bpyibst CSHH” z: B,

is safe if and only if ord B, 11 > ord B,, that is to say if and only if the transformation decreases
the domain of representation of x.
Boolean functions are encoded by the following closed safe terms parameterized by n:

AND"™ = \pB¢Bruora°y° pu (qu z y) y: B, — B, — By,

OR™ = \pBr¢Brum 2y’ puz (quz y): B, — B, — By,
NOT™ = \pB w2 \y°puy z: By, — By, — By .

3.2.2.2 Coding elements of the type hierarchy

For every n € N we define the hierarchy of type A} as follows: Af = B, and A}, | = A}*
where for every type o, o = (¢ = 7 — 7) — 7 — 7. An occurrence of a formula variable
zF will be encoded as a term variable ¥ of type A} for some level of domain representation
n € N. Following Mairson’s encoding, each set Dy, is represented by a list D} consisting of all
its elements:

D= AcBr T e T (¢ FMoe) AT

n _ n . n
Dy, = powerset Dy, : Ay o

Chapter 3. The Safe Lambda Calculus 69

where

* ok K,k K,k * ok
powerset = \A*@aT et —a

A* double (A\c™ ~T7TH.c (AYTTTTHTH) b)

double = \x® l(a*H’TH’T)HT*?T CQ*HT*)T b

IAe® .c AN*"T7T V7. z (e d V) cd)

:aﬁa**_)a**

In all these terms, the only variable occurrence that is potentially unsafe is the underlined
occurrence z in double. This occurrence is safely bound just when ord o > ord 7. Consequently
for all k,n > 0, D} is safe if and only if orda > ord 7.

3.2.2.3 Quantifier elimination

Terms of type Aj ; are now used as iterators over lists of elements of type A}l and we set 7 = B,
in the type A7, in order to iterate a level-n Boolean function. Since ord A} > ord B,, for all
n, all the instantiations of the terms D} will be safe. Following | |, quantifier elimination
interprets the formula Vaz*.®(2*) as the iterated conjunction:

cp—? (D;;(Axk . AP AND"(& 2%)) T") ,

where ® is the interpretation of ® and n is the representation level chosen for the variable z.
Similarly we interpret 3z*.®(z*) by the disjunction C§—° <DZ()\xk : AZ.AND"(@ z*)) T").

3.2.2.4 Encoding the formula

Given a formula of type theory, it is possible to encode it in the lambda calculus by inductively
applying the above encodings of boolean operations and quantifiers on the formula; each variable
occurrence in the formula being assigned some domain of representation.

We now show that there exists an assignment of representation domains for each variable
occurrence such that the resulting term is safe. Let xl;” . xlfl for p > 1 be the list of variables

appearing in the formula, given in order of appearance of their binder in the formula (i.e., x];p is
bound by the leftmost binder). We fix the domain of representation of each variable as follows.
The right-most variable xlfl will be encoded in the domain AY 5 and if for 1 <4 < p the domain

fll is defined as Al

where [’ is the smallest natural number such that ord Al | Is strictly greater than ord Al

This way, since variables that are bound first have hlgher order, variables that are bound in
nested list-iterations (corresponding to nested quantifiers in the formula) are guaranteed to be
safely bound.

of representation of xki is Al then the domain of representation of x;

Example 3.2.1. The formula ¥2°.33%.2% v 40, which is encoded by an unsafe term in Mairson’s
encoding, is represented in our encoding by the safe term:

s Cp™ (Dg (Aa? : Ag. AND(DY (Ay : AJ.ORY(OR® (Cy~° 2°) y°)) F°)) T') : B .

3.2.2.5 Set-membership

To complete the interpretation of prime formulae, we would need to show how to encode set
membership. The use of multiple domains of representation does not suffice to turn Mairson’s
encoding into a safe term. We would further need to have a version of the Booleans conversion

70 Chapter 3. The Safe Lambda Calculus

n+l—n
term Cj

/ generalized to higher-order sets. This transformation can be interpreted as the
simply-typed term:

/ n n n / /
= AMAR AR T T T T (AR wT (G 2)w)o Ay — Ay

Unfortunately this term is safe if and only if n = n/—the largest underlined subterm is safe
just when n > n’ and the other underline subterm is safe just when n’ > n—in which case the
transformation is of no interest.

This leads us to conjecture that the set-membership function is intrinsically unsafe.

If CZTI"/ were safely representable then the encoding would go as follows: We set 7 = By
in the types Ay, for all n,k > 0 in order to iterate a level-0 Boolean function. Firstly, the
formulae “true € y'” and “false € y!'” can be encoded by the safe terms y'(Az?.OR? 29)F°
and ' (A2?.ORY(NOT? z°))FO respectively. For the general case “z* € *+1” we proceed as in
Mairson’s proof | |: we introduce lambda-terms encoding set equality, set membership and
subset tests, and we further parameterize these encodings by a natural number n.

member,?ill =)\mAZHyAZLI.(CZﬂ'_’" y) (Az2.OR(eqy (CIT™" 1) 2)) FO

PART AR - By
subset], | = AzBke1y B g ()\xAZ.ANDO(memberZH zy)) T°
P A — Ar — Bo
eqy = A\aB \yB.C2™Y (OR™(AND™ z y)(AND"(NOT™ z)(NOT™ y)))
: B, — B, — By
ey = AzPi gy (AopP i~ B AN DO (op z y)(op y z)) subsety |

N n
AL — Ay — B

The variables in the definition of eqy, ; and subsety, | are safely bounds. Moreover, the occur-
rence of x in membergill is now safely bound—which was not the case in Mairson’s original
encoding—thanks to the fact that the representation domain of z is lower than that of x. The
formula z* € y**1 can then be encoded as

ALy ALy Fse membery (CL7" x) (CLiq" y): Bo

for some n,n’ > 2 and u = min(n,n’) + 1.
Unfortunately, this encoding is not completely safe because it uses the unsafe conversion
terms CZ'_’"/ for k£ > 1.

3.2.3 PSPACE-hardness

We observe that instances of the True Quantified Boolean Formulae satisfaction problem (TQBF)
are special instances of the decision problem for finite type theory. These instances corresponds
to formulae in which set membership is not allowed and variables are all taken from the base
domain Dy. As we have shown in the previous section, such restricted formulae can be safely
encoded in the safe lambda calculus. Therefore since TQBF is PSPACE-complete we have:

Theorem 3.2.1. Deciding Bn-equality of two safe lambda-terms is PSPACE-hard. U

Example 3.2.2. Using the encoding where 7 is set to By in the types A} for all k,n > 0, the

Chapter 3. The Safe Lambda Calculus 71

formula Vz3y3z(z Vy V z) A (—z V —y V —z) is represented by the safe term:

e D2(\2B2.ANDC
(D} (A\yB1.OR"
(DJ(A\2B2.OR"
(AND°(OR°(OR® (C3™") (Cy™° y))2)
(OR*(OR*(NEG(C3™° 2))(NEG(Cy~° 9)))(NEG 2)))
)F°)
)FO)
)T°
:Bg .

REMARK 3.2.1 The Boolean satisfaction problem (SAT) is just a particular instance of TQBF
where formulae are restricted to use only existential quantifiers, thus the safe lambda calculus is
also NP-hard. Asperti gave an interpretation of SAT in the simply-typed lambda calculus but
his encoding relies on unsafe terms [Asp].

3.2.4 Other complexity results
3.2.4.1 Better lower bound?

Since the safety condition restricts the expressivity of the lambda calculus in a non-trivial way,
one can reasonably expect the beta-eta equality problem (where types are not restricted) to have
a lower complexity in the safe case than in the normal case. Our failed attempt to encode type
theory in the safe lambda calculus suggests that the non-elementary lower bound that holds in
the simply-typed lambda calculus no longer applies in the safe lambda calculus. Nevertheless,
one may not rule out the possibility that another non recursive problem is encodable in the safe
lambda calculus.

We have shown that the problem is PSPACE-hard but this is probably a coarse lower bound.
It would be interesting to know whether it is also EXPTIME-hard.

3.2.4.2 Upper bound

At present, no upper bound is known for the equivalence problem for safe terms.

3.2.4.3 Beta-eta equivalence for terms limited to a finite set of types

Statman showed [| that there exists a finite set of types such that the beta-eta equivalence
problem restricted to terms of these types is PSPACE-hard.

The picture is different in the safe lambda calculus since our encoding of TQBF requires the
full type hierarchy. It was indeed necessary to introduce variables of higher-order in order to
eliminate ‘unsafety’. Consequently, we had to use simple types of unbounded order (the order
is linear in the size of the QBF formula). We suspect the decidability problem for safe terms
restricted to any finite set of types to have a complexity lower than PSPACE.

3.2.4.4 Normalization

The normalization problem is: Given a term M, what is its S-normal form? This problem is
non-elementary even when restricted to safe terms as the following example shows. Let 7_9 = o
and forn > —1, 7, = 7,1 — Tn_1. For k,n € N we write k" to denote the k" Church Numeral

72 Chapter 3. The Safe Lambda Calculus

parameterized by n as follows:

k times
AL Tn—1,Tn—2
k™= Xs™12m=2 s(...(s(s2)...) i Ty -

Then for n > 1, the safe term 2" " 2"

form expn(l)0 has length O(exp,,(1)).

Statman’s result shows that in the simply-typed lambda calculus, the beta-eta equality
problem is essentially as hard as the normalization problem: they are both non-elementary. It
is not known whether this is still the case in the safe lambda calculus. In particular, it may
be the case that the beta-eta equivalence problem is elementary although we know that the
normalization problem is not.

220 of type 7o has length O(n) whereas its normal

3.2.4.5 The beta-reduction problem

The beta-reduction problem is related to the beta-eta equivalence problem. It can be stated as
follows: Given a term M;j in S-normal form and a term My (possibly containing redexes), does
My B-reduce to M;?

Schubert gave a PSPACE algorithm to decide the -reduction problem for order-3 lambda-
terms |]. Since order-3 terms are sufficient to encode TQBF in the lambda calculus, this
implies that the problem is PSPACE-complete. No complexity result is known for restrictions
of this problem to terms of order greater than 3. A natural question is whether complexity
characterizations can be obtained when restricting the problem to safe terms.

3.3 Expressivity

3.3.1 Numeric functions representable in the safe lambda calculus

Natural numbers can be encoded in the simply-typed lambda calculus using the Church Nu-
merals: each n € N is encoded as the term 7 = Asz.s"z of type I = ((0,0),0,0) where o is a
ground type. We say that a p-ary function f : NP — N, for p > 0, is represented by a term
F:(I,...,I,I) (with p+ 1 occurrences of I) if for all m; € N, 0 < i < p we have:

Fmy...mp=3 f(mi,...,mp) .
In 1976 Schwichtenberg |] showed the following;:

Theorem 3.3.1 (Schwichtenberg 1976). The numeric functions representable by simply-typed
lambda-terms of type I — ... — I using the Church Numeral encoding are exactly the multivari-
ate polynomials extended with the conditional function.

If we restrict ourselves to safe terms, the representable functions are exactly the multivariate
polynomials:

Theorem 3.3.2. The functions representable by safe lambda-expressions of type I — ... — I
are exactly the multivariate polynomials.

Proof. Natural numbers are encoded as the Church Numerals: m = Asz.s"z for each n € N.
Addition: For n,m € N, n+m = Aa(®9)z°.(7a)(Mazx). Multiplication: 7.m = Aal%°) 7(Taa).
These terms are safe and clearly any multivariate polynomial P(nq,...,n,) can be computed
by composing the addition and multiplication terms as appropriate.

For the converse, let U be a safe lambda-term of type I — I — I. The generalization to
terms of type I™ — I for every n € N is immediate (they correspond to polynomials with n
variables). By Lemma 3.1.2, safety is preserved by n-long normal expansion therefore we can
assume that U is in n-long normal form.

Chapter 3. The Safe Lambda Calculus 73

Let MY denote the set of safe n-long S-normal terms of type 7 with free variables in ¥, and
A3, for the set of B-normal terms of type 7 with free variables in ¥ and of the form ¢s; ... s,
for some variable ¢ : (A41,...,A;m,0) where m > 0 and for all 1 <i < m, s; € ./\/gi. Observe
that the set A$, contains only safe terms but the sets AJ; in general may contain unsafe terms.
Let ¥ denote the alphabet {z,y : I,z : 0,a : 0 — o}. The sets ./\/(,? is given by the following
grammar defined over the set of terminals ¥ U {\xyaz., A\z.}:

./\/'QEI’I’I) - Aryaz. A%
A = 2| ARTAL
AL o] AL N

Néo’o) — Az A%
AL = xly

The key rule is the fourth one: Had we not imposed the safety constraint the right-hand side
would instead be of the form Aw® "A(EOCJO{)w:o}' Here the safety constraint imposes to abstract all
the ground type variables occurring freely, thus only one free variable of ground type can appear
in the term and we can choose it to be named z up to a-conversion.

We extend the notion of representability to terms of type o, (0,0) and I with free variables
in ¥ as follows: A function f : N> — N is represented by a term ¥ ¢ F : o if and only if for all
m,n € N, Flm,a/z,y] =5 o/ ™™z by a term ¥ Fo G : (0,0) iff G[m,7/z,y] =g Az.af (M) z;
and by ¥ ¢ H : I iff Him,7/x,y] =3 Aaz.af(mn) .

We now show by induction on the grammar rules that any term generated by the grammar
represents some polynomial: The term x and y represent the projection functions (m,n) — m
and (m,n) — n respectively. The term « and z represent the constant functions (m,n) — 1
and (m,n) — 0 respectively. If F' € A represents the functions f then so does \z.F.

We make the following observations: for m,p,p’ > 0 we have

1. m(Az.aPz) =g A\z.a™Pz;
2. (\z.aPz)(aP'2) =5 aPTP 2.

Now suppose that F' € .AIE and G € Néo’o) represent the functions f and g respectively then

by the previous observation, F'G represents the function f x g. And if F' € .A(; ©) and G € N2
represent the functions f and g then F'G represents the function f + g.

Thus U represents some polynomial as required: for all m,n € N we have U m n =g
Aaz.aP(™™) 2 where p(m,n) = Y o<k<d mindk for some iy, jp > 0, d > 0. O

Corollary 3.3.3. The conditional operator C : I — I — I — I satisfying:

Y, lftﬁﬁﬁ ;
Ctyz%ﬁ{% ift—gn+l .

is not definable in the simply-typed safe lambda calculus.

Example 3.3.1. The term AFGHax.F(\y.Gax)(Hax) used by Schwichtenberg | | to de-
fine the conditional operator is unsafe since the underlined subterm, which is of order 1, occurs
at an operand position and contains an occurrence of x of order 0.

REMARK 3.3.1

1. This corollary tells us that the conditional function is not definable when numbers are
represented by the Church Numerals. It may still be possible, however, to represent the
conditional function using a different encoding for natural numbers. A possible way to
compensate for the loss of expressivity caused by the safety constraint consists in intro-
ducing countably many domains of representation for natural numbers. Such a technique
is used to represent the predecessor function in the simply-typed lambda calculus |].

74 Chapter 3. The Safe Lambda Calculus

2. There are other ways to interpret conditional in the lambda calculus. For instance the
(unsafe) lambda-term Atxy.(C't01)(Au.y)z of type I — o — o — o behaves like the
conditional operator C. It can be shown that there is no such term in the safe lambda
calculus simply because the only safe terms of type I — o — 0 — o up to afn-equivalence
are \tzy.x and Atxy.y.

3. The boolean conditional can be represented in the safe lambda calculus as follows: we en-
code booleans by terms of type B = ((0,0), 0,0). The two truth values are then represented
by Az°y°.xz and A\z°y°.y and the conditional by \FEGEHB F G H.

4. It is also possible to define a conditional operator behaving like the conditional operator C
in the second-order lambda calculus [|: natural numbers are represented by terms
n = At.As!72t.s"(2) of type J = At.(t — t) — (t — t) and the conditional is encoded by
the term AFYGYH”?.F J (Au’.G) H. Whether this term is safe or not cannot be answered
just yet as we do not have a notion of safety for second-order typed terms.

3.3.2 Word functions definable in the safe lambda calculus.

Schwichtenberg’s result on numeric functions definable in the lambda calculus was extended to
richer structures: Zaionc studied the problem for words functions, then functions over trees and
eventually the general case of functions over free algebras |))) ,]. In
this section we consider the case of word functions expressible in the safe lambda calculus.

We consider equality of terms modulo «, $ and 7 conversion, and we write M =g, N to
denote this equality. For every simple type 7, we write Cl(7) for the set of closed terms of type
7 (modulo «, and 7 conversion). We consider a binary alphabet ¥ = {a,b}. The result that
we are about to show naturally extends to all finite alphabets. We consider the set ¥* of all
words over . The empty word is denoted e. We write |w| to denote the length of the word
w € X*. For every k € N we write k to denote the word a...a with k occurrences of a, so
that |k| = k. For every n > 1 and k > 0, we write ¢(n, k) for the n-ary function (X*)" — X*
that maps all inputs to the word k. The function app : (£*)2 — X* is the usual concatenation
function: app(z,y) is the word obtain by concatenating x and y. The substitution function
sub : (¥*)3 — ¥* is defined as follows: sub(x,y,) is the word obtained from x by substituting
the word y for all occurrences of a and z for all occurrences of b.

Take the type B = (0 — 0) — (0 — 0) — 0 — o, called the binary word type [|. There
is a 1-1 correspondence between words over ¥ and closed terms of type B: The empty word
€ is represented by Auvz.z, and if w € ¥* is represented by a term W € CI(B) then a - w is
represented by Auvz.u(Wuvz) and b-w is represented by Auvz.v(Wwvx). The term representing
the word w is denoted by w. A closed term of type B™ — B is called a word function. We
say that the function on words h : (£*)" — ¥* is represented by the term H € Cl(B" — B)
just if for all z1,...,2, € B*, Hxy ... 2y = ha1 ... 7).

Zaionc showed that there exists a finite base of word functions in the sense that every -
definable word function is some composition of functions from the base []:

Theorem 3.3.4 (Zaionc |). The set of A-definable word functions is the minimal set
containing the following word functions and closed by composition:

e concatenation app;
e substitution sub;
e criraction of the mazximal prefix containing only a given letter;

e non-emptiness check: returns 0 if the word is € and 1 otherwise, as well as emptiness

check;

Chapter 3. The Safe Lambda Calculus 75

e occurrence check: returns 1 if the word contain an occurrence of a given letter and O
otherwise;

e first-occurrence check: tests whether the word begins with a given letter;
e all the projections;
e all the constant functions.

The lambda-terms representing the base functions are:

APP = Aeduvz.cuv(duve) SUB = Azdeuvz.c(Ay.duvy)(Ay.euvy)x
CUT, = Acuvz.cu(Ay.x)z CUTy = Acuvz.c(A\y.x)vx
SQ = Acwvz.c(Ay.uz)(Ay.ux)z SQ = Acuvz.c(\y.z)(\y.z)(uz)
BEG, = Acuwvz.c(Ay.uz)(Ay.x)x BEGy = Acuvz.c(Ay.x)(A\y.uz)x
OCC, = Acuvz.c(Ay.ux)(A\y.y)x OCCy = Acuvz.c(Ay.y)(Ay.uz)x .

where APP represents concatenation, SUB substitution, SQ and SQ non-emptiness and empti-
ness checking, BEG, and BEG, first-occurrence test, and OCC, and OCC, occurrence test.

We observe that among these terms only APP and SUB are safe. All the other terms are
unsafe because they contain terms of the form N(\y.z) where x and y are of the same order. It
turns out that APP and SUB constitute a base of terms generating all the functions definable
in the safe lambda calculus as the following theorem states:

Theorem 3.3.5. Let A**/¢def denote the minimal set containing the following word functions
and closed by composition:

e concatenation app;
o substitution sub;
e all the projections;
e all the constant functions.
The set of word-functions definable in the safe lambda calculus is precisely N3¢ ¢def.

The proof follows the same steps as Zaionc’s proof. The first direction is immediate: The
terms APP and SUB are safe and represent concatenation and substitution. Projections are
represented by safe terms of the form Az ...z,.2; for some i € {1..n}, and constant functions
by A\zj...x,.w for some w € ¥*. For composition, take a functions g : (X*)” — 3* represented
by safe term G € CI(B™ — B) and functions f1,..., f, : (X¥*)P — X* represented by safe terms
F1,... F, respectively then the function

(1, ,xp) = g(fi(xr, .. zp), oo, fulzr, .o 2p))
is represented by the term Acy ...2,.G(Fici...cp)...(Fpcr...cp) which is also safe.

To show the other directions we need to introduce some more definitions. We will write
Op(n, k) to denote the set of open terms M typable as follows:

c1:B,...cp :Byu:(0,0),v:(0,0),xp-1:0,...,20: 0 M :0 .
Thus we have the following equality (modulo «, 3 and 7 conversions) for n,k > 1:
Cl(r(n, k) = {AB ... Buloy(©90 20 M | M € Op(n, k)}

writing 7(n, k) as a shorthand for the type B" — (0,0)? — o"

of representability to terms of type 7(n, k) as follows:

— 0. We generalized the notion

76 Chapter 3. The Safe Lambda Calculus

Definition 3.3.1 (Function pair representation). A closed term T € Cl(7(n,k)) represents
the pair of functions (f,p) where f : (¥*)" — ¥* and p : (¥*)" — {0,...,k —1} if for all
Wi, ..., wy € 3* and for every i € {0...,k — 1} we have:

Twy ... wy =gy MuVTE_1 ... To.f(W1, -, Wn)UVT ()] -

By extension we will say that an open term M from Op(n,k) represents the pair (f,p) just if
Mlwy ... wp/er .. cn] =gy fW1, -0 W) UVT ()|

We will call safe pair any pair of functions of the form (w,¢(n,7)) where 0 <i <k —1 and
w is an n-ary function from **f¢def.

Theorem 3.3.6 (Characterization of the representable pairs). The function pairs representable
in the safe lambda calculus are precisely the safe pairs.

Proof. (Soundness). Take a pair (w,c(n,i)) where 0 < i < k — 1 and w is an n-ary function
from **fe¢def. As observed earlier, all the functions from A**/¢def are representable in the safe
lambda calculus: Let w be the representative of w. The pair (w,¢(n,i)) is then represented by
the term Acj ... couvxi_q...x9.wcCq ... LUV,

(Completeness) It suffices to consider safe §-n-long normal terms from Op(n, k) only. The
result then immediately follows for every safe term in Cl(7(n,k)). The subset of Op(n,k)
consisting of G-n-long normal terms is generated by the following grammar | |:

(af) RF — z
k

(8%) | uR"
(") | vR"
QF(RFFL)
(5;“) | ¢ ()\zk.RkH[zk, XOy vy The1/T0, L1y -+, Tk))
()\Zk.Rk+1[Zk, TOy - ,xk,l/xo, L1y ,xk])

Rk

for k> 1,0 <i <k, 0<j<mn. Thenotation M|[.../...] denotes the usual simultaneous
substitution. The non-terminals are R* for k& > 1 and the set of terminals is {zF, \2* | k >
1}U{z; i >0} U{er,...,cn,u,v}.

Each rule is given a name indicated in parenthesis. We identify a rule name with the right-
hand side of the corresponding rule, thus ozf belongs to Op(n, k), B and ~* are functions from
Op(n, k) to Op(n, k), and 5;‘? is a function from Op(n, k+1) x Op(n, k+1) x Op(n, k) to Op(n, k).

We now want to characterize the subset consisting of all safe terms generated by this
grammar. The term «F is always safe; B%(M) and v*(M) are safe if and only if M is; and
5;?(F, G, H) is safe if and only if Q¥(F), Q*(G) and H are safe. The free variables of Q*(F)
belong to {ci,...cp,u,v,20,... 25} thus they have order greater than ordz except the ;s
which have same order as z. Hence since the z;s are not abstracted together with z we have
that QF(F) is safe if and only if F' is safe and the variables zg...x; do not appear free in
F[zF,zo, ..., 24_1/T0,21,...,21], or equivalently if the variables z ...z, do not appear free in
F. Similarly, Q*(G) is safe if and only if G is safe and the variables z1 ...z do not appear free
in G.

We therefore need to identify the subclass of terms generated by the non-terminal R* which
are safe and which do not have any free occurrence of variables in {x; ... x;_1}. By imposing this
requirement to the rules of the previous grammar we obtain the following specialized grammar
characterizing the desired subclass:

@h) R’ -

Chapter 3. The Safe Lambda Calculus 77

(Bk) | uR"
#F) | vR"
%) | e; AF R) Ak R o)) B

For every term M, Q*(M) is safe if and only if M can be generated from the non-terminal R
Thus the subset of Cl(7(n, k)) consisting of safe beta-normal terms is given by the grammar:

(7™) S = \ey...cquvTp_1...70.RE

S

@) RF —

(5%) | uR¥

(F) | vRF

(8%) | ¢j (A2 RFFI[ZF) (AP RFHI[ZF /) RF

To conclude the proof it thus suffices to show that every term generated by this grammar
(starting with the non-terminal S) represents a safe pair.

We proceed by induction and show that the non-terminal R generates terms representing
pairs of the form (w, ¢(n,0)) while non-terminals S and R¥ generate terms representing pairs of
the form (w, c(n,)) for 0 < i < k and w €A**/edef.

Base case: The term @ represents the safe pair (c(n,0), c(n,0)) while &¥ represents the safe
pair (c(n,0),c(n,i)). Step case: Suppose T € Op(n, k) represents a pair (w,p). Then @ (T)
and &*(T') represent the pair (app(a,w), p); Bk(T) and 3%(T) represent the pair (app(b,w), p):;
and 7 (T) € Cl(r(n, k)) represents the pair (w,p). Now suppose that F, F and G represent the
pairs (we, c(n,0)), (wy,c(n,0)) and (wg, c(n,i)) respectively. Then we have:

(B, F,G)ws ... wafer ... o]
=w; ()\zk_E[zk/xO])[ﬂ. wp/er .. cp)

()\zk.F[zk/xo])[ﬂ. wp/c .. cpl
Glwi...wp/c1 ... cp

=gy Wj (AP Blwy .. wy/er ... en)[2F /20])
(A" Flwy . ..wp/cr ... cn)[2" /o))

(wg(wr ... wn) v v x;) G represents (h, c(n, 1))
=pn Wy (A2F (e (wy ... wy) u v x0)[2F/x0)) E represents (f,c(n,0))
(A" (wp(wy .. wn) uw v x0)[2F 20]) F represents (g, c(n,0))

(wg(wy ... wy) v v x;)
=pn Wy (A2 we(wy ... wn) w v 2F)

AP wp(wy . owy) v 2F)

(wg(wr ... wn) v v x;)

=p Wj (We(wr ... wn) uwv) (Wr(wi ... wp) uwv) (wWe(wi ... wn) wv ;)

=By WUV T;
where the word-function w is defined as
W W, .., Wy > app(sub(wy, we(wi, ... W), we(we, ..., wy)), We(T1,. .., Wy)) -

Hence 6~§“(E, F,G) represents the pair (w, c(n,1)).
The same argument shows that if E, I’ and G all represent safe pairs then so does Sf(E, F,QG).

78 Chapter 3. The Safe Lambda Calculus

Theorem 3.3.5 is obtained by instantiating Theorem 3.3.6 with terms of types 7(n,1) = I" —
I: every closed safe term of this type represents some n-ary function from **f¢def.

3.4 Typing problems

In this section we consider the problems of type checking, typability and type inhabitation as
defined in Sec. 2.1 but recast in the safe lambda calculus:

e TYPE CHECKING: Given a term M, context I' and type A, do we have I' - M : A?
e TYPABILITY: Given a term M and context I, is there a type A such that ' =g M : A?
e INHABITATION: Given a type A, is there a term M such that g M : A?

We will restrict our attention to the Church-like safe lambda calculus. The results presented
here straightforwardly extend to the Curry version.

3.4.1 Relating derivations from A" and safe A"

In this section we compare derivations obtained in the simply-typed lambda calculus with those
obtained in the safe lambda calculus. In order to ease the comparison, we introduce an alter-
native presentation of the simply-typed lambda calculus. The rules of this typing system are
given in Table 3.4. There are two main differences with the rules of Def. 2.1.10: 1. There is now
a weakening rule; 2. Simultaneous consecutive applications and abstractions can be performed
at once.

Thoy M: A

rcA
2 AFonz A AreuM:A - C

Thea M:(Ar,...,4,,B) TreaNi: A1 ... TheuNo: Ay,
Trca MN,...N, : B

Toag: A,y Apbcu M 2 B
Mbcu Ay .oz . M 2 (Aq,..., A, B)

Table 3.4: Alternative definition of the lambda calculus ¢ la Curry.

The two presentations are clearly equivalent in the sense that I' oy M : T is derivable in
this system iff it is derivable with the rules of Def. 2.1.10.

CONVENTION 3.4.1 In order to make our derivations canonical, we adopt the following conven-
tion:

e a derivation cannot contain two consecutive applications of the weakening rule;

e when using the weakening rule, the context A is chosen as small as possible so that for
every judgement I' Fo, M : A appearing in the derivation that is not deduced from the
weakening rule we have F'V(M) = dom(I).

We are interested in those derivations satisfying the following property: A deduction A of
I' Foy M : T is compact if the set of terms appearing in the nodes of the deduction tree A
is precisely sub(M). In other words in a compact deduction, each use of the application and
abstraction rule in the deduction is as “large” as possible so that each path in the deduction
tree consists of an axiom followed by an alternation of application/abstraction rules. Compact
derivations are sufficient: if there is derivation in AC" then there is a compact derivation with the
same conclusion. We will write Der,, (I', M, T") for the set of compact derivations of I' ¢y M : T

Chapter 3. The Safe Lambda Calculus 79

Similarly, we define the notion of compact derivation in the safe lambda calculus. It is easy to
check that, despite the side-conditions imposed by the abstraction rule, the compact deductions
are sufficient. We write Derg(I", M, T') for the set of compact deductions of I' s M : T" in safe
ACY,

We say that a deduction A € Der., (I, M,T) is safe if ordT" > ord T and for every term-in-
context IV F¢¢ M : T from A that is deduced using the abstraction rule we have ord IV > ord T".

For every deduction tree A in Dery(I', M,T) we write €(A) to denote the deduction tree
obtained by replacing judgements I' ¢ M : T by I' Fcy M : T and rules of the safe lambda
calculus by their counterpart in the simply-typed lambda calculus (identifying (app) and (appas))-

Lemma 3.4.1 (Relating derivations from A" and safe ASY).
(i) A € Derg(I', M, T) = €(A) € Dere,(I', M, T) A €(A) is safe,
(ii) A" € Dere, (T, M, T) N A is safe. = IA € Derg(I', M,T) : A = ¢(A).

Proof. This follows immediately from the definition of safe A€ O

3.4.2 Type checking and typability

By the Principal Type (PT) Theorem 2.1.4, if a term is typable then it has a computable
principal derivation: every other derivation is an instance of that derivation. The same result
holds for compact derivations:

Lemma 3.4.2 (Principal compact derivation). If M is typable in AC" then is has a compact
principal deriwation A (i.e., any derivation A’ € Dery, (I, M, T) is an instance of A) that is
computable from M.

Proof. This follows immediately from Theorem 2.1.4. Compact derivations are just “reorga-
nized” derivations: for every standard derivation there exists a corresponding compact deriva-
tion containing the same typing assumptions. The compact principal derivations can be obtained
from the principal derivations by performing the very same “reorganization”. O

Proposition 3.4.1. TYPE CHECKING in safe A" is decidable.

Proof. Let M € A, T € T and T be a typing-context. We have I" - M : T iff Dery(T', M, T) # (.
By Lemma 3.4.1, there is a derivation in Ders(I", M, T) if and only if there is a safe derivation in
Der.,(T', M, T). We already know that the TYPE CHECKING problem in A®" (“Is Der,, (', M, T)
empty?”) is decidable. If Der., (I, M, T) is empty then we can answer ‘No’ to the type-checking
problem. Otherwise by the previous Lemma, we can compute a compact principal derivation A,
of I' =¢ M : T and we know that there exists a safe derivation iff there exists a type-substitution
s for A, such that (i) s(A,) is safe; (ii) the conclusion of s(Ap) is I'Fs M : T.

The latter property can be decided by unifying the types appearing in the conclusion of A,
with I" and 7. The former property turns out to be also decidable. Indeed, the deduction A,
contains finitely many atoms a; ... a, € A, n > 1. Therefore the safety of s(A,) can be expressed
in terms of a system of inequations over the order of the atoms occurring in A,. This system
can be reexpressed into a system of inequations S of the form z; > x; for i,j € {1,..,¢} and
variables z1,...,x, € Z and such that for every atom ay, ord ay, = x;, for some i, € {1,..,¢}.

A substitution s satisfying the required property exists if and only if S has a solution. If the
solution to S is (z1,...,z4) then we take the substitution s = [(xg,)o/a1, ... (xk,)o/an] for some
fresh atom o € A. (Observe that if (x1,...,24) is a solution then so is (z1 + k,...,24 + k) for
k > 0, therefore the x;s can all be assumed to be positive.) The system S can then be solved
using a topological sorting algorithm []. O

Proposition 3.4.2. TYPABILITY in safe AC" is decidable.

Proof. The proof is the same as for TYPE CHECKING except that only condition (i) needs to be
decided. O

80 Chapter 3. The Safe Lambda Calculus

3.4.3 The type inhabitation problem

Statman showed that the problem of deciding whether a type defined over an infinite number
of ground atoms is inhabited (or equivalently of deciding validity of an intuitionistic implicative
formula) is PSPACE-complete [|. In the safe lambda calculus, no complexity is known.
In fact it is not even clear whether the problem is decidable:

Proposition 3.4.3. INHABITATION in safe A_, is (at least) semi-decidable: Given a simple type,
there is an algorithm that prints out a safe inhabitant if there is one but may not terminate if
there is not.

Proof. Inhabitants are enumerated using Ben-Yelles’s counting algorithm | | and each in-
habitant can be tested for typability in safe A_, by Proposition 3.4.2. O

It is well known that the simply-typed lambda calculus corresponds to intuitionistic im-
plicative logic via the Curry-Howard isomorphism. The theorems of the logic correspond to
inhabited types; further every inhabitant of a type represents a proof of the corresponding for-
mula. Similarly, we can consider the fragment of intuitionistic implicative logic that corresponds
to the safe lambda calculus under the Curry-Howard isomorphism; we call it the safe fragment
of intuitionistic implicative logic.

We would like to compare the reasoning power of these two logics, in other words, to de-
termine which types are inhabited in the lambda calculus but not in the safe lambda calculus.!
Since safety is preserved by (-reduction, it is enough to look at normal inhabitants—those in-
habitants that are in S-normal form. We say that a type is unsafe if it is inhabited and every
inhabitant is unsafe. At order 2, all closed normal terms are safe therefore there is no unsafe
type at this order. The following proposition further shows that every type generated from a
single atom o is not unsafe:

Proposition 3.4.4. FEvery type generated from one atom o that is inhabited in the lambda
calculus is also inhabited by a safe lambda-term.

Proof. One can transform any unsafe normal inhabitant M into a safe one of the same type as
follows: Compute the eta-long beta-normal form of M. Let & be an occurrence of a ground-type
variable in a subterm of the form AZ.C[x] where A\Z is the binder of 2 and for some context C[—]
different from the identity (C[—] = —). Since the term is beta-normal and because its type is
built out of a unique atom o, x is necessarily of type o. We then replace the subterm C|x] by
x in M. This transformation is sound because C[z| and x both have type o. We repeat this
procedure until the term stabilizes. This algorithm clearly terminates since the size of the term
decreases strictly after each step. The final term obtained is safe and of the same type as M. [

The previous argument crucially uses the fact that the type is generated from a single atom.
It cannot be repeated for types generated from multiple atoms. In fact there are order-3 types
with only 2 atoms that are inhabited by simply-typed terms but not by safe terms as example
(i) below shows.

Example 3.4.1. Let a, b and ¢ be three distinct atoms.

(i) Take the order-3 type (((b,a),b),((a,b),a),a). Its normal inhabitants are given (up to
a-conversion) by the following family of terms which are all unsafe:

Afg.g(\e1.f(Ayr.a1))

A g.gAz1.f(Ay1.9(A\x2.11)))

A g.gAz1.f(Ayr.g(Aza. f(Ay2.24))) where i = 1,2

A g.g(Az1.f(Ay1.9(Aza. f(Ay2.9(Ax3.95))) where i = 1,2

!This problem was raised by Ugo dal Lago.

Chapter 3. The Safe Lambda Calculus 81

(ii) The order-3 type (((a,c),b),((c,b),a),a) has for only normal inhabitant the unsafe term
Afg.9(Az.f(Ay.c)).

(iii) For every i,j,k € N, let o(i, j, k) denote the type
J(i,j, k) = (ia -]b) - (]b - kc) — ig — ke

where n, denotes the type (...((a — a) — a)...) — a containing n 4+ 1 occurrences of a
(as defined in Sec. 2.1.5). This type is inhabited by the “function composition term”:

Azyzw.y(xz)

which is safe if and only if i > j. There exist values for i, j, k such that i < j and o(i, j, k)
is safely inhabited. For instance o(1,3,4) is inhabited by the safe term

Agta =30y Bv=de plegyde g (p(Au®u)) .

The order-4 type 0(0,2,0), however, is unsafe: its only normal inhabitant is the unsafe
term \zyzw.y(xz).

(The first two examples are due to Luke Ong.)

3.5 Extensions

We now consider extensions of the safe simply-typed lambda calculus.

3.5.1 PCF

We define the language safe PCF as an applied version of the safe lambda calculus. Its
types are the simple types over the single atomic type of natural numbers. It features the
basic arithmetic operators of PCF (additions, substraction and conditional branching) as well
as recursion. Equivalently, it is the restriction of PCF where the application and abstraction
rules are constrained similarly as in the safe lambda calculus. The rules are given in Table 3.5.
The circled rules are those that differ from their PCF counterpart.

We extend the notion of almost safety (Sec. 3.1.4) to PCF: A PCF term is almost safe if
it can be written Azy...x,.Ny... N, for some n,p > 0 where N; is safe for every 0 < ¢ < p.

Example 3.5.1. The addition function and equality test defined in Sec. 2.1.9 are typable in
safe PCF.

The Substitution Lemma and No-variable-capture Lemma of the safe lambda calculus natu-
rally extend to safe PCF. The small-step semantics of safe PCF is given by a relation — obtained
from the one of PCF after substituting safe g-reduction (Def. 3.1.5) for -reduction. The Subject
Reduction Lemma from the safe lambda calculus implies that the relation — preserves safety:
suppose that M — N, then I' ¢ M : T implies I' ¢ N : T'. Similarly, the small-step reduction
preserves almost-safety. Further it can again be proved that a term is safe if and only if its
eta-long normal form is safe.

Remark concerning recursion

There are many ways to introduce recursion in the syntax of a programming language. In the
presentation of PCF given in Sec. 2.1.9, recursion is introduced by mean of a set of constants Yy,
A ranging over PCF types, incarnating the Y-combinator of the lambda calculus. The syntax
is given by the rule (rec) of Table 3.5. For instance, the addition function can be represented by
the PCF term:

PLUS =Y (Ap x y.cond x y (p (pred z) (succ y))) .

82 Chapter 3. The Safe Lambda Calculus

Functional part

TH M: A TH M:A
i AerT K —=2 2 peA 6 s

Var) iz vi4e W) Aroara TC O) T, 0 4

/ ")FI—SM:(Al,...,An,B) T Ny : A, ... THN,:A, \
PPas T tapp M N1 ... Ny : B

(app)FI—SM:(Al,...,An,B) DhalNiiAi .. DhaNatdy o0 oo

I'Fs MNy...N,: B

T AL, ot Ay ey M 0 B
1 T L /13: PP ord (Ay,...,A,, B) <ordD
FEgAayt oy M 2 (Ay,..., Ay, B) j

n

(abs)

-

Arithmetic and recursion

I'Fs M :exp
I' ks suce M : exp

I'Fs M :exp
I' s pred M : exp

(const)

(succ) (pred)

Fsn:exp
F'FsM:exp T'hEgNy:exp T'hks No:exp '-M:A— A

d
(cond) T F. cond M N, N, (rec) . YaM: A

Table 3.5: Formation rules for safe PCF.

Recursion can be introduced in different ways, however. For instance using the least upper bound
abstractor ‘i’ given by the formation rule

Lf:AFM: A

L ufAM: A

(1)

where the semantics of 4 is given by the rule: pf4.M — M[(uf4.M)/f]. Using this y-construct,
the addition function is defined as:

PLUS = pup(S¥Pe¥P)eXP)\ €%y 2P cong 1y (p (pred z) (succ y)) .

Clearly in the context of PCF, these two definitions are interchangeable: puf4. M is equivalent
to Ya(AfA.M), and Y F is eta-equivalent to Y(Af4.Ff) for some fresh variable f, which is
equivalent to ufA.Ff.

In the context of safe PCF, however, the distinction is important. Indeed, let safe u-PCF
denote the calculus obtain by replacing the rule (rec) by (u) in Table 3.5. Then we observe
that safe PCF is strictly contained in safe u-PCF. Indeed, compare the two ways of defining a
recursive term:

f:AFs M A
CHAAM:A— A [,f:AFM: A
T s Ya(AfAM) M Fe ufAiM: A

(abs)

Both derivations start with the premise I', f : A -¢ M : A which implies that ordI" > ord A. But
in the left derivation, before applying the Y combinator, we need first to abstract the variable
f; this is done using the abstraction rule whose side-conditions gives ordI" > ord A. The right
derivation, however, only imposes the weaker condition ordI" > ord A.

In fact, safe u-PCF does not really deserve its name because the No-variable-capture lemma
does not hold anymore in this language! Take for instance AfA~5 a4 (A\zB.(ufB.2))(fa) for

Chapter 3. The Safe Lambda Calculus 83

every types A and B satisfying ord A > ord B. This term belongs to safe y-PCF and it G-reduces
to AfA7B oA (ufP.x)[fa/z]. But at this point it is not sound to push the substitution under
the p without first renaming the variables afresh as it would cause the variable f to be captured
by puf.

Observe that if we were able to distinguish variables that are bound by A from those bound
by u—for instance by tagging their occurrences appropriately—then the clash of variable names
would be tolerable in this particular example since the two clashing occurrences of f are bound
by a different kind of binder. Unfortunately, this argument cannot be generalized: there are safe
u-PCF terms that, when reduced using capture-permitting substitution, cause clashes between
A-bound variables. Take for instance:

M =)\g3 h? gnl.g(,uF‘rs.N(F,g7 h,z))
N(F,g,h,z) = z(h(Az'.F(X2".2)))

where 0 denotes the type o and n + 1 denotes n — o, for n € N. The safe u-PCF term M
reduces to:

Ag® BP atg(z(h(Az! . F(A\2".2)))) [N (F, g, h,z) [F)

and performing this substitution capture-permitting would cause a clash between the two un-
derlined variables.

The conclusion of this is that the definition that we really want for safe PCF is the one based
on the Y combinator. Another reason why safe y-PCF is not an interesting language is that the
game-semantic characterization of safe PCF that we will establish in Chapter 6 does not hold
in safe u-PCF.

3.5.1.1 Expressivity

In the lambda calculus, the safety condition significantly limits the expressivity of the language:
as we have observed before, the conditional function over Church numerals is for instance not
definable in the safe lambda calculus. On the other hand in safe PCF the conditional operator
comes for free since the arithmetic constructs are built in the language. So the question is: Does
safety genuinely restrict the power of PCEF? We first show that safe PCF is a non-trivial language
by proving, using a reduction from the QUEUE-HALTING problem, that the termination problem
is not decidable. We further observe that despite the strong constraint imposed by safety, the
presence of recursion gives back to safe PCF the computational power of a full-fledged Turing
complete language.

The Queue programming system We fix a finite alphabet ¥ = {a1,...,a,}. A QUEUE
program is a finite sequence of instructions that manipulate a FIFO (First In First Out) queue
data-structure. A program P is a sequence of n instructions for some n € N. For 1 <i < n
we write P.i to denote the it instruction of P. There are four kinds of instruction: halting,
enqueuing, dequeuing and branching. The set of instructions is given by:

7 = {halt} U {enqueue a | a € £} U {dequeue} U {goto | if first=a |l € 1l.n,a € ¥} .

The operational semantics is described using a set of states {halted} U {1,..,n} x ¥*. The
special state halted is the end-of-program state that is reached when the program terminates.
A state of the form (i,2) € {1,..,n} x ¥* indicates that the queue’s content is given by the
sequence = and that the next instruction to be executed by the machine is P.i. The empty
queue is represented by the empty sequence €, and for every sequence xz € ¥*, the first element
of x corresponds to the element that has been first enqueued (i.e., the queue is fed at the
right-end side and consumed at the left-end side). The operational semantics is defined by the
following rules:

(i,x) with P.i =halt — halted

84 Chapter 3. The Safe Lambda Calculus

(i,x) with P.i = enqueve a — (i+1,z-a)
(i,€) with P.i = dequeue — halted
(i,a - z) with P.i = dequeue — (i+ 1,x)
(i,€) with P.i = goto [if first=a — (i+ 1,¢)
(1,b-x) with a # b and P.i = goto [if first=a — (i+1,b-x)
(i,a - x) with Pi = goto [if first=a — (l,a-z) .

We write —* to denote the reflexive transitive closure of —.

The QUEUE-HALTING problem (“Given a QUEUE program, will it halt eventually?”) is
undecidable. This is because Post’s Tag Systems, which are Turing complete | |, can be
simulated [| in QUEUE.

Encoding Queue-Halting in safe PCF Given a QUEUE program P with n instructions,
we construct a safe PCF term ¢ Mp : exp that simulates P in the sense that P | if and only
if Mp —* halted.

Queue encoding: We fix a distinguished element | denoting the end of the queue. Let
¥t =2 U{L}. We identify each queue content s € ¥* with the infinite sequence s 1% € ¢,
We assume that an injective encoding function ¥+ — N is given and we write @ to denote the
encoding of an element in ¥+, (For instance take I =0 and a; = k for 1 <k < p.)

We say that a PC'F term M computes the queue content s if and only if M k |} 5; for every
k € N. For every queue-content s € ¥* we define the safe PCF term

ko5 = X\i®Pmatchiwith0 —5p |...|n — 551 |- — L:exp— exp
which clearly computes s. The length |s| of the queue can then by computed by the term
b LENGTH = Y()\fexp—>(exp—>exp)—>exp LSXP 8Xp—exp
ifzk = Lthenk else f(k+1)x) 0: (exp — exp) — exp

satisfying LENGTH 5 |} |s| for all s € ¥*.
Instruction encoding: We assume an injective function Z — N encoding each instruction ¢ of
7 as a natural number ¢. An example is the following function defined for 1 <i <p,1 <[< n:
cel ‘ halt ‘ dequeue ‘ enqueue a; ‘ goto 1 if first= q;
ceN| 0 | 1 | 1+i | 14+p+nl+i
A QUEUE program P is then compiled to the safe PCF term:

ks P = \i®Pmatchiwith0 — P.0|... | n — Pn| - — halt : exp — exp

so that for all i € N, Pi evaluates to the encoding of the i" instruction of P. We can now define
an interpreter SMp for QUEUE-programs given in compiled form P:

Fs SIMp =Y (\ f(6xP-(exp.exp).exp) jexp ;. (exp.exp)

match Pi with

halt — 0
| dequeue — fE+1)(\j*=*P.x(j+1))
| enqueue a1 — f(i+1)(\j**P.if j = LENGTH z thenaj elsex j)

l

| enqueue a,
| goto [if first = a4

f(i+1)(A\j**P.if j = LENGTH z thena, elsez j)
if LENGTH z =0 thenf(i+ 1)z

elseifa; =x0 thenflx

else f(i+ 1)z

!

| goto ! if first =a, — ifLENGTHz =0thenf(i+1)x
elseifa@, =20 thenflx
elsef(i+1)x

Chapter 3. The Safe Lambda Calculus 85

)0 €:exp .

Clearly the term SiMp is safe and simulates the QUEUE program P in the sense that SiMmp |}
if and only if P —* halted. Hence

Theorem 3.5.1. The HALTING problem for (the 2nd order fragment of) safe PCF is undecid-
able.

Since the HALTING is reducible to the observational equivalence problem, this also implies
that observational equivalence for the 2nd-order fragment of safe PC'F' (with Y; recursion and
unbounded base types) is undecidable. This result is not surprising: it is easy to see that the
partial recursive functions are computable in the order 2 fragment of safe PCF, and hence safe
PCF is Turing complete. (This can also be proved by simulating Turing machines in safe PCF
using an encoding similar to the one used above.)

The reason why these encodings work is because unsafety only appears at order 3 in PCF,
and the 2nd order fragment of PCF is already Turing complete.

Loader has shown | | that observational equivalence for finitary PCF (the fragment with
no recursion and finite base types) is already undecidable at order 5. It is unknown whether
this result still holds for finitary safe PCF.

3.5.2 Idealized Algol

In this section we present two possible approaches to extend the safety restriction to a language
featuring block-variable constructs such as Idealized Algol. This gives rise to two different
versions of “Safe Idealized Algol”. In the first version, all free variables are required to satisfy
the safety constraint whereas in the second version, variables declared with a block-allocated
construct are not required to satisfy the safety constraint. We then show that the good properties
of the safe lambda calculus remain in these two extensions of the safe lambda calculus.

3.5.2.1 Strongly Safe TA

The most immediate way to introduce the safety constraint for IA terms consists in adding the
typing rules for TA constants to the typing system of the safe lambda calculus. Equivalently,
this means taking the system of rules of IA and replacing the application and abstraction rules
by those of the safe lambda calculus. We refer to this language as strongly safe IA. The rules
are formally given in Table 3.7. The rules circled in the table are those that differ from their IA
counterpart.

This language satisfies the basic property of the safe lambda calculus: Free variables have
order greater or equal to the order of the term. It is interesting to note that the typing rules of
IA do not need to be modified for this property to hold. In particular, the rule (new) allows one
to “abstract” variables without having to satisfy any side-condition, contrary to the lambda-
abstraction rule (abs). Such side-condition is unnecessary because the block-allocation construct
produces a term with the same type as the term in the premise of the rule. Therefore the basic
property trivially holds.

On the other hand, this ability to “abstract” variables without increasing the order of the
term as a downside: the No-variable-capture result—that it is no necessary to rename variables
afresh when performing substitution—does not hold anymore, at least in its original formulation.
Take for instance the following strongly-safe term-in-context:

x @ var Fgg (Ay**P.new x in y)(deref x) = M; : exp .

Then we have:
M, —3 (new x in y) [(deref x)/y]

86

Chapter 3. The Safe Lambda Calculus

Functional part

I'kegs: A 'k M: A
- :Ael k) —=2""" T'cA §) —2
(Var)Fl—ssx:A v < (W)A}—SSS:A = ()FH—appM:A
/ (app)FFSSS:(Al,...,An,B) Dhaty: A T ety : A \
s D Happ St1...ty: B
PFSSS:(Al,...,An,B) Fl—sstltAl Fl_sstn:An
dB <ordI'
(app) Trost,.. . t,:B R s = o
Lyzq: Ay, Ay Happ 50 B
b d(Aq,...,A,,B) <ordT
& (a S)Fl—ss)\xl...xn.s:(Al,...,An,B) ord (A1, An, B) < or /
Arithmetic and recursion
I'Fes M - exp I'Fes M :exp
t) ——— d
(Cons)}—ssn:exp (SUCC)Fl—SS succ M : exp (pre)Fl—sspredM:exp

PFgs M :exp DI'lkgs Ni:texp I'bgs No:exp

't M:A— A

d
(cond) I'F.. cond M N, Ny (ree) F+ var- 4
Imperative constructs
I'tggM:com ' N: A
A

(seq) 1 seq, M N - A € {com, exp}
(assign) I'Fes M :var TI'Fgs N :exp (deref) I'bge M :var

I'tssassign M N : com I'Fgs deref M : exp

I'z: Fos M : A
(new) T TAT T A € {com, exp}

I'tssnew z in M : A

(mkvar) I'bgs M7 :exp — com T kg

My : exp

I' b mkvar My Mo

. var

Table 3.6: Formation rules for strongly safe TA.

Chapter 3. The Safe Lambda Calculus 87

Performing the substitution without renaming variables afresh causes the variable x to get
captured by the innermost new x giving new z in deref x. On the other hand the standard
substitution gives new z in deref x. These two terms are clearly not observationally equivalent.
Conclusion: it is not “safe” to use capture-permitting substitution on strongly-safe IA terms!

A weaker version of the No-variable-capture lemma can be stated though. We can defined
an alternative notion of capture-permitting substitution, called semi-capture permitting sub-
stitution, that behaves like the usual capture-permitting substitution except that it renames
block-allocated variables afresh upon performing substitution. The No-variable-capture lemma
for strongly safe TA then becomes: “Substitution can be safely implemented by semi-capture
permitting substitution”.

3.5.2.2 Safe TA

It turns out that the definition of strongly safe IA is too restrictive and we can identify a larger
fragment in which the so-called “No-variable-capture” lemma holds. Consider the following IA
term:

F new x in \z**P.deref z : exp — exp .

It is not strongly safe since the variables = : var and z : exp have the same order but they are not
abstracted together. However x is a block-allocated variable so no term can ever be substituted
for such variable when performing reduction: morally this term should be considered safe. We
thus observe that there is no gain in constraining occurrences of block-allocated variables.

We will therefore distinguish two kinds of variables in a closed term: the “standard ones”—
those that are bound by A-abstractions—and the “imperative” ones—those that are declared
by a block-allocation construct—and we will change the side-condition of the abstraction rule
so that only variables of the first kind are constrained.

It is also possible to relax the safety constraint for another class of variables. Among the
lambda-bound variables, we consider the subclass of variables that are bound by a lambda node
Az®*P inside a term of the form mkvar(Az®*P.M)N. We call these variables mkvar-bound variables.
It turns out that it is also possible to relax the safety constraint for this class of variables. To
see why this is the case, we need to redefine the typing rules for the mkvar construct: we replace
the typing in two steps (first abstracting in M and then constructing mkvar(Az®*?.M)N) by a
single typing rule forming mkvar(Az®*?.M)N directly from M and N. These two ways of typing
the mkvar construct are semantically equivalent because it is always possible to eta-expand the
first argument of mkvar into a term of the form Ax®*f.M.

The small step semantics is then redefined by replacing the rule

assign (mkvarMN) n — Mn

by
assign (mkvar(Az®**®.M)N) n — M [n/z] . (3.4)

This change ensures that no substitution will ever be done on the term Az.M. There is therefore
no need for the term Az.M to be safe: it is sufficient to have that M is safe.

These remarks lead us a more general notion of safety for IA. We consider new judgments
of the form I'|Z k4 M : A, called split terms-in-context (this terminology is borrowed from
Abramsky and McCusker’s tutorial on game semantics | 1), where the context is parti-
tioned into two disjoint components: The first component I' contains the lambda-bound variables
that are constrained by the safety restriction; the second component contains block-declared
variables as well as mkvar-bound variables. The component E contains variables of type var
and exp only, while the other component may contain variables of any type including var. It is
straightforward to redefine the typing rule of IA in such a way that these two distinct contexts
are maintained appropriately. In particular:

88 Chapter 3. The Safe Lambda Calculus

(i) The abstraction rules can only abstract variables from the first component of the context;
(ii) The new and mkvar constructs can only bind variables from the second context component;

(i) The side-condition in the abstraction rules constrains only variables from the first context
component.

The typing system for this new judgement is given in Table 3.7; the circled rules highlight the
important changes from the rules of Table 3.6. A split-term with an empty context = is called
a semi-closed split-term. We define safe IA to be the set of semi-closed split-terms typable
with the system of rules of Table 3.7. For convenience we introduce the additional rule

F0kF,M: A
s M: A

so that safe IA is equivalently given by the set of terms-in-context I' b4 M : A.

Example 3.5.2. Strongly safe TA is a subset of safe IA. The following example shows that the
inclusion is strict:

g Af(eXPCom=eXP noy jin f(Az®*P.assign i x) : exp

but Hes Af(EPTOM =P ney i in f(Az®P.assign i @) : exp .

It is not strongly safe because the variables ¢ and z are of the same order but only x is
abstracted by the lambda. It is safe because unsafe occurrences of block-allocated variables
such as i are tolerated in safe TA.

Example 3.5.3. The following term is a safe IA beta-normal term:
f: ((exp — exp) — com) ¢ mkvar (Az**P.f(Ay**F.x)) 0 : com” X exp .

Observe that the unsafe occurrence of the variable z is tolerated because it is a mkvar-bound
variable.

Since in split safe TA terms, only the variables from the left context component are con-
strained by the safety restriction, thus the basic property of the safe lambda calculus (Lemma
3.1.2) becomes:

Lemma 3.5.1. Suppose T'|E s M : A. Then

Vz:AeTl.ze FV(M) = ordz >ord A .

The small-step reduction semantics of safe TA is defined similarly as in Sec. 2.1.10 except
that (-reduction is replaced by safe B-reduction and the rules for mkvar are redefined according
0 (3.4). Again it is easy to see that safety is preserved by the small-step reduction of IA:

Lemma 3.5.2 (Reduction preserves safety). Let M be an IA term and — denotes the small-step
reduction of safe IA. Then ' |EFs M : ANM - N = T'|EF;N: A .

The proof is by an easy induction.

Chapter 3. The Safe Lambda Calculus 89

Functional part

(var’®) x:var € = (var®*P) X :exp € X

02 ks x: var D= ks x: exp

I'Etss: A

I'keM: A
MHapp M A

FEFss:(Ar,...,4n,B) TEHsti: A4 ... TSt : Ay

)
(9) [|=Happ st1...t, : B

(appas)

F“E'—SS:(Alv"'aATMB) P’E}_Stl:Al F‘El_stnAn
T|Er, st1.. tn: B

(app) ord B <ordTl
Loaxp A,z Ap|EHapp s B

b
(abs) DEFs Azy...2p.8: (A1,..., Ap, B)

ord (Ay,...,A,,B) <ordD

Arithmetic and recursion

I=E2Fs M : exp
=k, succ M : exp

IEFs M : exp
=+, pred M : exp

(const) (succ)

00 Fsn:exp (pred)

MNEZFs M:exp T|EFgNy:exp T|Ekg Ny:exp
I'ZFs cond M Ny N,

=k, M:A— A
T|EF, YAM : A

(cond) (rec)

Imperative constructs

MNZksM:com TDEF,N: A
IN=Etsseqq M N : A

(seq) A € {com,exp}

EZks M :var T |2k N :exp (deref) [Zks M : var
ere
I'Etsassign M N : com I'|=t5 deref M :exp

(assign)

IZ,z:var ks M : A
MNZFsnewax in M: A

(new) A € {com, exp}

D2,z :expts My :exp— com T|Ek, My :exp
I'|=E s mkvar (A\z**P.M;) My : var

(mkvar)

Table 3.7: Formation rules for safe TA.

90 Chapter 3. The Safe Lambda Calculus

3.5.2.3 No-variable capture lemma

In which sense are the two calculi above-defined “safe”? In the lambda calculus frag-
ment, the term “safe” refers to the fact that under the safe typing convention, substitution can
be performed capture-permitting. Unfortunately, as we have observed before, in the presence
of block-allocation constructs this lemma does not hold anymore because the block-allocation
construct new does not increase the order of the term that is being formed contrary to A-
abstractions—a property that is crucially used in the proof of the No-variable-capture lemma.
The following examples illustrate this. Consider the terms:

M, =new x in seq (assign z 1) ((\y".new z in y)(deref z))
My = Azt.(\yt.(new 2 in y 0))z

Ms = Af?new x in (\yt.f(Az.y))(\2.deref)

My = Az (Ay .mkvar (Az**®.y) 0)x

where the type n, for n € N, is an abbreviation for neyp.

All these terms are safe TA terms (but only M; and M, are strongly safe) and contracting
the redexes in those terms using capture-permitting substitution causes problematic variable
captures:

(i) For My, performing the substitution without renaming variables afresh causes the capture
of z by the innermost new x, giving new = in seq (assign z 1) (new = in deref x) which is
observationally equivalent to 0 (since block-allocated variables are initialized with 0). On
the other hand standard substitution gives new x in seq (assign = 1) (new z in deref x)
which is observationally equivalent to 1.

(ii) For My, the capture-permitting substitution gives Az'.(new x in x 0) which is not even
typable in IA;

(iii) For M3, capture-permitting substitution gives Af2new z in Ay'.f(A\z".(\z°.deref x))
which is not a typable IA term;

(iv) Finally for My, capture-permitting substitution gives (Ay®°™.mkvar (Az®*P.z)0) which is
not a typable TA term because the subterm Az®*P.z is of type exp — exp instead of the
required type exp — com.

To deal with the first two examples, we have no other choice than renaming block-declared
variables afresh upon substitution. For the last two kinds of variable capture (which only happen
for safe terms that are not strongly safe) we can resolve the problem by adopting the following
convention:

CONVENTION 3.5.1 The set of names used for block-declared and mkvar-bound variables is
disjoint from the set of names used for lambda-abstracted variables. This convention can be
enforced by tagging each variable occurrence to indicate whether it is a block-allocated variable
or a lambda-abstracted variable, thus permitting one to resolve any binding ambiguity. Observe
that this convention is stronger than requiring that the sets of names of the two context com-
ponents of a split-term are disjoint because this only constrains the free variables of the term
whereas what we are requiring here is a global constraint on all variables names occurring in
the term including the bound ones.

This leads us to the following notion of substitution which performs variable renaming only
for block-allocated variables and mkvar-bound variables:

Definition 3.5.1. The semi-capture-permitting substitution of the term-in-context I'|Z -
N : A for z in the term-in-context ',z : A|E + M : B is given by T'|E = M{N/x]}} where the
operation {N/z}is defined inductively on M as follows:

x{N/x}= N

Chapter 3. The Safe Lambda Calculus 91

y{N/z}=y y # ;
(A" M{N/x}= Aa™.M
A" M){N/z}= \y" .M{N/x} where y # x;
(new z in M){N/x}=new z in M
(new y in M){N/x}=new z in M{z/yH{N/z} if x # y, 2z fresh;
(mkvar (Ax”.My) M){N/xz} = mkvar (Az".My) Mo{N/z}
(mkvar (Ay". M) Ma){N/x} = mkvar (\z".M{z/y{N/x}) M2{N/z} if z #y, z fresh.

The other constants and application cases are defined inductively in the standard way.
It is now possible to state a version of the No-variable capture lemma for safe IA:

Lemma 3.5.3 (No-variable capture). Suppose that T'|Z2 +g N : A and T,z : A|[E Fs M : B.
Then the substitution M [N/xz] can be performed semi-capture-permitting:

M [N/x] = M{N/x} ,
provided that either

(i) convention 3.1.2 and 3.5.1 are taken;

(ii) or convention 3.5.1 is taken and T'|Z + M {N/x} : B is a valid (not-necessarily safe) IA
judgement.

The proof is a trivial extension of Lemma 3.1.4 and 3.1.5.
Corollary 3.5.2. LetI'Fs N : A and ',z : A4 M : B be safe IA terms-in-context.
(i) If convention 3.1.2 is adopted then M [N/x] = M{N/z};

(i) If T’ M {N/x} : B is typable in IA then M [N/x] = M{N/z}.

3.5.3 Generalization to other applied lambda calculi

In this section, we define the notion of safety for every given applied lambda calculus extended
with a stock of interpreted constants ¥ but without recursion. The syntax of the language is
given by some system of rules producing split-term of the form

T|E-M:T

for some simple-type 7', where variables in the context I' and = are called the I'-variables and
=-variables respectively. The calculus must satisfy the following prerequisites:

(i) The abstraction rule can only abstract I'-variables;

(ii) The terms of the languages are given by the semi-closed split-terms I'|() = M : T" abbre-
viated asI' - M : T.
Consequently, a Z-variable can only be “bound” by some constant construct of the language but
not by a lambda-abstraction.

Definition 3.5.2. Consider an applied lambda calculus as defined above. Its safe fragment is
defined as the system obtained by restricting the pure lambda calculus fragment of the language
in such a way that:

(i) The restriction of the system to its pure simply-typed fragment coincides with the defi-
nition of the safe lambda calculus;

(ii) The side-condition of the abstraction and application rules constrains only I'-variables.
Terms-in-context thus generated are written I' ¢ M : T'.

92 Chapter 3. The Safe Lambda Calculus

An immediate consequence is that terms-in-context of the safe fragment satisfy the basic
property of the safe lambda calculus:

T M:T = Vz: AcT.z€ FV(M) = ord A>ord T .

Further, in order for this language to be of any use, it must satisfy the subject reduction lemma
(i.e., the small-step reduction semantics must preserve safety).

The results of the previous sections show that IA and the recursion-free fragments of PCF
both fit in this setting.

3.6 Related work

The safety condition for higher-order grammars

We have mentioned the result of Knapik et al. | | that infinite trees generated by safe
higher-order recursion schemes have decidable MSO theories. A natural question is whether
the safety condition is really necessary. This has been partially answered by Aehlig et al.
[] where it was shown that unrestricted order-2 recursion schemes have decidable
MSO theories. Concerning word languages, the same authors have shown | | that level
2 safe higher-order grammars are as expressive as (non-deterministic) unsafe ones. De Miranda’s
thesis | | proposes a unified framework for the study of higher-order grammars and gives a
detailed analysis of the safety constraint at level 2.

More recently, Ong obtained a more general result and showed that the MSO theory of
infinite trees generated by higher-order grammars of any level, whether safe or not, is decidable
[]. Using an argument based on innocent game semantics, he establishes a correspondence
between the computation tree of a higher-order grammar and the value tree that it generates:
Paths in the value tree correspond to P-views of traversals of the computation tree. Decidability
is then obtained by reducing the problem to the acceptance of the (annotated) computation tree
by a certain alternating parity tree automaton.

The equivalence of safe higher-order grammars and higher-order deterministic pushdown
automata for the purpose of generating infinite trees | | has its counterpart in the general
(not necessarily safe) case: Hague et al. [| established the equivalence of order-n higher-
order grammars and order-n collapsible pushdown automata. Those automata form a new kind
of pushdown systems in which every stack symbol has a link to a stack situated somewhere
below it and with an additional stack operation whose effect is to “collapse” a stack s to the
state indicated by the link from the top stack symbol.

Chapter 4

A Concrete Presentation of Game
Semantics

Analyzing the effect that a syntactic restriction (such as safety) has on the game-semantic model
is a difficult task since the main feature of game semantics is precisely to be syntax-independent.
The aim of this chapter is to establish an explicit correspondence between the game denotation
of a term and its syntax. This will be used in the next chapter to give a characterization of the
game semantics of the safe lambda calculus.

Our approach follows ideas recently introduced by Ong |], namely the notion of
computation tree of a simply-typed lambda-term and traversals over the computation tree. A
computation tree is just an abstract syntax tree (AST) representation of the 7-long normal form
of a term. Traversals are justified sequences of nodes of the computation tree respecting some
formation rules. They are meant to describe the computation of the term, but at the same
time they carry information about the syntax of the term in the following sense: the P-view
of a traversal (computed in the same way as P-view of plays in game semantics) is a path in
the computation tree. Traversals provide a way to perform local computation of S-reductions as
opposed to a global approach where G-redexes are contracted using substitution.

The culmination of this chapter is the Correspondence Theorem (Theorem 4.2.2). It states
that traversals over the computation tree are just representations of the uncovering of plays
in the strategy-denotation of the term. Hence there is an isomorphism between the strategy
denotation of a term and its revealed game denotation. In a nutshell, the revealed denotation
is computed similarly to the standard strategy denotation except that internal moves are not
hidden after composition. In order to make a connection with the standard game denotation, we
define an operation that extracts the core of a traversal by eliminating occurrences of “internal
nodes”. These node occurrences are the counterparts of internal moves that are hidden when
performing strategy composition in game semantics. This leads to a correspondence between
the standard game denotation of a term and the set traversal cores over its computation tree.

Using this correspondence, it possible to analyze the effect that a syntactic restriction has
on the strategy denotation of a term. This is illustrated in the next chapter where we rely on
the Correspondence Theorem to analyze the game semantics of the safety restriction.

Related works: The useful transference technique between plays and traversals was originally
introduced by Ong for studying the decidability of monadic second-order theories of infinite
structures generated by higher-order grammars |]. In this setting, the X-constants or
terminal symbols are at most order 1, and are uninterpreted. Here we present an extension of
this framework to the general case of the simply-typed lambda calculus with free variables of
any order. Further the term considered is not required to be of ground type contrary to higher-
order grammars. This requires us to add new traversal rules to handle variables whose value is
undetermined (i.e., those that cannot be resolved through redex-contraction). We also extend
computation trees with additional nodes accounting for answer moves of game semantics. This

94 Chapter 4. A Concrete Presentation of Game Semantics

enables our framework to be extended to languages with interpreted constants such as PCF and
Idealized Algol.

A notion of local computation of G-reduction has also been investigated through the use of
special graphs called “virtual nets” that embed the lambda calculus | -

Asperti et al. introduced | | a syntactic representation of lambda-terms based on
Lamping’s graphs |]. They unified various notions of paths (regular, legal, consistent
and persistent paths) that have appeared in the literature as ways to implement graph-based
reduction of lambda-expressions. We can regard a traversal as an alternative notion of path
adapted to the graph representation of lambda-expressions given by computation trees.

4.1 Computation tree

We work in the general setting of the simply-typed lambda calculus extended with a fixed set
¥ of higher-order uninterpreted constants.! We fix a simply-typed term-in-context I' - M : T
for the rest of the section.

4.1.1 Definition

We define the computation tree of a simply-typed lambda-term as an abstract syntax tree rep-
resentation of its n-long normal form (Def. 3.1.7). Our definition generalizes the notion of
computation tree for higher-order recursion schemes |].

We recall that a term M in 7n-long normal form is of the form AZ.sgsi...s, where T =
x1...27p for n > 0 and sgpsg ... s, is of ground type, each s; for j € 1..m is in n-long nf, and
either sg is a variable or a constant and m > 0; or sg is an abstraction Ay.s and m > 1 where s
is in n-long nf. If M is of ground type then its n-long nf is of the form A.N; although the symbol
A’ does not correspond to a real lambda-abstraction—we call it ‘dummy lambda’—it will still
be convenient to keep it in expressions representing eta-long normal forms.

Definition 4.1.1. Let I' ¢ M : T be a simply-typed term with variable names from) and
constants from . The pre-computation tree 7= (M) with labels taken from {Q} UX UV U
{Az1...2y | 21,..., 2, € V,n € N}, is defined inductively on its n-long normal form as follows.

Form >0,2€VUX: 7 (AT.281...8m :0) = AT(z(T (81),...,7 (5m)))
for m > 1: 77 (AT.(A\y.t)s1...sm:0) = AT(Q(r™ (Ay.t), 7 (s1),---,T (Sm))) ,

where we write [(t1,...,t,) for n > 0 to denote the ordered tree whose root is labelled ! and has
n child-subtrees tq, ..., t,. The trees from the equations above are illustrated in Table 4.1.

By convention the first level of a tree (where the root lies) is numbered 0. In the tree 77 (M),
nodes at odd-levels are variable, constant or application nodes; and at even-levels lies the A-
nodes. A single A-node can represent several consecutive abstractions or it can just be a dummy
lambda (if the corresponding subterm is of ground type).

Definition 4.1.2. Let M be a simply-typed term not necessarily in 7-long normal form. Let
D denote the set of values of base type o. The computation tree of M, written 7(M) is
the tree obtained from 7~ ([M]) by attaching leaves to each node as follows: for every node
n € 7~ (M), the corresponding node in 7([M]) has a child leaf labelled vy, called value-leaf,
for every possible value v € D.

Inner nodes of the tree are thus of three kinds:

YA constant ¢ € X is uninterpreted if the small-step semantics of the language does not contain any rule of
the form ¢ My ... My --- — fo(Ma, ..., My) for some function f. over closed normal terms M, ..., M. Think of
such constant as a data constructor.

Chapter 4. A Concrete Presentation of Game Semantics 95

)\E)\x
“(AT.281...8m 1 0) (AT (AY.t)S1 ... Sm 1 0)
mZOandeVUE le

Table 4.1: The tree 7= (M).

e \-nodes labelled AT for some list of variables T (Note that a A-node represents several
consecutive variable abstractions),

e application nodes labelled @,
e variable or constant nodes with labels in ¥ U V.

A node is said to be prime if it is the 0?* child of an @-node. An inner node whose parent is
a @-node or a Y-node is called a spawn node.

Example 4.1.1.

e The computation tree of a ground type variable or constant « is A ;

@
e The computation tree of a higher-order variable or constant « : (Ay,...,A,,0) has the
following form:)\ ;
)\51 Ay
Example 4.1.2. Take b Afo7°.(Au®"°u)f : (0 = 0) — 0 — o.
Its n-long normal form is: Its computation tree is:

Afz

|
0—0 0 @
Fst Af / | \

(Au70%u(A)) Auv Ay A

Owe.) R

(A\.2) T f z
(0—0)—0—0 \ \
Do

Example 4.1.3. Take F¢ Mu®v((07979) (A2°.0(\2%.2))u : 0 — ((0 — 0) — 0) — o.

96 Chapter 4. A Concrete Presentation of Game Semantics

Its n-long normal form is: Its computation tree is:

Auv

Q@
o Auulo—0)=0), N
(Az°v(A2°.2))u |

:0— ((0—>0)—0)—o0 1‘) u

Az

)

NoOTATIONS 4.1.1 We write ® to denote the root of 7(M). We write E to denote the parent-
child relation of the tree, V' for the set of vertices (i.e., leaves and inner nodes) of the tree, N
for the set of inner nodes and L for the set of value-leaves. Thus V = N U L.

We write Ny, for the set of X-labelled nodes, Ng for the set of @-labelled nodes, Ny, for the
set of variable nodes, Ng, for the subset of Ny, consisting of free-variable nodes, Nprime for the
set of prime nodes and Nspawn for the set of spawn nodes (= N N E(Na U Nx)).

For $ ranging over {@, \,var,fv}, we write Lg to denote the set of value-leaves which are
children of nodes from Ng; formally Lg = {v, | n € Ng,v € D}. We write Vg for Ng U Lg.

For every lambda node n in Ny we write M (™ for the subterm rooted at n and V(™ for the
set of vertices of the sub-computation tree 7(M™); formally V(™) = E*({n}) where E* denotes
the transitive, reflexive closure of the parent-child relation FE.

Each subtree of the computation tree 7(M) represents a subterm of [M]. We define the
function x : N — AP (where ACP denotes the set of Church typed lambda-terms) that maps
a node n € N to the subterm of [M] corresponding to the subtree of 7(M) rooted at n. In
particular k(®) = [M].

REMARK 4.1.1 Since the computation tree is computed from the eta-long normal form, for
every subtree of 7(M) of the form AP , we have ord k(n) = 0.

n
7 T~ —
A& /\gp

Definition 4.1.3 (Type and order of a node). Suppose I' - M : T'. The type of an inner-node
n € N of 7(M) written type(n) is defined as follows:

type(®) = T — T,
for n € (NyU Na) \ {®}: type(n) = type of the term x(n),
for n € Nyar U Nyt type(n) = type of the variable labelling n.

where the notation I' — 7' is an abbreviation for (A4i,...,A,,T) and Ay,..., A, are the types
of the variables in the context I'.

The order of a node n, written ordn, is defined as follows: a value-leaf v € L has order 0
and the order of an inner node n € N is defined as the order of its type. In particular, the type
of a lambda node different from the root is the type of the term represented by the sub-tree
rooted at that node, and the type of a variable-node is the type of the variable labelling it.

Since the computation tree is calculated from the 7)-long normal form, all the @-nodes have
order 0 (ord @ = 0); for every lambda node A\{ # ® we have ord A{ = 1 + max € ord z; and if
the root ® is labelled \¢ then ord ® = 1 + max, .z p ord z with the convention max () = —1.
Definition 4.1.4 (Binder). We say that a variable node n labelled z is bound by a node m,

and m is called the binder of n, if m is the closest node in the path from n to the root such
that m is labelled A\§ with = € £.

Chapter 4. A Concrete Presentation of Game Semantics 97

4.1.2 Pointers and justified sequence of nodes
4.1.2.1 Definitions

Definition 4.1.5 (Enabling). The enabling relation - is defined on the set of nodes of the
computation tree as follows. We write m + n and we say that m enables n if and only if
m € LU Ny U Ny, and one of the following conditions holds:

e n € Ny, and m is the root ®;

e n € Nya \ Ny, and m is n’s binder, in which case we write m ; n to precise that n is the

it" variable bound by m;

e n € Ny and m is n’s parent;
e n € L and m is n’s parent (i.e., n = v, for some v € D).

Formally:
- = {(®,n) Ine N
U {(A\Z,x) |z € Nyar \ Npy A AT is x’s binder}
U {(m, AT]) | m is A\j’s parent and A7} € Ny}
U {(m,vm) | veD,me N}

Note that in particular, free variable nodes are enabled by the root. Table 4.2 recapitulates the
possible node types for the enabler node depending on the type of n.

Ifne_ then me._

N)\ Nvar U NE U N@
Lyar Nyar

La Na

Ly Ny,

Nyar N)\

Ny, n.a.

Na n.a.

Ly Ny

Table 4.2: Type of the enabler node in “m F n”.

We say that a node ng of the computation tree is hereditarily enabled by n, € N if there
are nodes n1,...,n,—1 € N such that n;;; enables n; for all : € 0..p — 1.

For every sets of nodes S,H C N we write S7" to denote the subset SN * (H) of S
consisting of nodes hereditarily enabled by some node in H. Formally:

SH" —{ne S |3ng e Hst. ngH*n} .

If H is a singleton {ng} then we abbreviate S0} into §7o"

We have V& = V \ (VA®™ U VY=F). The elements of N& (i.e., variable nodes that are
hereditarily enabled by the root of 7(M)) are called input-variables nodes.

We use the following numbering conventions: The first child of a @-node—a prime node—is
numbered 0; the first child of a variable or constant node is numbered 1; and variables in & are

numbered from 1 onward (€ = &1 ...&,). We write n.i to denote the i** child of node n.

Definition 4.1.6 (Justified sequence of nodes). A justified sequence of nodes is a sequence
of nodes s of the computation tree 7(M) with pointers. Each occurrence in s of a node n in

98 Chapter 4. A Concrete Presentation of Game Semantics

L U Ny U Ny, has a link pointing to some preceding occurrence of a node m satisfying m F n;
and occurrences of nodes in Ng U Ny, do not have pointer.

If an occurrence n points to an occurrence m in s then we say that m justifies n. If n is an
inner node then we represent this pointer in the sequence as ni ... 7 where the label indicates
that either n is labelled with the i** variable abstracted by the A-node m or that n is the ith
child of m. The pointer associated to a leaf vy,, for some value v € D and internal node m € N,

is represented as m - ... - Uy,.

To sum-up, a pointer in a justified sequence of nodes has one of the following forms:

r/\z for some occurrences r of 7(M)’s root and z € Ng, ;
P — _
or A-...-& for some variable & bound by A, i € 1..[¢] ;
J
VR
or @Q-....-A je{l.(arity(@Q)—1)} ;
k
or amﬁ, for « € Ny U Nyar, k € {1..arity(a)} ;
or m/_\vm for some value v € D and internal node m € N .

We say that an inner node n in of a justified sequence of nodes is answered? by the value-leaf
vy, if there is an occurrence of v,, for some value v in the sequence that points to n, otherwise we
say that n is unanswered. The last unanswered node is called the pending node. A justified
sequence of nodes is well-bracketed if each value-leaf occurring in it is justified by the pending
node at that point.

For every justified sequence of nodes ¢ we write 7(¢) to denote the subsequence of ¢ consisting
only of unanswered nodes. Formally:

?(uy n’/u_g\vn) =?(uy -n-ug) \ {n} for some value v € D
2(u-n)="(u)n forng L

where u \ {n} denotes the subsequence of u obtained by removing the occurrence n.
If u is a well-bracketed sequences then ?(u) can be defined as follows:

Nu-n...v,) =7(u) for some value v € D ,
(u-n)=?(u) n where n & L .

NOTATIONS 4.1.2 We write s = t to denote that the justified sequences s and t have same nodes
and pointers. Justified sequence of nodes can be ordered using the prefix ordering: ¢ < ¢’ if and
only if ¢ = ¢/ or the sequence of nodes t is a finite prefix of ¢’ (and the pointers of ¢ are the
same as the pointers of the corresponding prefix of t'). Note that with this definition, infinite
justified sequences can also be compared. This ordering gives rise to a complete partial order.
We say that a node ng of a justified sequence is hereditarily justified by n,, if there are nodes
ni,ng,...Nnp—1 in the sequence such that n; points to n;y; for all i € {0..p — 1}. We write t“ to
denote the last element of the sequence t.

4.1.2.2 Projection

We define two different projection operations on justified sequences of nodes.

Definition 4.1.7 (Projection on a set of nodes). Let A be a subset of V, the set of vertices
of 7(M), and t be a justified sequence of nodes then we write ¢ [A for the subsequence of ¢
consisting of nodes in A. This operation can cause a node n to lose its pointer. In that case we

2This terminology is deliberately suggestive of the correspondence with game-semantics.

Chapter 4. A Concrete Presentation of Game Semantics 99

reassign the target of the pointer to the last node in t«, | A that hereditarily justifies n (This
node can be found by following the pointers from n until reaching a node appearing in A); if
there is no such node then n just loses its pointer.

Definition 4.1.8 (Hereditary projection). Let ¢ be a justified sequence of nodes of Trav(M)
and n be some occurrence in t. We define the justified sequence t | n as the subsequence of ¢
consisting of nodes hereditarily justified by n in ¢.

Lemma 4.1.1. The projection function _ | n defined on the cpo of justified sequences ordered
by the prefix ordering is continuous.

Proof. Clearly _ [n is monotonous. Suppose that (¢;);c., is a chain of justified sequences. Let u
be a finite prefix of (\/¢;) [n. Then u = s | n for some finite prefix s of \/¢;. Since s is finite
we must have s < t; for some j € w. Therefore u < t; [n < \/(¢; [n). This is valid for every
finite prefix u of (\/t;) [n thus (\/¢;) [n < \/(¢; [n). O

The nodes occurrences that do not have pointers in a justified sequence are called initial
occurrences. An initial occurrence is either the root of the computation tree, an @-node or a
Y-node. Let n be occurrence in a justified sequence of nodes t. The subsequence of ¢ consisting
of occurrences that are hereditarily justified by the same initial occurrence as n is called thread
of n. Thus each thread in a traversal contains a single initial occurrence. The thread of n is
given by n [¢ where ¢ is the first node in ¢ hereditarily justifying n; ¢ is called the initial
occurrence of the thread of n.

4.1.2.3 Views

The notion of P-view "t of a justified sequence of nodes ¢ is defined the same way as the P-view
of a justified sequences of moves in Game Semantics:

Definition 4.1.9 (P-view of justified sequence of nodes). The P-view of a justified sequence of
nodes t of 7(M), written "t7, is defined as follows:

1

€l = ¢
s-n' = Tsl-n forn € Nyar U Ny U Ng U Ly ;
Csemi-...-n1 = TsV-m-n forné€ Lyy ULy ULaUNy :
Fs.r? = r if r is an occurrence of ® (7(M)’s root) .

The equalities in the definition determine pointers implicitly. For instance in the second clause,
if in the left-hand side, n points to some node in s that is also present in "s™' then in the
right-hand side, n points to that occurrence of the node in "s™.

The O-view of s, written s, is defined dually.

Definition 4.1.10 (O-view of justified sequence of nodes). The O-view of a justified sequence
of nodes ¢ of (M), written ¢, is defined as follows:

LEs = €
LS-NM1 = LSI'N forn € Lysy ULy U Lg U N,y ;
LS M ... s = LS4 mi-n for n € Nyar U Ly
LS nJy = n for n € Ng U Ny, .

We borrow some terminology from game semantics:
Definition 4.1.11. A justified sequence of nodes s satisfies:

- Alternation if for every two consecutive nodes in s, one is in V) and not the other one;

100 Chapter 4. A Concrete Presentation of Game Semantics

- P-wvisibility if for every occurrence in s of a node in Ny, U Ly, its justifier occur in the P-view
a that point;

- O-wistbility if the justifier of each lambda node in s occurs in the O-view a that point.

We then have the same basic property as in game semantics: The P-view (resp. O-view) of
a justified sequence satisfying P-visibility (resp. O-visibility) is a well-formed justified sequence
satisfying P-visibility (resp. P-visibility). (This property follows by an easy induction.)

4.1.3 Traversal of the computation tree

We now define the notion of traversal over the computation tree 7(M). We first consider the
simply-typed lambda calculus without interpreted constants; everything remains valid in the
presence of uninterpreted constants as we can just consider them as free variables. In the second
section, we extend the notion of traversal to a more general setting with interpreted constants.

4.1.3.1 Traversals for simply-typed \-terms

Informally, a traversal is a justified sequence of nodes of the computation tree where each node
indicates a step that is taken during the evaluation of the term.

Definition 4.1.12 (Traversals for simply-typed lambda-terms). The set 7 rav(M) of traversals
over 7(M) is defined by induction over the rules of Table 4.3. A traversal that cannot be extended
by any rule is said to be maximal.

Example 4.1.4. The following justified sequence is a traversal of the computation tree from
Example 4.1.2:

t:)\fz-@-)\uv-u-)\y-fr-\)\-y-)\-v-)\-z .
REMARK 4.1.2

1. The rule (Value) from Table 4.3 can be equivalently reformulated into four distinct rules
(Value*™=®), (Value®~?), (Value*"2") and (Value"®*—*), each one dealing with a different
possible category for the nodes n and m:

(ValueM®) If ¢ - @/‘932‘7?‘2})\2 is a traversal then so is ¢t - @ -)\gil))\g “Va.

(Valueg®=A) If ¢ - A - @/..U.\v@ is a traversal then so is £ - A€ - @5?.\1)@ Vg :
(Valueh=var) If ¢t -y -)‘mAZ is a traversal with y € N then so is t - /-)\E.rj)\.v)\g - Vy.
(Value"arH)‘) If¢-)\E . ffv\% is a traversal where x € Ny, then so is ¢t -)\E . xfﬂ\vx “UyE-

In the rest of this chapter we will prove various resulting by induction on the structure of
a traversal and by case analysis on the last rule used to form it. Some of these proofs will
rely on the above-defined reformulation of (Value) instead of its original definition.

2. In the rule (InputValue), the last node in the traversal t; - = - t5 necessarily belongs to
Nyar U Ly. Indeed, since the pending node z is a variable node, the traversal is of the form
VR

2 g .
...-x-)\nl...vml)\%...v)\m...)\nk...vmk

for some nodes A\7j, values v* € D and k > 0; thus the last occurrence belongs to Ny if
k=0 and to Ly if £ > 1.

Chapter 4. A Concrete Presentation of Game Semantics 101

Initialization rules
(Empty) € € Trav(M).
(Root) The sequence consisting of a single occurrence of 7(M)’s root is a traversal.

Structural rules

(Lam) If ¢ - A€ is a traversal then so is ¢ - A - n where n denotes AE’s child and:

— If n € Ng U Ny, then it has no justifier;
— if n € Nyar \ Mgy, then it points to the only occurrence® of its binder in Tt - A{ ™
— if n € Np, then it points to the only occurrence of the root ® in "t - A

0

(App) If t - @ is a traversal then so is t - @ - .

Input-variable rules

(InputVar) If is a traversal where t* € N& U L)@:)F and z is an occurrence of a variable node

in Lty then so is t - n for every child A-node n of z, n pointing to x.
(InputValue) If ¢1 - z - to is a traversal with pending node x € N&?{ then so is ¢y - x@x for
all v e D.

Copy-cat rules _
(Var) If t - n -)\{\IZ is a traversal where z; € N3 then so is t - n- NT .. i AT

(Value) If t - m - nqn is a traversal where n € N then soist-m - nqn V-

v

Table 4.3: Traversal rules for the simply-typed lambda calculus.

“Prop. 4.1.1 will show that P-views are paths in the tree thus n’s enabler occurs exactly once in the P-view.

102 Chapter 4. A Concrete Presentation of Game Semantics

Furthermore, the pending node appears necessarily in the O-view.

These two observations show that the rule (InputValue) is essentially a specialization of
(InputVar) to value-leaves. The only difference is that (InputVar) allows the visited node to
be justified by any variable node occurring in the O-view whereas (InputValue) constrains
the node to be justified by the pending node (which necessarily occurs in the O-view).
This restriction is here to ensure that traversals are well-bracketed.

3. In the rule (Value), it is possible to replace the condition “n € N” by the stronger “n €
N\ Nf%”. Indeed a later result (Lemma 4.1.6) will show that if n belongs to ny
then the preceding occurrence m is necessarily an input-variable. Furthermore, another
result (Prop. 4.1.1) shows that traversals are well-bracketed, therefore m is necessarily the
pending node. Hence the rule (InputValue) can be use in place of (Value) to visit vy,.

The advantage of this alternative formulation is that the traversal rules have disjoint
domains of definition.

A traversal always starts with the root node and mainly follows the structure of the tree.
The exception is the (Var) rule which permits the traversal to jump across the computation tree.
The idea is that after visiting a non-input variable node x, a jump can be made to the node
corresponding to the subterm that would be substituted for z if all the S-redexes occurring in
the term were to be reduced. Let AT be z’s binder and suppose z is the i variable in Z. The
binding node necessarily occurs previously in the traversal (This will be proved in Prop. 4.1.1).
Since z is not hereditarily justified by the root, AZ is not the root of the tree and therefore it is
not the first node of the traversal. We do a case analysis on the node preceding A\z:

e [f it is an @-node then AT is necessarily the first child node of that node and it has exactly
|Z| siblings:

@
R
\T ATy ATj; AT

In that case, the next step of the traversal is a jump to A7j;—the " child of @ —which
corresponds to the subterm that would be substituted for x if the B-reduction was per-
formed:

i

t'-@-)\m-)\m-...e’]'mv(M) :

e If it is a variable node y, then the node A\ was necessarily added to the traversal t<, using
the (Var) rule. (Indeed, if it was visited using (InputVar) then AT would be hereditarily
justified by the root, but this is not possible since z;, bound by AZ, is not an input-variable.)
Therefore y is substituted by the term x(AZ) during the evaluation of the term.

Consequently, during reduction, the variable x will be substituted by the subterm repre-
sented by the " child node of y. Hence the following justified sequence is also a traversal:

i

SN

o AT N

Chapter 4. A Concrete Presentation of Game Semantics 103

REMARK 4.1.3 Our notions of computation tree and traversal differ slightly from the original
definitions by Ong []. In his setting:

- computation trees contain (uninterpreted first-order) constants. Here we have not accounted
for constants but as previously observed, uninterpreted constants can just be regarded as free
variables, thus we do not lose any expressivity here.

- constants are restricted to order one at most. (Terms are used as generators of trees where
first-order constants act as tree-node constructors). Here we do not need this restriction: as
long as constants are uninterpreted we can regard them as free variables, even at higher-orders.

- one rule ((Sig)) suffices to model the first-order constants. In contrast our setting accounts
for higher-order variables, thus the more complicated rules (InputValue) and (InputVar) are
required.

- computation trees do not have value-leaves. These are not necessary to model the pure simply-
typed lambda calculus. There will be necessary, however, when it comes to model interpreted
constants such as those of PCF or IA.

Example 4.1.5. Consider the following computation tree:

|
0 @~ 1
_— ~
Ay AT
v X
ATy P/ AT,

An example of traversal of this tree is:) ‘
m
M@ NG Y NT - T

Lemma 4.1.2. Take a traversal t ending with an inner node hereditarily justified by an appli-
cation node @. Then if we represent only the nodes appearing in the O-view, the thread of t*

has the following shape:
iy ey

ey == == == _/\ .
@-)\50...331-)\51...3}2-)\52...333-)\53....%'4....%']6,1)\5]9_1...xkASk .

Suppose that the initial node Q occurs in the computation as follows:
/ 1 \
AT R A

q

Let 7; denote the sub-tree rooted at A7j; for i € {1..q}. Then for every j € {1..k}, x; and)\Ej
must belong to two different subtrees 7; and 1. Furthermore, x; is hereditarily justified by some
occurrence of An; in t and)\Ej is hereditarily justified by some occurrence of A\ij, in t (and
therefore)\Ej e VNIt and rj € VATt),

Proof. The proof is by an easy induction. O

104 Chapter 4. A Concrete Presentation of Game Semantics

4.1.3.2 Traversal rules for interpreted constants

The framework that we have established up to now aims at providing a computation model of
simply-typed lambda-terms. It is possible to extend it to other extensions of the simply-typed
lambda calculus. This is done by completing the traversal rules from Table 4.3 with new rules
describing the behaviour of the interpreted constants of the language considered. For instance
in the case of PCF, we need to define rules for the interpreted constant cond that replicate the
behaviour of the conditional operation. (In a forthcoming section of this chapter we will give a
complete definition of the constant traversal rules for PCF and IA.)

We mentioned before that uninterpreted constants can be regarded as free variables. In
the same way, we can consider interpreted constants as a generalization of free variables: for
both of them, the “code” describing their computational behaviour is not defined within the
scope of the term, it is instead assumed that the environment knows how to interpret them.
Free variables, however, are more restricted than interpreted constants: When evaluating an
applicative term with a free variable in head position, the evaluation of the head variable does
not depend on the result of the evaluation of its parameters; whereas for applicative term with
an interpreted constant in head position, the outcome of the evaluation may depend on the
result of the evaluation of its parameters (e.g., the PCF constant cond branches between two
control points depending on the result of the evaluation of its first parameter).

We can thus derive a prototype for constant traversal rules by generalizing the input-variable
rules (InputValue) and (InputVar):

Definition 4.1.13 (Constant traversal rule). A constant traversal has one of the following
two forms:

t=t1-a-ty € Trav(M) o€ NgUNDLE" 2t =a P(1)

Y -Value ar
(el t'=t -amt) € Trav(M)
o Nyt
()/(Z-Var) teTrav(M) t*e€ Ny UNY™" UL, P(t)
t-n(t) € Trav(M)
where:

e P(t) is a predicate expressing some condition on ¢;
e v(t) is a value-leaf of the node « that is determined by the traversal ¢;
e n(t) is a lambda-node determined by ¢, and its link—also determined by t—points to some
occurrence of its parent node in Lt_.
Clearly, such rules preserve well-bracketing, alternation and visibility.

REMARK 4.1.4 The extra power of the constant rules over the input-variable rules (InputValue)
and (InputVar) comes from their ability to base their choice of next visited node on the shape
of the traversal t.

From now on, to make our argument as general as possible, we consider a simply-typed
lambda calculus language extended with higher-order interpreted constants for which some con-
stant traversal rules have been defined (in the sense of Def. 4.1.13). Furthermore, we complete
the set of rules with the following additional copy-cat rule:

v v

(Value™™) t - X - ¢ ve € Trav(M) A c€¥X = t-)‘mxg € Trav(M) .

Definition 4.1.14. A constant traversal rules is well-behaved if for every traversal ¢t - o/ u - n
formed with the rule we have ?(u) = e.

An example is the rule (X-Value) which is well-behaved due to the fact that traversals are
well-bracketed. The rule (X)/(X-Var), however, is not well-behaved since the node n(t) does not
necessarily points to the pending node in t.

Chapter 4. A Concrete Presentation of Game Semantics 105

Lemma 4.1.3. If X-constants have order 1 at most, then constant rules are necessarily all
well-behaved.

Proof. In the computation tree, an order-1 constant hereditarily enables only its immediate chil-
dren (which are all dummy lambda nodes \). Hence a traversal formed with the rule (¥)/(X-Var)
is of the form:

t=...-a-u-\

where o appears in Lt_.

If w = € then the result trivially holds. Otherwise, u’s first node has necessarily been visited
with the rule (¥)/(X-Var) thus u’s first node is a dummy lambda node A pointing to a. Since
a occurs in Lt1 and since the node A enables only its value-leaf in the computation tree, ¢ must
be of the following shape:

for some value leaf vy, of \.
Again, the node following vy must be a dummy lambda node pointing to «. By iterating the

same argument we obtain that the segment u is a repetition of segments of the form)\m)\/.
Hence 7(u) = e. O

4.1.3.3 Property of traversals
Proposition 4.1.1. Let t be a traversal. Then:

(i) t is a well-defined justified sequence satisfying alternation, well-bracketing, P-visibility and
O-visibility;

(ii) If the last element of t is not a value-leaf whose parent-node is a lambda node (i.e., t“ & L))
then "t is the path in the computation tree going from the root to the node t*.

Proof. This is the counterpart of another result proved by Ong in the paper where he intro-
duces the theory of traversals [, proposition 6]. The original proof—an induction on
the traversal rules—can be adapted to take into account the constant rules and the presence of
value-leaves in the traversal. We detail the case (Lam) only. We need to show that n’s binder
occurs only once in the P-view at that point. By the induction hypothesis (ii) we have that
Tt - A7 is a path in the computation tree from the root to Aé. But n’s binder occurs only once
in this path, therefore the traversal ¢ - A - n is well-defined and satisfies P-visibility. Thus (i) is
satisfied. Furthermore n is a child of ¢ therefore (ii) also holds. O

Lemma 4.1.4. Ift-n is a traversal with n € Nyay U Ny U Na then t # € and t¥ is n’s parent
in 7(M) (and is thus a lambda node).

Proof. By inspecting the traversal rules, we observe that (Lam) is the only rule which can visit
a node in Nyor U Ny U Ng. Hence t is not empty and ¢“ is n’s parent in 7(M). O

Lemma 4.1.5. Suppose that M is 3-normal. Let t be a traversal of (M) and n be a node
occurring in t. Then the root ® does not hereditarily enable n if and only if n is hereditarily
enabled by some node in Ny. Formally:

ng N «— neNV"

Proof. In a computation tree, the only nodes that do not have justification pointer are: the root
®, @-nodes and Y-constant nodes. But since M is in S-normal form, there is no @-node in the
computation tree. Hence nodes are either hereditarily enabled by ® or hereditarily enabled by
some node in Nx.. Moreover ® is not in Ny, therefore the “or” is exclusive: a node cannot be
both hereditarily enabled by ® and by some node in Nsx. O

106 Chapter 4. A Concrete Presentation of Game Semantics

Lemma 4.1.6 (The O-view is contained in a single thread). Let t € Trav(M).

(a) Ift=...-m-n where m € Nyaoy UNs UNgU Ly and n € N\U Lya U Ly U Lg then m and
n are in the same thread in t: they are hereditarily justified by the same initial occurrence
(which is either T(M)’s root, a X-constant or an @-node);

(b) All the nodes in Lta belong to the same thread.

Proof. Clearly (b) follows immediately from (a) due to the way the O-view is computed. We
show (a) by induction on the last traversal rule used to form ¢. The results trivially hold for the
base cases (Empty) and (Root). Step case: Take t =t -n. If n € Ny U Lya U Ly U Lg then we
do not need to show (a). Otherwise n € Ny U Lya U Ly, U Lq. By O-visibility, n points in ¢’
thus by the I.LH., it must belong to the same thread as all the nodes in Lt'J and in particular to
the thread of ¢“. Therefore both (i) and (ii) hold. O

4.1.3.4 Traversal core

Occurrences of input-variable nodes correspond to point of the computation at which the term
interacts with its context. At these points, a traversal can be extended in a non-deterministic
way. In contrast, after a node that is hereditarily enabled by an @-node or by a constant
node, the next visited node is uniquely determined. We can therefore think of such nodes as
being “internal” to the computation: their semantics is predefined and cannot be altered by the
context in which the term appears. If we want to extract the essence of the computation from a
traversal, a natural way to proceed thus consists in keeping only occurrences of nodes that are
hereditarily enabled by the root:

Definition 4.1.15. The core of a traversal t, written t | ®, is defined as t | V& (i.e., the
subsequence of ¢ consisting of the occurrences of nodes that are hereditarily enabled by the root
® of the computation tree). The set of traversal cores of M is denoted by 7rav(M)I®:

Trav(M)'®E {t | ® : t e Trav(M)} .

Example 4.1.6. The core of the traversal given in example 4.1.4 is:

trAfz:Af%.

REMARK 4.1.5

e The root occurs at most once in a traversal, therefore if ¢ is a non-empty traversal then
its core is given by t [r where r denotes the only occurrence of ® in ¢. Thus we have:

Trav(M)!® = {t | r : t € Trav(M) and r is the only occurrence of ® in t} .

e Since @-nodes and Y-constants do not have pointers, the traversal cores contains only
nodes in V) U V,,,.

4.1.3.5 Removing @-nodes and Y-nodes from traversals

Application nodes are essential in the definition of computation trees: they are necessary to
connect together the operator and operands of an application. They also have another advan-
tage: they ensure that the lambda-nodes are all at even level in the computation tree, which
subsequently guarantees that traversals respect a certain form of alternation between lambda
nodes and non-lambda nodes. Application nodes are however redundant in the sense that they
do not play any role in the computation of the term. In fact it will be necessary to filter them
out in order to establish the correspondence with interaction game semantics.

Chapter 4. A Concrete Presentation of Game Semantics 107

Definition 4.1.16 (Q@-free traversal). Let ¢ be a traversal of 7(M). We write ¢ — @ for the
sequence of nodes-with-pointers obtained by

e removing from ¢ all occurrences of @-nodes and their children value-leaves;

e replacing any link pointing to an @-node by a link pointing to the immediate predecessor
of @ in t.

Suppose u = t — @ is a sequence of nodes obtained by applying the previously defined
transformation on the traversal ¢, then ¢ can be partially recovered from w by reinserting the
@-nodes as follows. For each @-node in the computation tree with parent node denoted by p,
we perform the following operations:

1. replace every occurrence of the pattern p - n for some A-node n, by p- Q- n;

2. replace any link in u starting from a A-node and pointing to p by a link pointing to the
inserted @-node;

3. for each occurrence in u of a value-leaf v, pointing to p, insert the value-leaf ve immediately
before v, and make it point to the immediate successor of p (which is precisely the @-node
inserted in step 1.).

We write u + @ for this second transformation.

These transformations are well-defined because in a traversal, an @-node is always immedi-
ately preceded by its parent node n1, and immediately followed by its first child ns:

ni
\

@
s
ng

Example 4.1.7. Let f be a Y-constant and t = \¢ - @/\)\m Then

t_@:Aéif??i}.

Example 4.1.8. Let ¢ be the traversal given in example 4.1.4, we have:

t—@:)\fz-)\uv-u-)\yfr-\)\-y-)\-v-)\-z .

We also want to remove -nodes form the traversals. To that end we define the operation —3
and +3 in the exact same way as —@ and +@. Again these transformations are well-defined
since in a traversal, a -node f is always immediately preceded by its parent node p, and a
value-node v, is always immediately preceded by a value-node vy.

Note that the operations —@ and —X are commutative: (t — Q) — ¥ = (t — X) — Q.

Lemma 4.1.7. For every non-empty traversal t =t -t in Trav(M):
t, ift? EVa ;
t', iftY eVa ;
o t, Zf v ¢ VE ;
(t m+2_{ﬂ,ﬁﬁew.

Proof. The result follows immediately from the definition of the operation -@ and +@ (resp.
—Y and +X). O

u—@+@:{

108 Chapter 4. A Concrete Presentation of Game Semantics

REMARK 4.1.6 Sequences of the form t—@ (resp. t—X) are not, strictly speaking, proper justified
sequences of nodes since after removing @-nodes, all the prime A-nodes become justified by their
parent’s parent which are also A-nodes! Moreover, these sequences do not respect alternation
since two A-nodes may become adjacent after removing a @-node.

We write t* to denote the sequence obtained from ¢ by removing all the @-nodes as well as
the constant nodes together with their associated value-leaves:

rEr-Q-% .
Example 4.1.9. Let f be a X-constant. We have
(@A foane) = xEAF A s
We introduce the set
Trav(M)* ={t* |t € Trav(M)} .

REMARK 4.1.7 If M is a S-normal term and if it contains no ¥-constant (as for pure simply-
typed terms) then 7(M) does not contain any @-node or ¥-node, thus all nodes are hereditarily
enabled by ® and we have Trav(M) = Trav(M)'® = Trav(M)*.

Lemma 4.1.8. For every traversal t we have t* | VO =t | ®.

Proof. This is because nodes removed by the operation _* are not hereditarily enabled by the

root of the tree. O

The notion of P-view extends naturally to sequences of the form ¢*: it is defined by the same
induction as for P-views of traversals. It is then easy to check that if ¢ is not in Lg U Ly, then
the P-view of t* is obtained from "t7 by keeping only the non @/>-nodes:

TP =T \ (V@ U Vg) . (4.1)
We define a projection operation for sequences of the form t* as follows:

Definition 4.1.17. Let ¢ be a traversal such that t* ¢ LqU Ly, and g be an occurrence of some
lambda-node n. Then the projection t* | V(" is defined as the subsequence of t* consisting of
nodes of V(") only. If a variable node loses its pointer in t* | V(") then its justifier is reassigned
to the only occurrence of n in "t* .

Note that this operation is well-defined. Indeed if a variable z loses its pointer in t* [V(")
then it means that z is free in M. But then n must occur in the path to the root ® which is
precisely "t<, . Thus by (4.1), n must occur in "t * .

4.1.3.6 Subterm projection (with respect to a node occurrence)

Let ng be a node-occurrence in a traversal t. The subterm projection t || ng is defined as the
subsequence of ¢ consisting of the occurrences whose P-view at that point contain the node ny.
Formally:

Definition 4.1.18. Let t € Trav(M) and ng be an occurrence in ¢t. The subsequence ¢ [ng of
t is defined inductively on t as follows:

e (t-mng) Il no=no;

e If n € Ny U Lyy U Ly U Lg and n # ng then

t I ng)-n, if n’s justifier appears in ¢ [ng ;
I no, otherwise ;

(vmnmz{i

Chapter 4. A Concrete Presentation of Game Semantics 109

e If n € Nyay U Ny U Ng U Ly and n # ng then

(t Il ng)-m, if t“’s appearsin t [[ng ;
t I no, otherwise ;

(t-n) WHOZ{

where in the first subcase, if n loses its justifier in ¢ || rg then it is reassigned to rg.

We call this transformation the subterm projection with respect to a node occurrence because
it keeps only nodes that appear in the sub-tree rooted at some reference node. If ng is an occur-
rence of a lambda node n € N then we say that t [[ng a sub-traversal of the computation
tree T(M). This name is suggestive of the forthcoming Proposition 4.1.5 stating that ¢ [ng is
a traversal of the sub-computation tree of 7(M) rooted at n.

REMARK 4.1.8 There is an alternative way to define ¢ || ro: For every traversal ¢ we write ¢+
to denote the sequence-with-pointers obtained from ¢ by adding pointers as follows: For every
occurrence of a @ or »-node m in t we add a pointer going from m to its predecessor in t
(which is necessarily an occurrence of its parent node). Further, for every variable node = we
add auxiliary pointers going to each lambda node occurring in the P-view at that point after x’s
binder. Conversely, for every sequence-with-pointers u we define u~ as the sequence obtained
from u by removing the links associated to @ and X-nodes and where for each occurrence of a
variable node, only the “longest” link is preserved. (The length of a link being defined as the
distance between the source and the target occurrence.) Clearly the operation _~ is the inverse
of _*: For every traversal ¢t we have t = (t7)~. Then it can be easily shown that the sequence
t IT n is precisely the subsequence of ¢ consisting of nodes hereditarily justified by n with respect
to the justification pointers of tT:
tn=>"Tn)" .

(Note that since the operation _* changes the justification pointers, the hereditary justification
relation in a traversal ¢ is different from the hereditary justification relation in ¢t* and therefore
we have (t [n)T CtT [nbut (¢t | n)" #¢T | n.) End of remark.

The following lemmas follow directly from the definition of ¢ || r:

Lemma 4.1.9. Let t be a traversal and o be an occurrence of a lambda node v’ in t.

(a) Suppose that t = ...m ... withn € NyULgU Ly U Lys and n # ro. Then n appears in
t I ro if and only if m appears in t [rq.

(b) Suppose that t = ... -n where n € Nyay U Ng U Nx U Ly. Then n appears in t || o if and
only if the last lambda node in "t does.

(c) Suppose thatt = .. . Uy with vy, € L = LyULgULxyU Lya. Then vy, appears int [ro
if and only if m does.

Proof. (a) holds by definition of ¢ [[7¢. (b) is proved by induction on ¢: It follows easily from
the fact that in the definition of ¢ [[g, the inductive cases follow those from the definition of
traversal P-views. (c) If vy, € La U Ly U Ly,, then it falls back to (a). Otherwise v, € Ly and
by (b), v, appears in ¢ || r¢ if and only if the last lambda node in "t does. But the last node
in T¢7 is necessarily m (since vy, is necessarily visited with a copy-cat rule). U

Lemma 4.1.10. Let t € Trav(M) and ro be the occurrence in t of a A-node. We have:
2t o) = () Mo

Proof. Take a prefix u of t ending with a value-leaf v,, of an occurrence n. By Lemma 4.1.9(c),
the operation _ [[g removes v,, from t if and only if it also removes n. O

110 Chapter 4. A Concrete Presentation of Game Semantics

4.1.3.7 O-view and P-view of the subterm projection
P-view projection

Lemma 4.1.11 (P-view Projection for traversals). Let t be a traversal and ro be an occurrence
in t of a lambda node ' € Ny. Then:

(i) If t“ appears in t || ro then:

a. To appears in "t all the nodes occurring after ro in "t appear in t || ro and all the
nodes occurring before ro in "t do not appear in t |[ro;

M) _rpaM .
b Tt ™M = =y

c. if t“ also appears in t || r1 for some occurrence r1 r’ then rq = r;

d. ift=...n...n and m does not appear in t || ro then ro occurs after m in t and m
is a free variable node in the sub-computation tree T(M(r/)).

(i1) Suppose t = ...rq...m Then the node n appears int | v if and only if m does.

Proof. (i) A trivial induction shows both a. and b.(The inductive steps in the definition of the
projection operation _ || ro correspond precisely to those from the definition of P-views.)

c. By a., both rg and r; appears in the P-view. But the P-view is the path from ¢“ to the
root, hence it cannot contain two different occurrences of the same node r’.

d. Since t*“ appears in t [[rg and its justifier m is not in ¢ [[rg, by a., the justifier m
necessarily precedes rg in ¢, and by Lemma 4.1.9, n is necessarily a variable node. Thus m
occurs before g in the P-view "t™". In other words, g lies in the path from n to its binder m.
Consequently, 7 is a free variable node in 7(M")).

(ii) The case n € Nyar is handled by Lemma 4.1.9(a) and (c).

Suppose that n € Ny, If n appears in ¢ [[79 then by (i) all the nodes occurring in "t up
to rg appear in t || ro. By P-visibility, m appears in "¢ and since ry precedes it by assumption,
m also appears in t [[ro. If m appears in ¢ || r¢ then since m appears in the P-view at x, by
definition of ¢ || rg, x must also appear in ¢ [rg. O

Lemma 4.1.12. Let t € Trav(M) such that t* ¢ Ly. Let r' be some lambda node in Ny.
The node t* belongs to the subtree of T(M) rooted at v’ (i.e., t* € V(r/)) if and only if t¥
appears in t || rg for some occurrence ro of v’ in t.

Proof. Only if part: Since t’s last move in not a lambda leaf, by Proposition 4.1.1, the P-view
Tt is the path to the root ®. Hence since t“ belongs to the subtree of 7(M) rooted at r/, "t
must contain (exactly) one occurrence ro of 7. But then by definition of ¢ [rg, all the nodes
following rg occurring in the P-view must also belong to ¢ [| rg, so in particular, ¥ does.

If part: By Lemma 4.1.11(i), 7o must occur in "¢" and therefore rg lies in the path from ¢“ to
the root ® of the computation tree 7(M). Consequently, t* necessarily belongs to the subtree
of 7(M) rooted at r’. O

Lemma 4.1.13. Let t be a traversal and ro be an occurrence in t of some lambda node v'. Then
an occurrence n & Va U Vs, of t is hereditarily justified by ng in t* [V') if and only if n appears
mt | rg.

Proof. We proceed by induction on t,. If n = rq or if ry does not occur in t, then the result
holds trivially. Suppose that r¢ occurs in t,. Let m be n’s justifier in t. We do a case analysis
on n. The case n € Lg U Ly U Ng U Ny, is excluded by assumption.

Suppose n € Ly U Lya U Ny then

n appears in t || ro <= m appears in t || rg by Lemma 4.1.9(a)
<= m her. just. by ng in t* | V() by L.H. on t<,

Chapter 4. A Concrete Presentation of Game Semantics 111

<= n her. just. by ng in t* | V') since m is n’s parent in 7(M (")),

Suppose that n € Ny, then

n appears in t || rg <= 1o appears in "¢" by Lemma 4.1.12 and 4.1.11(i)
ro precedes m in "¢, and thus n is a bound variable in M (")
<~ /
or ro appears strictly after m in "¢t and n is free in M)
m appears in ¢ || rg by Lemma 4.1.11(i)
or n points to 7o in t* [V) by def. of _ | V)
m her. just. by ng in t* | V) by I.LH. on t<p,
or n points to 7o in * | V)
n her. just. by ng in t* | V() nis in V') iff its binder m is
<~ . . /
or n points to 7o in t* | V)

<= nis her. just. by ng in t* | V)

Lemma 4.1.14. Take a traversal t. Let ' be a node in Ny and rog an occurrence of r’ in t.
Suppose that t* appears in t [ro and that the thread of t* is initiated by o € Ng U Nx.

(i) If o precedes c in t then all the nodes occurring in the thread appear in t || r(.

(i1) If a precedes g in t then t* is hereditarily enabled by 1’ in T(M(r/)).

Proof. (i) By definition of a thread, the nodes occurring in the thread are all hereditarily justified
by a. Since 1y precedes v and ¢“ appears in t [[rg, by Lemma 4.1.11(ii) all the nodes in the
thread must also appear in t || rg.

(ii) Let g be the first node in ¢ that hereditarily justifies ¢ in ¢ and that appears in ¢ [rg.

If ¢ € N, then necessarily ¢ = rg. Otherwise by definition of _ || g, ¢’s justifier also appears
in t [[7o which contradicts the definition of q. Hence the result holds trivially.

If ¢ € Nq U Ny, then necessarily ¢ = a, since links always point inside the current thread and
since a thread contains by definition only one node in Ng U Ny. But « precedes ry therefore «
cannot be hereditarily justified by ry hence this case is not possible.

If ¢ € Nyar then by Lemma 4.1.11(i.d), ¢ is an free variable in 7(M ")) and therefore it is
enabled by ' in 7(M (7"/)). Hence since t“ is hereditarily justified by rg, it must be hereditarily
enabled by ' in (M), O

O-view projection In this paragraph we will spend some time proving the following Propo-
sition:

Proposition 4.1.2 (O-view projection for traversals). Let t be a traversal of Trav(M) such
that its last node appears in t || ro for some occurrence o int of a lambda node r' in Ny. Then

Liay TroCct I TOdpf(r!) -

One may recognize that this result bears resemblance with another non trivial result of game
semantics from the seminal paper by Hyland and Ong on full abstraction of PCF | |:

Proposition 4.1.3 (P-view projection in game semantics). | , Prop.4.3] Let s be a legal
position of a game A — B. If s* is in B then "sA~B | BC s | BB,

Since such result is relatively hard to prove, it would be nice if we could just reuse the above
proposition to show our result. Unfortunately, the two settings are not exactly analogues of
each other so we cannot immediately deduce one proposition from the other. Indeed, the proof
of the previous proposition relies on several properties of a legal position s | |:

e (wl) Initial question to start: The first move played in s is an initial move and there is no
other occurrence of initial moves in the rest of s;

0

112 Chapter 4. A Concrete Presentation of Game Semantics

(w2) Alternation: P-moves and O-moves alternate in s;

e (w3) Explicit justification: every move, except the first one, has a pointer to a preceding
move,
o (w4) Well-bracketing: The pending question is answered first;

(wbh) Visibility: s satisfies P-visibility and O-visibility.
Also, further assumptions are made on the legal positions of the game A — B:
e (w6) For every occurrence n in the position, n € A <= n ¢ B;

e (w7) Switching condition: The Proponent is the only player who can switch from game A
to B or from B to A.

e (w8) Justification in A — B: Suppose m justifies n in s. Then

— n € B implies m € B;
— if n is a non-initial move in A the n € A;

— if n is an initial move in A the n € B.

Most of these requirements coincide with properties that we have already shown for traversals.
However traversals do not strictly satisfy explicit justification since there are some nodes—the
@-nodes and Y-nodes—that do not have justification pointers. The solution to this problem is
simple: we just add justification pointers to @-nodes and X-nodes!

Take a justified sequence of nodes t. We define ext(t), the extension of t, to be the sequence
of nodes-with-pointers obtained from ¢ - ¢ (where ¢ is a dummy node) by adding justification
pointers going from occurrences of the root ®, @-nodes and Y-nodes to their immediate prede-
cessor in t.

Example 4.1.10. Let f € ¥. We have ext(\¢ - @/\)\m) = /S\E\@/\)\m

It is an immediate fact that for every two justified sequences t1 and to we have:
ext(t1) C ext(te) <= t1 Cto (4.2)
and for every justified sequence t:
ext(t) [[ro =ext(t [7o) - (4.3)

Since a traversal extension ext(t¢) may contain @/Y-nodes with pointers, it is not a proper
justified sequence of nodes as defined in Def. 4.1.6. Nevertheless, the basic transformations that
we have defined for justified sequences—such as hereditary projection, P-view and O-view—
apply naturally to traversal extensions (without any modification in their definition). The views
of a traversal extension can be expressed in term of the traversal’s views as follows:

Lext(t) = Lt (4.4)

ift=c¢;

€
r -)
ext(t) {o-ext(’_t—'), otherwise. (45)

The transformations "' and L_., however, do not convey the appropriate notion of view
for extended traversals. We define an alternative notion of view more appropriate to traversal
extensions, called O-e-view and P-e-view, as follows:

Chapter 4. A Concrete Presentation of Game Semantics 113

Definition 4.1.19. The O-e-view of a traversal extension ext(t), written, Lext(t)_e is defined as
Lext(t)ae = Text ()7 .

The P-e-view of ext(t), written, Lext(t)_e is defined by induction:

,_E—Ie — €
"u-n™® = Tu"*.n for n € Lyyy U Ly U Lg U Ny,
Tu-m-...-n® = Tu®.ni-n forn € Ny, U Ly U Ng U Nx.

Inserting a dummy node ¢ at the beginning of the traversal changes the parity of the alter-
nation between nodes in Ny, U Ly U Ng U Ny, and Ny U Ly U Ly, U Lg. Thus the role of O and
P is interchanged for traversal extensions. This explains why the O-e-view is calculated from
the P-view.

For the P-e-view, the definition is almost the same as the traversal O-view L_J except that
the computation does not stop when reaching a node in Ng U Ny—this is sometimes referred as
the long O-view |]. (The O-view contains only one thread whereas the long-O-view may
contain several; the O-view is a suffix of the long O-view.) This is possible because occurrences
of nodes from Ng U Ny, in a traversal extension all have a justification pointer. The O-view of
t is a suffix of its P-e-view:

Mt =w- vty for some sequence w. (4.6)

We are now fully equipped to establish an analogy between the traversal extension setting
and the game-semantic setting. The reason why we make this analogy is purely to reuse the
proof of Proposition 4.1.3 | , Prop. 4.3]. The reader must not confuse it with another
correspondence that we will establish in a forthcoming section, between plays of game semantics
and traversals of the computation tree. (In particular the colouring of nodes used here in term of
P-move/O-move is the opposite of the one used in the Correspondence Theorem.) The following
analogy is made:

Traversal setting | Game-semantic setting

Extended traversal ext(t) | Play s
Nodes in n € Nyar U Ly U Ng U Ny U {o} | O-moves e
Nodes in n € Ny U Ly U Ly U Lg | P-moves o
P-view Text(t)™ | P-view Ms™
O-view Lext(t)ie | O-view Ls.
Occurrence n appearing in t || ro | Occurrence n € B
Occurrence n not appearing in ¢ [[g | Occurrence n € A
No notion of initiality (All nodes | Distinction between initial and non-
are considered to be non-initial). | initial move.

Clearly sequences of the form ext(t) satisfy the requirements (wl) to (w5): For (wl), the
initial node becomes ¢. Explicit justification (w4) holds since we have added pointers to @/3-
nodes. Finally, alternation (w3), well-bracketing (w4) and visibility (wb) of the traversal ¢
(Prop. 4.1.1) are preserved by the extension operation (where visibility is defined with respect
to the appropriate notion of P-view and O-view).

The property (w6) trivially holds: n € ¢t || ro iff =(n &€ ¢ || r9). So does the switching
condition (w7): if t =...-m-n where n € Ny U Ly U Ng U Ny, and m € Ny U Lya U Ly U Lag
then, by definition of ¢ || ro, m appears in t || ro if and only if n does. For (w8): Using the
analogy of the preceding table and since all nodes are considered “non-initial” in ext(t), this
condition can be stated as:

(w8) Suppose m justifies n in ext(t). Then n € ¢ || ro if and only if m € ¢ || rp.

114 Chapter 4. A Concrete Presentation of Game Semantics

Unfortunately, as we have seen previously, the direct implication does not hold in general!
(Indeed, a variable node can very well appear in t [[ro even though its justifier does not.)
Consequently, the proof of Proposition 4.1.3 cannot be directly reused in our setting. A weaker
version of condition (w8) holds however: if 7y occurs before n’s justifier then, by Lemma 4.1.11(i),
n appears in t || rg if and only if its justifier does; this condition turns out to be sufficient to
reuse most of the proof of Proposition 4.1.3 |]

We reproduce here some definition used in this proof. Let s be a position of the game A — B.
TN

A bounded segment is a segment @ of s of the form ©... e Ifzisin A, and hence so does y, then
f is an A-bounded segment. Respectively if x and y are in B then it is a B-bounded segment.
By an abuse of notation we define "0 | B to be the subsequence of "s¢, | B consisting only
of moves in € appearing after (and not including) x.

We then have:

Lemma 4.1.15. | , Lemma A.3] Let 0 be an A-bounded segment in s with end-moves x
and y.
(i) "6 | B = % % for some r > 0. Note that each segment p;...q; is B-bounded in

s, for1 <i<r.

1) For every P-move m in 0 which appears in LS<,a, m does not belong to any of the B-
y
bounded segments p;...q; for 1 <i <r.

This lemma assumes that the segment 6 satisfies the assumptions (wl) to (w8). As we have
seen, (w8) does not always hold for extended traversals. But using our analogy with extended
traversals, a segment 0 is “A-bounded” if 8 is bounded by two nodes appearing in ¢ || r9. This
can only happen if 7y occurs before 6 in ¢ or if §’s left bound is rg. Thus the condition (w8&)
holds at least for the nodes of the segment 6. The previous lemma thus translates into:

Lemma 4.1.16. Let t be a traversal and 6 be a segment of ext(t) bounded by nodes x and y
appearing in t || rq.

(1)) "0 I 707 = pr-Gr...p1-q1 for some r > 0 where p; € N\ U Lyay U Ly U La and q; €
Nyar ULyUNgU Ny, for1 <i<r.

(it) For every node m in Ny U Lyar U Ly, U La occurring in 6 and appearing in Lext(t)<yie, m
does not belong to any of the segments p;...q; for 1 <i <r.

We now show the analogue of Proposition 4.1.3 in the context of extended traversals:

Proposition 4.1.4. Let t be a traversal and ro be an occurrence of some lambda node rv'. If
ext(t)’s last node appears in t | ro then Text(t)™ [ro C "ext(t] ro)™®.

Proof. By (4.3) we can equivalently show that: "ext(t)™ || o C "ext(¢) || 7o . By induction on
the length of . The base case is immediate. For the inductive case, we do a case analysis:

o t =1t"-ry. We have ext(t) || ro = ro and "ext(t)™ || ro = ro = "ext(t) || ro .
o t=t-nwithn € Ny U Ly, U Ly U Lg where n is not the occurrence 7g.

There are two cases.

— Suppose that the last node in ¢’ appearsin ¢ || rg. Then by the I.H. we have "ext(t')™ |
I'ro C Text(t') || 7o thus

Cext(t)™ | ro = "ext(t)™ Il ro - n (P-view for extefmdefl1 jus‘gfil}i\;c)l
sequences of nodes o

Crext(t) 1o n (induction hypothesis)

Chapter 4. A Concrete Presentation of Game Semantics 115

="ext(t) | ro-n"® (P-view for extended justified sequences
of nodes of M), n belongs to V") by

Lemma 4.1.12)
=Text(t'-n) [ro™® (n occurs in ¢ [[ro)

(definition of t).

— Suppose that the last node y; in ¢’ does not appear in t || 7¢. Let m be the last node

preceding m in Text(¢)™® that appears in ¢ || 79. Then for some ¢ > 0 we have

Text(t)™ ="ext(t)<m € TgYg --- T1-Y1

all appearint [[rg-m

where the z;s are in Ny U Lyar U Ly U Lg and the y;s are in Ny U Ny U Ng U L.
Therefore the sequence ext(t) must be of the following form:

———
0q 01

ext(t)gm-an_yq S XYM
———

where each segment 6; is bounded by nodes appearing in ¢ || ro. By Lemma 4.1.16,
when computing the P-view of ext(t), pointers going from a segment 6 to a node
outside the segment are never followed! In other words:

Text(t) [[707 = "ext(t)<m T ro ™ "0y [T -+ -TO [Trg™®-m .

Hence
Pext(t)™ [T ro = "ext(t)<m © N 1o -1
C "ext(t)gm 10 1 (LH.)
C Text(t)<m Tro™ "0 Mro ™ "0 1m0 - m
= Text(t) || ro (by the previous equation).

o t=1t-mi-u-n where n € Nyay U N5y U Ng U Ly. We have m € Ny U Lyay U Ly, U La.

Suppose that ro appears in ¢’ - m, then since n appears in ¢ || 79, by Lemma 4.1.11(i) so
does m. Thus we can apply the LH. on ¢’ - m

Cext(t)™ Il ro =

Cext(t') -mi-w-nS, I ro

(definition of ¢

= (Text(t') - mi™®) II 7o

= Text(t’ - m“m

C T(ext(t'-m)) NTro™® n

(P-eview computation in M

)

)

(n appears in ¢ || ()
(induction hypothesis on ¢’ - m)
r0)

= Text(t) || ro - men (m appears in t ||

= Text(t') || ro - m - (ext(u) || ro) -0 (P-eview in M), nodes in
m - (ext(u) || 79) - n are all in V))
(m and n both appear in ¢ [7¢)

(definition of t).

— "(ext(t') - mi - ext(w) 1) I o™
= Cext(t) [7o ™

Suppose that rg appears in u then:

I 7ro = "ext(t m

=n (ro occurs after m)

C (ext(t - “r—\

=Text(t) [o . O

Cext(t) ™

116 Chapter 4. A Concrete Presentation of Game Semantics

We can now prove Proposition 4.1.2:

Proof of Proposition 4.1.2. We have:

Lt [ro = cext(t) [I ro by (4.4)
C Text(t)™ I o by (4.6)
C Text(t [r9)™® by Proposition 4.1.4
=w-vLext(t || r9)a for some w, by (4.6)
=w-t [7o by (4.4).

Thus cty] ro C w- Lt || roa. But by definition of the operator _ [I, both ¢4 || 7o and Lt || 7o
start with the occurrence rg, we thus have LtJ | rg C ot [rou.]

Example 4.1.11. Take ¢ : 2,e : 0 = p(Az.(Ap.o(A2'.(Ay.pp(Az.2)) (e(Az".2")))) (Au.ue)). The
computation tree is represented below together with an example of traversal ¢:

|
7
Az g P o
\@ =A@ Az QAN g A’ Q Ay Auw Az 2z A
Ny N 7=
W/ \Au o=@ Ap) Au U Az 2 A
‘ TN N
f ¥ o lTro =AY Az %
o o = M ¥ @y A
@ e P
/N T ros =AY Y Az 2.
i
o
|
)\Z A:‘U/I
Lo

Example 4.1.12. Take the term-in-context:
e:ok (Afg.fOAb.f(NV .b)(\d'.d’e))(Aa.ae))(Axy.y(\h.z(he))e)e .

Take the traversal:

t=X@ Nfqg f ey raa Mo f aay Y ad o N N b AR

then we have the following relations:

A
@
e o
A{g A:‘sy ? =@ Mg f Ary Yy Aaa M h
f y 2 ——
x 0\ Ah/ \A Lt ro=Ag f Aaa
a
\ | | | B m
f C‘L T e tlfro=Afg fAaa b fadd A'b
/N
N
AV A ? A M ros=Afg fFAaaNbb.
A
b
e e

Chapter 4. A Concrete Presentation of Game Semantics 117

4.1.3.8 Subterm projections are sub-traversals

We now show an important result that relies on all the lemmas and propositions from the
previous two sections:

Proposition 4.1.5 (Subterm projections are sub-traversals). Let ¢ € Trav(M). For every
occurrence ro in t of some lambda node r' € N we have t || rg € Trav(M(r/)).

Proof. We proceed by induction on the traversal rules. The base cases (Empty) and (Root) are
trivial. Step case: Take a traversal ¢t € Trav(M) and suppose that the result holds for every
traversal shorter than .

Suppose that t“ does not appear in t [[g then the result follows by applying the induction
hypothesis on the immediate prefix of {. Suppose that t* appears in ¢ [[7o then we do a case
analysis on the last traversal rule used to form ¢:

e (Lam) We have t = ¢/ - n with ¢ = ... - A{. By the induction hypothesis, ¢’ [| ry €
Trav(M)).

Since n is a variable node appearing in ¢ [[rg, by definition of ¢ || rg its immediate predecessor
AE must occur in ¢ || ro and therefore must be the last occurrence in ¢’ || ro. Thus we can use
the rule (Lam) in 7(M ")) to produce the traversal u = (¢’ || ro) - n of M),

We have t || 7o = (t' || 7o) - n, but in order to state that u =t || 7o it remains to prove that n
has the same link in ¢ || 79 and in u.

Suppose n € Ng U Ny, then n has no justifier in both u and ¢ || rg. Otherwise n € Ny,. Let
m,, denote the occurrence in ¢ of n’s justifier in u, m; for the occurrence in ¢ of n’s justifier in ¢,
and m for the occurrence in ¢ of n’s justifier in ¢ || 9. We want to show that m, = m. By the
rule (Var), m, is defined as the only occurrence of n’s enabler in "¢’ || 79" and m; is the only
occurrence of n’s enabler in /7.

If ro occurs before my then by Lemma 4.1.11(ii), m; appears in ¢ [[79 thus by definition of _ [
we have m = m;. Moreover, since m; appears in t [[rg, it must appear after o by Lemma
4.1.11(i.a), thus since it is in the P-view at ¢/, it must be in "¢7'5,, which is equal to "t || ¢ by
Lemma 4.1.11(i.b). Hence we necessarily have m,, = m; (since r’ occurs only once in the P-view
o).

If g occurs after m; then m; does not appear in t [79 thus m = rg by definition of _ .
Moreover by Lemma 4.1.11(i), n’s binder occurs in the path from r’ to the root ®. Thus n
is a free variable in 7(M (7"/)) and consequently the only enabler of n occurring in "t' || ro™ is
necessarily rg: m, = rg.

This proves the equality ¢ || 7o = u and thus ¢ || ro is a valid traversal of M.

e (App)t=...-A¢-@-n. Since n appears in ¢ || ro, so does @ (by definition of ¢ || 7). Hence
@ is the last occurrence in ¢’ || ro. By the induction hypothesis, ¢’ || r is a traversal of (M (r/))
therefore we can use the rule (App) in 7(M (”/)) to produce the traversal (¢ || 7o) -n =t || ro of
M, v

o (Value®=*) Take t =t/ - A - @/..\.v@ “Vyg-

The occurrence Vy¢ appears t Il 7o therefore since ry is not a lambda node, its justifier A\é also

appears in t || 79. Moreover since @ and v are hereditarily justified by A, they must also
appear in t [ro.

By the induction hypothesis ¢’ [rg is a traversal of (M (7"/)) therefore since the occurrence A,
Q, va, U\ all appear in ¢ || rg we can use the rule (Value@H)‘) in M) to form the traversal

(' Tro)-n=t|ro of M), }

o (ValueM@) Take t =t'-@-)\mﬁ -va. Again, since vq appears in t [[rg, necessarily
the occurrences @, Az, vyz and vq must all appear in ¢ || 9. Hence using the induction hypothesis
and the rule (Value®®) in M) we obtain that t || ro is a traversal of M),

v

o (Value") Take t =t/ - \E - 2 0y Uyg Since Uyg is in t || ro, so must be z, v, and A,
by definition of ¢ || o. Hence we can use the L.H. to form the traversal ¢ || 7o of M.

118 Chapter 4. A Concrete Presentation of Game Semantics

e (InputValue) Take t = t; - x@w for some v € D where z is the pending node in ¢1 - x - to
and z € N\S’g'r_ Since v, appears in t [[79, so does x hence by Lemma 4.1.10, z is also the
pending node in (¢; - z - t2) || 79. Furthermore since M (') is a subterm of M , « is necessarily an
input-variable node in 7(M")). Hence we can conclude using the I.H. and the rule (InputValue).

e (InputVar) Take t = ¢’ - n where n € N) points to an occurrence of its parent node
y € N& in L t,. By Lemma 4.1.9(a), y must also appear in t || rg, therefore y also occurs in

Lt [roa E Lta] ro. Hence we can conclude using the rule (InputVar) in M,

o (Var) Take t =1t - p™ AT ...&; - ATf; for some variable z; in NEE. If A7; is the occurrence 7
then the traversal t || rg = rog can be formed using the rule (Root).
Suppose that A7; is not the occurrence rg. Then both A7; and its justifier p must appear in
t I ro. The nodes AT and z;, however, do not necessarily appear in t [rg.
Consider the node @ that initiates the thread of A\w;.

— Suppose that ry precedes @ in ¢ then by Lemma 4.1.14(i), the nodes A\7j;, p, AT and z; as
well as @ all appear in ¢ [[rg. Moreover since @ appear in t [rg, it must be an occurrence
of an application node that appear in the subtree rooted at ' thus @ € N\f;'r" Hence we
can use the use the rule (Var) in M) to form the traversal ¢ | 7o of M),

— Suppose that @ precedes r¢ in ¢ then by Lemma 4.1.14(ii), p is necessarily an input variable
node in T(M(r/)). We have p € Lt1 [rg C Lt || rga by Proposition 4.1.2. Furthermore we
can easily check (by alternation and using the fact that if an occurrence in Ny U Lya U LqU
Ly UNgU Ny, appears in t [[r then so does its immediate successor) that the penultimate
node in ¢ || 7o is necessarily in Ny, U L. Hence we can make use of the rule (InputVar) in
M) (in its alternative form) to produce the traversal ¢ || rg of M),

TN

o (ValueMva) Take t = t' -4/~ AE. .. Vg Uy for some variable y in N2F. The proof is similar

var *
to the previous case using the rule (InputValue) instead of (InputVar) in the second subcase.

e (X)/(X-var) The proof is similar to the case (App) and (Var).
e (X-Value) The proof is similar to the case (ValueM—Va"). O

The following Lemma will be useful to prove the Correspondence Theorem:

Lemma 4.1.17. Let t be a traversal and ro be an occurrence of a lambda node rv'. We have
(¢ Tro)* =t TV g

Proof. By the previous Lemma, t || rq is indeed a traversal (of 7(M (")) thus the expression
“(t II ro)*” is well-defined. We show the result by induction on ¢: It is true for the empty
traversal. Take t =t' - n.

If n belongs to Vo U Vs then

n, if n appearsin ¢t [[ng;
€, otherwise.

((t"-n) T no)* = (' Il no)* - {

, , . . . o (r").
and((t/-n)*[V(r))[noz(t'*[V(r))[no-{n’ if n is her. just. by ng in t* [V\");

€, otherwise.

Since t“ € Vg U Vy, by Lemma 4.1.13 we have that n is hereditarily justified by ng in t* | V()
if and only if n appears in ¢ || ng. Hence we can conclude using the I.H. on ¢'.
If n does not belong to Vg U Vx then

((t"-n) Il no)* = (t' Il no)*
GERERIED by the LH. on ¢/
(& n)* 1 VI) [ng O

Consequently, by Lemma 4.1.7, if t“ & Vo U Vx then t [[rg = (t* [ro) + X + Q.

Chapter 4. A Concrete Presentation of Game Semantics 119

4.1.3.9 O-view and P-view projection with respect to root

Lemma 4.1.18 (O-view projection with respect to the root). Let t be a non-empty traversal of
M and r denote the only occurrence of T(M)’s root in t. If t appears in t | r then:

Lt [ro=cta [r=1ty .

Proof. It follows immediately from the fact that, by Lemma 4.1.6, all the occurrences in (t.
belong to the same thread and therefore are all hereditarily justified by r. O

Lemma 4.1.19 (P-view projection with respect to the root). Let t be a non-empty traversal of
M and r denote the only occurrence of T(M)’s root in t. If t appears in t | r then:

T

Proof. We just sketch the proof. We proceed exactly in the same way as for the proof of
Proposition 4.1.2. Again we establish an analogy between traversals and plays of game semantics:

Traversal setting | Game-semantic setting

Traversal t | Play s
Nodes in n € Ny U Lyyy U Ly U Lg | O-moves o
Nodes in n € Nyay U Ly U Ng U Ny U {¢} | P-moves o
P-view "t | P-view Ms™
O-view Lt | O-view Ls_
Occurrence n her. just. by r in ¢ | Occurrence n € B
Occurrence n not her. just. by » in ¢t | Occurrence n € A
No notion of initiality (all nodes | Distinction between initial and non-

are considered to be non-initial). | initial move.

Clearly the conditions (w1) to (w8) hold. Hence we can reuse Proposition 4.3 form | | which
gives the desired result. O

The previous result gives us only an inequality. In the particular case where interpreted
constants are well-behaved, however, and if we consider the subsequence of a traversal consisting
of unanswered nodes only, then we obtain an equality:

Lemma 4.1.20. Suppose that M is in B-normal form and all the 3-constants are well-behaved.
Let t be a non-empty traversal of M and r denote the only occurrence in t of T(M)’s root.

(a) If t’s last occurrence is not a leaf then "t [r="T72(t) [r7="2@ [7)) =2("t [r7);
(b) If t’s last occurrence is not a leaf and is hereditarily justified by r then "t [r ="t | r™.

Proof. (a) It is easy to show that 7(¢) | » = 7(¢ | r). This implies the second equality. The third
equality can be shown by an easy induction and by observing that in a traversal core, variable
occurrences are always immediately preceded by a lambda node (and not by a leaf). We show
the first equality by induction. The base case ¢t = € is trivial. Consider a traversal ¢ and suppose
that the property is satisfied for all traversals shorter than ¢. Observe that since ¢ contains at
most a single occurrence r of the root ®, an occurrence n in ¢ is hereditarily justified by r if and
only if the corresponding node in 7(M) is hereditarily enabled by ®. Thus ¢t [r =t | N®". We
do a case analysis on t’s last node:

e ¥ € Ng. This case does not happen since M is S-normal.

o t =t -n with n € Nyoy U Ny, then t'“ is not a leaf (otherwise n would also be a leaf by
rule (Value)) thus we can use the I.H. on ¢’ which, by an easy calculation, gives the desired
equality.

120 Chapter 4. A Concrete Presentation of Game Semantics

Suppose that t“ is a lambda node. There are three subcases:

o t¥ ¢ Ni@'_. Since the term is in S-normal form, there is no @-node in 7(M) so the rules
(App) and (Var) are unused, hence this case does not happen.

o t¥Y e N)]\VZF. We have t = ¢/ - n - w - with n € N)]\VZF and m € Nys U Nx;. The occurrence
n is necessarily visited with a (X)-rule. Since, by assumption, these rules are well-behaved
we have ?(u) = e. Hence:

O r="tmi-u-nl (def. of t)
=(t'"m-n)r (P-view computation)
=ty (m,n ¢ N®)
=2 |7 (induction hypothesis)
=2t -ni-m) [r? (m,n ¢ N®)
=2 i) | (2w) =)
="2(t) [T (since u = ¢).

o (“€e N fy. If t = r then the result holds trivially. Otherwise t = t’- m - u - n for some
neN)(\»al—. An easy calculation using the induction hypothesis on ' - m shows the desired
equality.

(b) If ¢’s last occurrence is hereditarily justified by r then the last occurrence of ¢ | r
is precisely the last occurrence of ¢ and is therefore not a leaf. In a traversal core, variable
nodes are immediately preceded by lambda nodes thus since the last node in ¢ [r is not
a leaf, an easy induction shows that all the nodes in "t | r7 are not leaves. Consequently

2t L) ="t O

The hypothesis that the term is beta-normal is crucial in this Lemma. Take for instance the
term Az® f(%°) (\y°.f y)z. A possible traversal is

=

t=Xef - Q- Ay-f-A-y-A-x .

But "t [r = Az f - x is only a strict subsequence of "t [r7 = Axf - f- - x.

4.2 Game semantics correspondence

We work in the general setting of an applied simply-typed lambda calculus with a given set
of higher-order constants . The operational semantics of these constants is given by certain
reduction rules. We assume that a fully abstract model of the calculus is provided by means
of a category of well-bracketed games. For instance, if 3 consists of the PCF constants then
we work in the category of games and innocent well-bracketed strategies | ,]. A
strategy is commonly defined in the literature as a set of plays closed by even-length prefixing.
For our purpose, however, it is more convenient to represent strategies using prefiz-closed set
of plays. This will spare us some considerations on the parity of traversal length when showing
the correspondence between traversals and game semantics. For the rest of the section we fix
a simply-typed term I' = M : T. We write [I'+ M : T] for its strategy denotation (in the
standard cartesian closed category of games and innocent strategies [,). We use
the notation Pref(S) to denote the prefix-closure of the set S.

Chapter 4. A Concrete Presentation of Game Semantics 121

4.2.1 Revealed game semantics

In standard game semantics, terms are denoted by strategies that are computed inductively on
the structure of the term: calculating the denotation of a term boils down to performing the
composition of strategies denoting some of its subterms. Strategy composition is the CSP-like
“composition + hiding” operation where all the internal moves are hidden.

It is possible to use an alternative notion of composition where the internal moves are not
hidden. Game model based on such notion of composition have appeared in the literature
under the name revealed semantics | | and interaction semantics [|. In such game
models, the denotation is computed inductively on the syntax of the term as in the standard
game semantics, but certain internal moves may be uncovered after composition. There is not
just one revealed semantics as one may desire to hide/uncover different internal moves. Such
semantics will help to establish a correspondence between the game semantics of a term and the
traversals of its computation tree.

This section presents a general setting in which revealed semantics can be defined. At the
end of the section we will provide an example of such an revealed semantics that is calculated
inductively on the syntax of the n-long normal form of the term.

4.2.1.1 Revealed strategies

Definition 4.2.1. We consider ordered trees whose leaves are labelled with PCF simple types
and inner nodes are labelled with symbols in {;, (- ,.), A} where ;> and ‘(- ,_)" are of arity 2
and ‘A’ is of arity one. We write (T7,7T5) for the tree obtained by attaching 77 and T to a
(-, -)-node, and similarly we use the notations 77; T and A(T}).

The set of interaction type trees, or just interaction types, is defined inductively as
follows:

e Leaf: If T is a leaf annotated by a type A then T is an interaction type, and we define
type(T') to be A;

e Currying: If T is an interaction type with type(T) = A x B — C then A(T) is also an
interaction type and type(A(T)) = A — (B — C);

e Pairing: If T) and Ty are interaction types with type(Ty) = C — A and type(T;) = C —
B then (T7,T») is also an interaction type and type({11,12)) = C — A x B (Pairing
generalizes straightforwardly to a p-tuple operator (¥1,...,%,) for p > 2, in which case
the tree has p child subtrees.);

e Composition: If T and T5 are interaction types with type(T1) = A — B and type(Ts) =
B — C then Ti; T is also an interaction type and type(Ty;T2) = A — C.

We call type(T') the underlying type (or just type) of the interaction type T. We sometimes
write T4 to indicate that type(T) = A.

Let T be an interaction type tree. Each node of type A in T' can be mapped to the (standard)
game [A]. By taking the image of T" across this mapping we obtain a tree whose leaves and nodes
are labelled by games. This tree, written (7)), is called an interaction game. A revealed
strategy Y on the interaction game (7)) is a compositions of several standard strategies in
which certain internal moves are not hidden. Formally:

Definition 4.2.2. A revealed strategy Y. on an interaction game (1), written X : ("), is an
annotated interaction type tree T where

e cach leaf [A] of T is annotated with a (standard) strategy o on the game [A];

e each ;-node is annotated with two sets of indices S, P C N called respectively the superficial
and profound uncovering indices.

122 Chapter 4. A Concrete Presentation of Game Semantics

The intuition behind this definition is that if a ;-node has children ¥; : (A — B)) and
Y9 @ (B — C)) then the two sets of indices S, P indicate which components of B should be
uncovered when performing composition. The set .S indicates which superficial internal moves
(i.e., those that are created by the top-level composition between 1 and ¥9) to uncover; whereas
the set P indicates the profound internal moves (i.e., those that are already present in the
revealed strategies ¥; and 39) to uncover. This notion of uncovering is made concrete in the
next paragraph where we define revealed strategies by means of uncovered positions.

Example 4.2.1. The diagrams below represent an interaction type tree T' (left), the corre-
sponding interaction game (7)) (middle) and a revealed strategy ¥ (right):

: : {0},{0}
\ /N
/;<>HD /;<[[C—>D]] 040 (C — D)7
VRN
A—-B B-C [A— B] [B—C] (A— B)7 (B — ()

For convenience, a revealed strategy will be written as an expression in infix form: for
instance the strategy of the example above is written > = (01;@7{0} 02);{0}7{0} 03.

A revealed strategy induces a strategy in the usual sense: the standard strategy o : A
induced by a reveled strategy ¥ : T is obtained by replacing each occurrence of the operator
“9P for some S, P by ‘;M’ (also abbreviated ;) in the expression of 3. For instance the strategy

Y from the example above induces the strategy (o1;09);03: A — D.

4.2.1.2 Uncovered play

The analogue of a play in the revealed semantics is called an uncovered play or uncovered position;
it is a play whose moves are interleaved with internal moves. Each move in such a play may
belong to multiple games from different nodes of the interaction game; they are thus implicitly
tagged so that one can retrieve the components of the node-games to which the move belongs.

Definition 4.2.3. The set of possible moves My of an interaction game (7)) is defined as
M /~7, the quotient of the set My by the equivalence relation ~7C Mg x Mrp defined as
follows: For a single leaf tree 1" labelled by a type A we define M7y = M4 and ~7= idyy,; for
other cases:

MA(TAXBHC) =My + Ms_.p_c
~A(TAXB—C) = (~rU((AXB—C)— (A= (B—0))))~

Mirer—ar per—p2y = My + Mz, + Meaxs)
N<T101ﬁA17T202ﬁB2> = (NT1 U ~r, U(Cl — C) @] (02 — C) U (Al — A) U (32 — B))

MT{XHB;T2B~>C — MTl + MT2 + MA*)C
~palopl ppeoc2 = (~1y U~ UAY 5 A)U (B! « B U (C « C?))

where A < B denotes the canonical bijection between M4 and Mp for two isomorphic games
A and B; and R~ denotes the smallest equivalence relation containing R.

It is easy to check that for every sub-type tree T” of T, the equivalence classes of My are
subsets of equivalence classes of Mp. Thus My can be viewed as a subset of Myp.

We call internal move of the game ((T')), any ~-class from Mp that does not contain any
move from Myy,.(r). We denote the set of all internal moves by Mr}”t. The complement of Mr}"t

Chapter 4. A Concrete Presentation of Game Semantics 123

in My, called the set of external moves, is denoted by M$*. For every subgame A occurring
in some node of the interaction game 7', we write My (resp. M) for the subset of moves of

int ext f ot L :
MP*® (resp. M$*) consisting of ~-classes containing some move in M4.

A justified interaction sequence of moves on the interaction game (7)) is a sequence of
moves from My together with pointers where each move in the sequence except the first one has
a link attached to it pointing to some preceding move in the sequence. We write Jr to denote
the set of justified interaction sequences over (T)).

Definition 4.2.4 (Projection). Let s € Jp for some interaction game T'. We define the following
projection operations:

(a) Let M’ be a subset of Mp. The projection s [M’ is defined as the subsequence of s consisting
of ~-equivalence classes from M’;

(b) Let A be a sub-game of [type(T)]. We define the projection operator s | A to be the
subsequence of s consisting of the ~-classes that contain some move in M4. Formally
s AL s {[m] |m € M4} where [m] denotes the ~-equivalence class of m.

(c) Let m be a [type(T)]-initial move occurring in s. We define s [m as the subsequence of s
consisting of moves that are hereditarily justified by that occurrence of m in s [[type(T)].

(d) Let T" be an immediate subtree of T. The projection s [7" is defined as follows:

(i) the sequence s | T” viewed as a sequence of moves without pointers is defined as s | My
(i.e., the subsequence of s consisting of the ~-equivalence classes that contain some
equivalence class of Mp; see (a));

(ii) the justification pointers of s [7" are those of s except that if an element m loses its
pointer (i.e., if its justifier does not appear in s [T”) then its justifier is redefined as
the only occurrence of an initial [type(T”)]-move in "s | Mpr | [type(T")]" (¢f. (a) and

(b))-

(e) Let T' be a non-immediate subtree of T. We define the projection s [T as (... (s | T%) |
o TR Y TR where TO, ..., T* is the uniquely defined sequence of subtrees of T satisfying
T =T° T' = T* and such that for every 1 <[< k, T" is an immediate subtree of 7?1

(f) Let T' be some subtree of T and A be a sub-game of [type(T’)]. Then we write s [A for
s|T' T A.

By extension, we also define these operations on sets of justified interaction sequences.

We now characterize revealed strategies by means of sets of justified sequences of moves called
uncovered positions or uncovered plays. This set is calculated by a bottom-up computation on
the strategy tree. At each ;-node, we apply the composition operation of game semantics. In
accordance with standard game semantics, justification pointers are adjusted when composing
two interaction strategies ¥ : TZAHB and ¥, : TB~C: if an initial A-move a is justified by an
initial B-move itself justified by an initial C-move ¢ then a’s justifier is set to ¢ (see definition
of the projection _ | A,C [). This guarantees that for every interaction position u of
3 %, the subsequence consisting of moves in A and C only—filtering out B-moves as well
as the internal moves coming from compositions taking place at deeper level in the revealed
semantics—is a valid position of the standard strategy underlying ¥;; ... In contrast with the
standard game semantics, however, not all internal moves are hidden during composition.

Definition 4.2.5. A revealed strategy ¥ (defined by means of an annotated type tree) is char-
acterized by its set of uncovered positions defined inductively as follows:

- Leaf labelled with type A and annotated by the strategy o: The set of positions of the revealed
strategy is precisely the set of positions of the standard strategy o.

124 Chapter 4. A Concrete Presentation of Game Semantics

- Currying: Let X : (T').
AX) ={u e Jyr) | p(u) € 5},

where p denotes the canonical bijection from My) to Mry.
- Pairing: Let Xy : (T1)) and g : (Tb)).

<21,22> = {u€J<T1,T2>\ (u[TleEl/\ u[nge)
V (u[lee/\u[TQEEQ)}.

- Uncovered composition: Let ¥y : (T1)) and X9 : (To)) where type(T1) = A — By X ... X By
and type(Ty) = By X ... x By — C.

21”22 = {u S JTl;Tg ‘ u [Ty € Yo
A for all occurrence b in w of an initial [type(T})]-
move, u [T1 [b € ¥q
A for every initial A-move a justified in w | 71 by
b € By, itself justified by ¢ € C' in u | T, we have
that m is justified by ¢ in w. }

- Partially covered composition: Let X1 : (1)) and Xg : (T2)) where type(T1) = A — By X ... X
By and type(T3) = By X ... x By — C.
2y 5P 8y = {hide(u, {013\ S, {0.1}\ P) | u € 5[|E2}
where hide(u S, P) =u | (Mr\ H(S P))
U exth x s, U U |ntB U Il'r‘;t,B

Jje
superﬁ01al Bj-moves profound Bj-moves

Observe that in particular ¥ ||¥y = £q;10-th{0-1 535,

In words, the uncovered composition of 31| Xo is the set of uncovered plays obtained by
performing the usual composition of the standard strategies underlying »; and Y5 while pre-
serving the internal moves already in ¥ and Y9 as well as the internal movea produced by the
composition.

On the other hand, given a product game B = By X...Xx By, the partially covered composition
¥1;5F ¥y keeps only the superficial internal moves from the component By, for k € S as well as
the profound internal moves from the component By for k € P.

As expected, this notion of set of uncovered positions is coherent with the usual notion of
positions of a standard strategy:

Lemma 4.2.1. Let ¥ : T be a revealed strategy inducing the standard strategy o : [type(T)].
Then for allu € ¥, u | [type(T)] € o.

Proof. The proof is by induction on the structure of ¥. It follows from the fact that the
operations on revealed strategies from Def. 4.2.5 are defined identically to their counterparts in
the standard game semantics. U

4.2.1.3 Fully-revealed and syntactically-revealed semantics

We call revealed semantics any game model of a language in which a term is denoted by some
revealed strategy as defined in the previous section. As we have already observed, depending
on the internal moves that we wish to hide, we obtain different possible revealed strategies for
a given term. Thus there is not a unique way to define a revealed semantics. In this section we
give two examples of such semantics.

Let 7; denote the i*" projection strategy m; : [X1 x ... x X;] — [Xi].

Chapter 4. A Concrete Presentation of Game Semantics 125

Definition 4.2.6 (The fully-revealed semantics). The fully-revealed game denotation of M
written (I' F M : A)) is defined by structural induction on the n-long normal form of M:

(TFa:0) = ['Fa:o] whereaeT UX,
(CHXEM:A) = ASI((T,€F M : o)
(TFaiNy...Np:o) = (m, (TFNy:A),....(TFNy:Ap))ller?, X; = A
(CFEfN1...Np:o) = ((CENp:AD),...,(CEN, A0 | [f], f:A0eX
(TENy...Np:0) = ((TFNo:Ag),....,(TFNp: AN || er®

where I' =21 : X1 ...27: X, Ag = (A1,..., Ap,0) and ev” denotes the evaluation strategy with
p parameters where p > 1.

Fig. 4.1 shows tree representations of the interaction games involved in the revealed strategy
(T'E M : A)) for the two application cases. These trees give us information about the constituent
strategies involved in ((M)). For instance the revealed strategy (Vo)) is defined on the interaction
game ((T%)) whose root game is A — By, and the strategy ev is defined on the interaction game
(T1) whose underlying tree is constituted of a single game-node By x ... x B, — o.

Example 4.2.2. Take the term \z.(Af.fz)(Ay.y). Its fully-revealed denotation is
Az : X EAf.fr:(0—0) = o], [r: X F Ayy:o— o])|ev?) .

Note that the set of fully-revealed strategies does not give rise to a category because strategy
composition is not associative and there is no identity interaction strategy.

Definition 4.2.7 (Syntactically-revealed semantics). The syntactically-revealed game de-
notation of M written (I' - M : A))_ is defined by structural induction on the n-long normal
form of M. The equations are the same as in Def. 4.2.6 except for the third case:

(CFaNi.. . Npy:o), = (m, (TF Ni: A, ..., (CFNy: A)PPre?, X =4 .

The syntactically-revealed denotation differs from the fully-revealed one in that only cer-
tain internal moves are preserved during composition: when computing the denotation of an
application (joint by an @-node) in the computation tree, all the internal moves are preserved.
However when computing the denotation of (y; N1 ... N,)), for some variable y;, we only preserve
the internal moves of Ny, ..., N, while omitting the internal moves produced by the copy-cat
projection strategy denoting y;.

4.2.1.4 Relating the two revealed denotations

As one would expect, the two revealed denotations that we have just introduced are in fact
equivalent. We now show how (I' = M : A)) can be obtained from (I" - M : A))_ and conversely.

Fully-uncovered composition versus partially-uncovered composition In this para-
graph we relate the fully-uncovered composition ‘||” with the partially-uncovered composition
<0412} yged in the definition of the syntactically-revealed semantics. Take a term M =
2;N1...N,. Tts revealed denotation is given by (T M : o), = Ug01-Pey where ¥y =
(mi, (' Ny : By))g, ..., (' Np : Bp)),). We use the notations introduced in Fig. 4.1: the com-
position takes place on the game

X; : Bo :
Xlx...((Bi’x...ng)ao/')...xXnii((Bix x B)) = 0)xByx...x By <50

where the dashed-line frame contains the internal components of the game.

126 Chapter 4. A Concrete Presentation of Game Semantics

<<NON1 .. .Np : 0>> : T[A — O]

/ \
((No), - {N,)) : TO[A — By x ... x By ev:TUBy x ... x By — o]
— | T
{(No)) : T°[A — By] (Np)) : T[A — By

Tree-representation of the revealed strategy (I' = NoNi ... Ny : 0)).

Tree-representation of the revealed strategy (T : X = z;Ny... Ny : o).

A node label ‘II : T[G]’ indicates that II is a revealed strategy on the interaction game T whose top-level
game (at the root of the tree underlying T') is G. Each game is annotated with a string s € {0..p}* in

the exponent to indicate the path from the root to the corresponding node in the tree. (The digits in s
tell the direction to take at each branch of the tree.)
The games A and B are given by:

A = Xix...xX,
B = ((Byx...xB,)—=0)xByx...xB, .
Bo

Figure 4.1: Tree-representation of the revealed strategy in the application case.

Chapter 4. A Concrete Presentation of Game Semantics 127

In ¥g||ev, all the internal moves from By, for k € {0..p} are preserved, whereas in (M), the
internal Bp-moves as well as the superficial internal Bi-moves for k € {1..p} are hidden. By
definition of the composition operator %17}’ the set (I' - M : o)), is obtained from Ylev by
eliminating the internal B-moves appropriately:

(DF M : o), = %M1} ey = {hide(u, 0, {1..p}) | u € Zy[lev} .

We now show that conversely, there exists a transformation mapping the set (I' = M : o)),
to Xs|lev. More precisely we show that for every u € (I' = M : o)), there is a unique play v of
Ys|lev ending with an external move such that eliminating the superficial internal moves from
it gives us back wu.

Let us look at the structure of an interaction play of X||ev. The state-diagram in Fig. 4.2
describes precisely the flow of an interaction play. A node of the diagram indicates the last
move that was played. Its label is of the form ‘A, @’ where A is the game in which the move was
played, and a € { @, 0, o, 0} specifies the player that made the move. We use the symbols e,
o, e, o for OP-move, PO-move, O-move and P-move respectively. We use the notation ‘X;.B;”
to denote the sub-component B} of the game X;.

An edge from node S; to node Sy in the diagram indicates that the move S5 can be played
if 51 was the last moved played. It is labelled by the name of the strategy that is responsible of
making the move or by ‘Env.” to denote a move played by the environment (i.e., the opponent
in the overall game [I' — o]). For instance the edge By, o =Y, By, o tells us that if By, o is
the last move played then the evaluation strategy can respond with the move By, 0. The game
starts at node C, @ which corresponds to the initial move of the overall game. The dashed-edges
correspond to moves played by the copy-cat strategies m; and ev.

We observe that every (superficial) internal move played in some component By, for k& € {0..p}
is either a copy of a previous external move, or it is subsequently copied to a external component
by the copy-cat strategy ev or m;: ©-moves from By are copies by ev of O-moves from C' and
o-moves from By, k € {1..p}; o-moves from By are copies by m; of O-moves from X;; e-moves
from By, k € {1..p} are copies by ev of o-moves from the components B, of By; and finally
o-moves from By, k € {1..p} are copied into By.

Moreover, each move on the diagram of Fig. 4.2 has either a single outgoing copy-cat edge—
in which case the following move is uniquely determined—or it has multiple out-going edges
all labelled by 3¥—in which case the strategy 3 determines which moves will be played next.
Hence for every two consecutive moves in a play of (I' = M : o)), we can uniquely recover all the
internal moves occurring between the two moves in the corresponding play of ¥||ev by following
the arrows of the flow diagram. This transformation is called the syntactical uncovering
function with respect to X and ev and is denoted Yy ¢, : Es;wv{l“p} ev — Ygl|lev. By definition
it satisfies the following property:

hide(Y ev(u), 0, {1..p}) = u

for all u € B,;%{1P} ey whose last occurrence is an external move (i.e., in C or X; for i € {1..n}).

Recovering the fully-revealed semantics from the syntactically-revealed semantics
Given a term-in-context I' = M : A, its syntactically-revealed denotation (I't M : A)), can be
obtained from (' M : A)) by recursively hiding the appropriate internal moves. Conversely,
the fully-revealed denotation (I'+ M : A)) can be obtained from (' M : A)), by recursively
applying the syntactical-uncovering transformation described in the previous paragraph for every

subterm of the form y; Ny ... N,.

4.2.1.5 Revealed semantics versus standard game semantics

In the standard semantics, given two strategies o : A — B, 7: B — C and a sequence s € 0;T,
it is possible to (uniquely) recover from the sequence s the internal moves that were hidden

128 Chapter 4. A Concrete Presentation of Game Semantics

where k € {1..p}, i,j € {l.n} and p > 1.

Figure 4.2: Flow-diagram for interaction plays of (I' - z; N7 ... Np)).

during composition | , part IT]. The revealed denotation of a term can be recovered from
its standard game denotation by recursively uncovering the internal moves for every application
occurring in the term.

Conversely, the standard denotation can be obtained from the revealed denotation by filtering
out all the internal moves:

[CHEM:T]=(T-M:T) [l —T] . (4.7)

This equality remains valid if we replace the fully revealed denotation by the syntactically-
revealed denotation.

Observe that the two sets of plays (I' - M : T)) and [I' = M : T] are not in bijection. Indeed,
by definition the revealed denotation is prefix-closed therefore it also contains plays ending
with an internal move. Thus the revealed denotation contains more plays than the standard
denotation. What we can say, however, is that the set of plays [I' - M : T] is in bijection with
the subset of (I' = M : T')) consisting of plays ending with an external move. Furthermore the
set of complete plays of [I' = M : T is in bijection with the set of complete interaction plays of
(TEM:T).

4.2.1.6 Projection

The projection operation for justified sequences of moves of an interaction strategies (Def. 4.2.4)
proceeds by eliminating some of the moves from the sequence. In general when projecting a
sequence s € X on a subtree T”, for some subtree ¥’ : T” of ¥ : T, the resulting sequence is not
necessarily an interaction position of ¥’ because some internal moves may be missing from s.
The following lemma shows that for strategies that are fully-revealed denotations the projection
operation generates valid positions of its sub-interaction strategies.

Lemma 4.2.2 (Projection for fully-revealed denotations). Let ¥ : T be a fully-revealed de-
notation (i.e., ¥ = (M) for some term M). Then for every sub-tree X' : T' of ¥ : T and
u € X

Chapter 4. A Concrete Presentation of Game Semantics 129

o if T' is the first subtree of a ;’-node in T then for every initial [type(T")]-move b occurring
inu we havew | T [b e Y;

o otherwise (T' is the subtree of a ‘A’-node, “(_,_) -node or the I subtree of a *;’-node for
[>1)thenu | T € ¥

Proof. The proof is by induction on the distance between T” and T"s root. The sequence u | T”
equals w [Ty [... | T} for some k > 0 where the T;s are the unique subtrees of T' such that
To =T, Ty, = T', and T} is an immediate subtree of T;_1 for 1 < i < k. Let 3; : T; denote the
strategy corresponding to each subtree T; of T'. We proceed by induction on & > 0. The base
case is trivial. Step case: Suppose that v = u [Tp_1 € Xr_1. We do a case analysis on the
type of the root node of ¥;_1. The cases ‘A’ and ‘(_,)’ are trivial. The only other possible case
is ‘||’ (since X is a fully-revealed denotation). The result then follows by definition of || with a
subtlety in the case [= 1: we have Sp_; = /||%,, ¥/ : 775 for some strategy %, : TB~C.
When calculating the positions of the composition /||, links going from initial A-moves to
initial B-moves in the positions of ¥/ are changed into links pointing to initial C-moves in ¥'||%,.
Thus in order to obtain a valid position of ¥’ from v we need to recover the pointers accordingly.
This is precisely what the filtering operation _ [7" does (see Def. 4.2.4): if a move in v loses
its pointer in v | My then its justifier in v [T” is set to the only initial move occurring in
the P-view "v | My | [type(T”)]”, which is necessarily b. Hence the justification pointers are
properly restored and v [7" | b is indeed an uncovered position of ¥'. O

Together with Lemma 4.2.1 this further implies:

Lemma 4.2.3. Let ¥ = (M) : T. For every u € 3 and sub-tree X' : T of ¥ : T inducing a
standard strategy o’ : [type(T")]:

e if T is the first subtree of a ‘;’-node in T then for every initial D-move b occurring in u
we have u | [type(T")] [b€ o';

e otherwise (T' is the subtree of a ‘A’-node, “(_,) -node or the I'™" subtree of a *;’-node for
[>1) then u | [type(T")] € o’.

Proof. Follows immediately from Lemma 4.2.2 and 4.2.1. O

Lemma 4.2.4 (Well-bracketing). Let X : T be the fully-revealed denotation of some term M.
Then for every sub-revealed strategies X' : T' of ¥ : T, the standard strategy o' : [type(T")]
induced by Y is well-bracketed.

Proof. The leaves of a fully-revealed denotation are annotated by well-bracketed strategies there-
fore since well-bracketing is preserved by pairing, currying and composition, all the standard
strategies induced by the sub-revealed strategies of ¥ are also well-bracketed. U

Lemma 4.2.5 (Complete interaction play). Let ¥ : T and Xg : T denote respectively the
fully-revealed strategy and syntactically-revealed denotation of some term (i.e., ¥ = (M) and
Yy = (M), for some term M). Then:

(i) For every uw € X, if u | [type(T)] is complete (i.e., mazimal and all question moves are
answered) then so is u.

(ii) For every u € X, if u | [type(T)] is complete then so is u.

Proof. (i) We show the contrapositive. If u is not complete then it contains an answered move b.
If b is not internal then it appears in u [[type(T)] and therefore w [[type(T')] is not complete.
Otherwise, let X' : T” be the subtree of ¥ where the internal move b is uncovered: ¥’ is of the
form ¥1;%F ¥y for some S, P C N with ¥ : (T/A7B) and ¥y : (TL~C), and b belongs to some

uncovered component of B (i.e., whose index is in 5).

130 Chapter 4. A Concrete Presentation of Game Semantics

Since b is unanswered in wu, it is not answered in u [A, B and u | B,C either; thus the
sequences u | A,B and u [B,C are not complete. This further implies that v [A,C is not
complete (By contradiction: otherwise we would have v | A — C = ¢u’ a for some initial
question ¢ and answer a; but since ¢ and a both belong to C' this implies u | B — C = ¢...a).
By Lemma 4.2.3, u [B — C belongs to the standard strategy induced by Yo, and by Lemma
4.2.4 this strategy is well-bracketed, thus u [B — C' is well-bracketed; so since its first question
is answered it is necessarily complete.

We have shown that u | [A — C] = u [[type(T")] is not complete. We then conclude by
observing that if u [[type(T”)] is not complete for some sub-tree 7" of T then u | [type(T)] is
not complete either. This can be shown by an easy induction on the distance between the root
of T" and T: The currying and pairing cases are trivial; for the composition case, the argument
is similar to the one used in the previous paragraph.

(ii) By applying the syntactical uncovering function on u we obtain a position v of ¥ satisfying

[[type(T)] = v | [type(T)]. Hence by (i), v is complete, and therefore so is u (since u is the
subsequence of v obtained by recursively hiding internal moves). O

4.2.2 Relating computation trees and games
In this paragraph we relate nodes of the computation tree to moves of the game arena. First we
use an example to explain the insight before giving the formal definition.

4.2.2.1 Example

Consider the following term M = Afz.(Agz.f(fz))(Ay.y)z of type (0 — 0) — 0 — o. Its n-long
normal form is Afz.(Agz.f(fz))(Ay.y)(A.z). The following figure represents side-by-side the
computation tree of M (left) and the arena of the game [(0 — 0) — 0 — o] (right):

Afz gt
\
PR 3/q2\@\1\az-
Agr Ay A / ‘ \\ 2/ ‘2\
\ \ ay ay -

y oz /\

Now consider the following partial mapping ¢ (represented by a dashed line in the diagram
below) from the set of nodes of the computation tree to the set of moves in the arena: (For
simplicity, we now omit answer moves when representing arenas.)

Chapter 4. A Concrete Presentation of Game Semantics 131

| | | ¢
Flol - Y-mmoos X

)jﬂ fffffff ~ o3 q‘4
e

)\%9] -
x[‘m}

Consider the justified sequence of moves:
o~
s=q"¢ ¢ ¢ q* ?e[M] .
Its image by ¥ (r;) gives a justified sequence of nodes of the computation tree:

Y Ny

Y AR CUR TN

where s; = ¥(r;) for all i < |s|.
The sequence r is in fact the core of the following traversal:

F = Afe @B gl 6\ N9 ol N

This example motivates the next section where we formally define the mapping ¢ for any
given simply-typed term.

4.2.2.2 Formal definition

We now establish formally the relationship between games and computation trees. We assume
that a term I' = M : T in n-long normal form is given.

NOTATIONS 4.2.1 We suppose that computation tree 7(M) is given by a pair (V, E) where V
is the set of vertices and £ C V x V is the parent-child relation. We have V' = N U L where N
and L are the set of nodes and value-leaves respectively. Let D be the set of values of the base
type o. If n is a node in IV then the value-leaves attached to the node n are written v, where v
ranges in D. Similarly, if ¢ is a question in A then the answer moves enabled by ¢ are written
vg where v ranges in D.

Definition 4.2.8 (Mapping from nodes to moves of the standard game semantics).

e Let n be a node in Ny U Ny, and ¢ be a question move of some game A such that n and
q are of type (A, ..., Ay, 0) for some p > 0. Let {¢},...,q} (vesp. {v, | v € D}) be the
set of question-moves (resp. answer-moves) enabled by ¢ in A (each ¢* being of type A;).

We define the function ¢’y? from V™ nodes that are hereditarily enabled by n—to
moves of A as:

W = {ne g} Ufv, = v, | ve DY

mqt -)
U UmeNvar‘nl_lm ’llz)A 1) lf n e N)\)
Uizl..p wz.l,q , ifne N\,ar .

132 Chapter 4. A Concrete Presentation of Game Semantics

e Suppose ' = z1 : X1,..., 71 : Xi. Let g denote [I' — T’s initial move® and suppose that
the set of moves enabled by go in [I' — 7] is {qzy, - - - Quy, ¢4 - -, P} U{vy | v € D} where
each ¢' is of type A; and g;; of type Xj.

We define 957 : V" — [I' — T (or just ¢ if there is no ambiguity) as:

Yy = {r—q}U{v, — vy | veD}
n,q'
U U Vo
n€Nyar|®F;n
N4z ;
U U Yrr_ry -

nENg|n labelled z;,5€{1..k}

It can easily be checked that the domain of definition of ¢’y is indeed the set of nodes
that are hereditarily enabled by n and similarly, the domain of 1y, is the set of nodes that are
hereditarily enabled by the root (this includes free variable nodes and nodes that are hereditarily

enabled by free variable nodes). Also, if M is closed then we have 1y, = ¢[[®—’>q%ﬂ'

The construction of the function ¢y, defined above, goes as follows. Let p be the arity of
the type of n and gq.

e If p =0 then n is a dummy A-node or a ground type variable: ¢’y maps n to the initial
move q.

e If p> 1 and n € N, with n labelled A\é = \&; ... §p then the sub-computation tree rooted
at n and the arena A have the following forms (value-leaves and answer moves are not
represented for simplicity):

For each abstracted variable &; there exists a corresponding question move ¢* of the same
order in the arena. The function ¢’y maps each free occurrence of & in the computation
tree to the move ¢".

e If p > 1 and n € Ny, then n is labelled with a variable x : (A1, ..., Ap, 0) with children
nodes A7y, ..., Afj,. The computation tree 7(M) rooted at n and the arena A have the
following forms:

and ¢'y? maps each node A7j; to the question move q.

Example 4.2.3. For each of the following examples of term-in-context I' = M : T', we represent
the computation tree 7(M), the arena of the game [[' — T, and the function ¢, (in dashed
lines):

3 Arenas involved in the game semantics of simply-typed lambda calculus are trees: they have a single initial
move.

Chapter 4. A Concrete Presentation of Game Semantics 133

o M = X\z°.x
Ag - Yn--mmo e > D
\ \
X ------- - - - m - m - ——— = > qx
o M=o fy
Afmmmmme- Y R > g\ f
f 77777777777777 - qf qAx L
/N AN
A\\“—— :::::=-_=::if]]_cl_ s Atz 7
| [L
T - Yommmmmm o - [

Af == - Y > ANf
\ T
L 4r q- qx
7N L7 7 7
Ag Ayw -7 4h K ,/
| | o0 LT 7 .
g Y 0T P L
VAR P . .
| s s
)‘__,/ ”///,
[-

Lemma 4.2.6.

(i) Yar maps A-nodes to O-questions, variable nodes to P-questions, value-leaves of \-nodes
to P-answers and value-leaves of variable nodes to O-answers;

(i1) 1ar preserves hereditary enabling: a node n € V& is hereditarily enabled by some node
n' € VO in 7(M) if and only if the move nr(n) is hereditarily enabled by pr(n') in
[T — T7;

(iii) ¥ maps a node of a given order to a move of the same order;

(iv) Let s € Trav(M)!®. The P-view (resp. O-view) of ¥ar(s) and s are computed identically
(i.e., the set of positions of occurrences that need to be deleted in order to obtain the P-view
(resp. O-view) is the same for both sequences).

Proof. (i), (ii) and (iii) are direct consequences of the definition. (iv): Because of (i) and since ¢
and ¥/ (t) have the same pointers, the computations of the views of the sequence of moves and
the views of the sequence of nodes follow the same steps. O

The convention chosen to define the order of the root node (see Def. 4.1.3) permits us to
have property (iii). This explains why the order of the root node was defined differently from
other lambda nodes.

By extension, we can define the function ¢; on Trav(M)!I®, the set of traversal cores, as
follows:

Definition 4.2.9 (Mapping traversal cores to sequences of moves). The function ¢y, maps
any traversal core u = uguy ... € Trav(M)!® to the following justified sequence of moves of
the arena [[' — T]: ¥ar(u) = Yar(ug) Yar(ur) ¥ar(uz) ... where ¥pr(u) is equipped with u’s
pointers.

The pointer-free function underlying ¢3s is thus a monoid homomorphism.

134 Chapter 4. A Concrete Presentation of Game Semantics

4.2.3 Mapping traversals to interaction plays

Let I be the interaction game of the revealed strategy (I' M :T))
equivalence classes of moves from M.

Let r' be a lambda node in Ngpawn (the children nodes of @/X-nodes). We write I'(r') F
k(r") : T(r'") to denote the subterm of [M] rooted at ' (thus I'(r’) C I'). We consider the
function v,y which maps nodes of V"' to moves of [['(r') — T(r')]. Since M; contains the

and M; be the set of

S

moves from the standard game [I'(r') — A(r)], we can consider ¢,y as a function from 748
to M.

Every node in n € V'\ (Va U Vx) is either hereditarily enabled by the root or by some A-node
in Nepawn. Therefore we can define the following relation ¢}, from V' \ (Vo U Vx) to M:

vii=vn U {J e -

T‘leNspawn

This relation is totally defined on V'\ (Via U Vx) since those nodes are either hereditarily justified
by the root, by an @-node or by a Y-node. Moreover it is a relation and not a function since
for a given variable node x, for every spawn node 7’ occurring in the path from = to ®, = is
hereditarily enabled by ' with respect to the computation tree 7(x(r’)). Thus the domains of
definition of the relations 9,/ for such nodes r’ overlap. It can be easily check, however, that
for every node n € V'\ (Va U V), the moves in ¢},(n) are all ~-equivalent, which leads us to
the following definition:

Definition 4.2.10 (Mapping from nodes to moves of the syntactically-revealed semantics). We
define the function ppr : V\ (VaUVs) — M as follows: Forn € V'\ (VaUVy), o (n) is defined
as the ~-equivalence class containing the set ¢},(n). We omit the subscript in ¢,/ if there is no
ambiguity.

Definition 4.2.11 (Mapping sequences of nodes to sequences of moves). We define the function
o from Trav(M)* to justified sequence of moves in M7 as follows. If u = wouy ... € Trav(M)*
then:

eum(s) = eum(uo) eam(ur) ea(uz). ..
where @y (u) is equipped with u’s pointers.

Example 4.2.4. Take M = \z°.(A\g(®®) .gxz)(\y°.y). The diagram below represents the com-
putation tree (middle) and the relation ¢}, = ¥z Urg. gz Uy, (dashed-lines).

\@ "M T s
By ey /N q/ \q
N Ag-gr =------ \g Ay - gy - q,‘\y 3 i
Qg - ___ | | ’ :
I | Ty Yoo » dy 2 /
\\ \\ qgl - — / \ // //
TTe<ooo . T .. ‘fo__-_,_-———-::?":_“

where ¢}, ~ Gz, @& ~ @z, g ~ QDrys g1 ~ @y a0d @rg ~ @rg-

Lemma 4.2.7 (Traversal projection lemma). Let A - Q : A be a subterm of [M] and ®¢q denote
the root lambda node of the subtree of T(M) corresponding to the term Q. Let t € Trav(M), ro

be an occurrence of ®¢g int and mq be the occurrence of the initial A-move @pr(ro) in o (tF).
Then:

Pt 1 V®) T rg) = oar(#) T (A — A) T'mo

Chapter 4. A Concrete Presentation of Game Semantics 135

Proof. Firstly we observe that the expression “pg(t* | V(@) | r0)” is well-defined. Indeed, by
Proposition 4.1.5 ¢ [[rg is a traversal of 7rav(Q) therefore the sequence t* | V(®a) | 1y, which
is equal to (¢ || 79)* by Lemma 4.1.17, does belong to 7Trav(Q)*.

We now make the assumption that ®¢ is a level-2 lambda nodes (i.e., a grand-child of the
root ®). The proof easily generalizes to other lambda nodes by iterating the argument at every
lambda nodes occurring in the path from ®¢g to ®.

Claim: (i) The set of occurrence positions of t* that are removed by the operation _ | V(@)
is the same as the set of positions of ¢,/(t*) removed by the operation _ [(A — A). (ii) The
justification pointers in the sequences of nodes t* | V(@) are the same as those of the sequence
of moves p(t*) | (A — A)).

Indeed: (i) follows from the fact that, by definition, the range of the function s restricted
to V(®) is included in M, (A—AY (the set of moves of the interaction game of Q).

(ii) By Def. 4.2.11, the sequences ¢js(t*) and ¢t* have the same justification pointers. The
projections _ [V(®@) and _ | (A — A)) both alter the pointers in the sequences oy (t*) and t*,
but they do so identically: the operation _ | V(®e) (Def. 4.1.17) alters pointers only for variable
nodes that are free in V(®@); it makes them point to the only occurrence of ®@ in the P-view at
that point (which is also the only occurrence of a level-2 lambda node in the P-view). Similarly,
the operation _ | (A — A)) (Def. 4.2.4) alters pointers only for initial A-moves: it makes them
point to the only occurrence of an initial B-move in the P-view at that point. Further s maps
free variables in V(®@) to initial A-moves, and level-2 lambda nodes to initial B-moves.

Hence the claim holds which subsequently implies oaz(t*) | (A — A) = pp(t* | V(@)
Thus @ (t*) [(A — AY) | mg = @ar(t* [V@) [mg = ppr(t* | V®Q) | rg). Finally, since the
function ¢ is defined inductively on the structure of the computation tree, the restriction of s
to V®Q coincides with . O

The following lemma states that projecting the image of a traversal by ¢ gives the image of
the traversal’s core:

Lemma 4.2.8 (Core projection lemma).
ort(Trav(M)") | 1 = T] = das (Trav(M)'®) .

Proof. Let H be the set of nodes of 7(M) which are mapped by ¥*(M) to moves that are

~-equivalent to moves in [I' — T]. We need to show that H = V&".

Since Yy C " (M) and the image of ¢(M) is [I' — T, H must contain the domain of (M)
which is precisely V&~ . Conversely, suppose that a node n € V'\ (Va U Vx) is mapped by ¢*(M)
to some move m € My which is ~-equivalent to some move in [I' — T]. If m = tp(n) then
n e Ver, Otherwise, m = ¢,€(®) (n) for some ® € Ngpawn. There may be several node ® such
that n belongs to the domain of definition of 1), w.l.o.g. we can take ® to be the one which
is closest to the root. Let I'(®) F k(®) : T(®). Suppose that m is ~-equivalent to a move from
- the subgame [I'] of [I" — T, then this means that n is hereditarily justified by a free variable

node in M and therefore n € V&,

- the subgame [T of [I' — T then m must belong to the subgame I'(®) of [['(®) — T(®)].

Indeed, since ®’s parent node is an application node, moves in the subgame [T'(®)] correspond
to internal moves of the application. By definition of the interaction strategy for the applica-
tion case, such moves can only be ~-equivalent to other internal moves and thus cannot be
equivalent to a move from [77].
Consequently, n is hereditarily justified by a free variable node z in k(®). By assumption, ®
is the closest node to the root ® (excluding ® itself) for which n belongs to V" (the domain
of definition of wﬁ@)). Hence z is not bound by any A-node occurring in the path to the root.
Thus z € V" and therefore n € V",

Hence H = V®" . Consequently, for every traversal ¢ we have @y (t*) | [I' — T = o (t* [VE)

which equals ¢p/(t | ®) by Lemma 4.1.8. O

136 Chapter 4. A Concrete Presentation of Game Semantics

4.2.4 The correspondence theorem for the pure simply-typed lambda calcu-
lus

In this section, we establish a connection between the revealed semantics of a simply-typed
term without interpreted constants (i.e., ¥ =) and the traversals of its computation tree: we
show that the set Trav(M) of traversals of the computation tree is isomorphic to the set of
uncovered plays of the strategy denotation (this is the counterpart of Ong’s “Path-Traversal
Correspondence” Theorem [|), and that the set of traversal cores is isomorphic to the
strategy denotation.

Preliminary lemmas

NOTATION 4.2.2 For every node occurrence n in a justified sequence (of nodes or of moves) u
we write ptrdist, (n), or just ptrdist(n) if there is no ambiguity, to denote the distance between
n and its justifier in « if it has one, and 0 otherwise.

Lemma 4.2.9.

(t-ni,t-ng € Trav(M)

Ay > = nj,ng € V/\®F A (Y(n1) # P(ng) V ptrdist(ny) # ptrdist(ns)) .

Proof. Take t-ny,t-ng € Trav(M). Suppose that n; and ng belong to two distinct categories
of nodes (Nvar, Na, Nx, Ny, Lyar, La, Ly, or Ly) then necessarily one must be visited with the
rule (InputVar) and the other by (InputVal)—they are the only rules with a common domain of
definition—thus one is a leaf-node and the other is an inner node which implies that 1 (n;) #
¥(n2).

Otherwise n; and no belong to the same category of nodes and we proceed by case analysis:

e If ny,ny € Ng then t-ny and ¢ - ny are formed using the (App) rule. Since this rule is
deterministic we must have n; = no which violates the second hypothesis.

e If ny,ny € Lg then the traversals are formed using the deterministic rule (Value®—?)
which again violates the second hypothesis.

e If ny,n9 € Ny, then they are formed using a deterministic constant rule (see Def. 4.1.13).

e If ny,no € Ly, then they are formed using a deterministic value-constant rule.

o If ny,ny € Ny, then ¢ - nq and ¢ - ny were formed using either rule (Lam) or (App). But
these two rules are deterministic and their domains of definition are disjoint. Hence again
the second hypothesis is violated.

e If ny,ny € Ly, then either the traversals were both formed using the deterministic rule
(Value">=?) in which case the second hypothesis is violated; or they were formed with
(InputValue) in which case n; and ngy are two different value leaves belonging to V>\®F and
justified by the same input variable node. Thus by definition of ¥, 1(n1) # ¥ (n2).

e If ny,no € N, then the traversals ¢ - ny and ¢ - no must have been formed using either rule

(Root), (App), (Var) or (InputVar). Since all these rules have disjoint domains of definition,
the same rule must have been use to form ¢ -n; and ¢ - ny. But since the rules (Root),
(App) and (Var) are all deterministic, the rule used is necessarily (InputVar).
By definition of (InputVar), ni,ng € N;\@'_, the parent node of n; and the parent node of
no all occur in Lt where x € N\,@gt denotes the pending node at t. If ny; and ns have
the same parent node in 7(M) then since ny # no, by definition of v, ©¥(ny) # ¥ (n2).
If their parent node is different, then nq and ny are necessarily justified by two different
occurrences in ¢ therefore ptrdist(ny) # ptrdist(ng).

e If ny,ny € L) then either the traversals ¢ - ny and t - no were formed using (Value
or they were formed with (Value®) but this is impossible since these two rules are
deterministic and ny # na. O

)\»—>var)

The function s regarded as a function from the set of vertices V'\ Vi of the computation tree
to moves in arenas is not injective. (For instance the two occurrences of z in the computation

Chapter 4. A Concrete Presentation of Game Semantics 137

tree of \fz.fxx are mapped to the same question move.) However the function s defined
on the set of @-free traversals is injective, and similarly the function s defined on the set of
traversal cores is injective as the following lemma shows:

Lemma 4.2.10 (¢p; and ¢y are injective). For every two traversals t1 and to:
(i) If (t7) = p(ty) then ¢ = t; ;
(it) if Y(t1 | ®) =(ta | ®) thent; [@ =t [® .

Proof. (i) The result is trivial if either ¢; or t5 is empty. Otherwise, suppose that ¢7 # t5 then
necessarily ¢ # to. W.l.o.g. we can assume that the two traversals differ only by their last node
(or last node’s pointer). Thus we have t; = ¢t - n; and t9 = t - ny for some sequence ¢t and some
occurrences ni,ny where either n; and no are two distinct nodes in the computation tree or
ptrdist(ny) # ptrdist(nz).

If ny = ny and ptrdist(n;) # ptrdist(ng) then nj, ne are not @-nodes nor ¥-nodes (since for
such nodes we would have ptrdist(n;) = 0 = ptrdist(ny)). By definition of the sequence (1)
we have ptrdist(¢(n1)) = ptrdist(n1) and similarly ptrdist(¢(n2)) = ptrdist(nz) thus (¢’ - nq) #
@(t' - ng). Finally since n1,n9 € (Na U Nx) we also have o((t' - n1)*) # ¢((t' - n2)*). Hence
o(t1) # o(t3)

If ny # no then by Lemma 4.2.9 ny,ny are not @-nodes or Y-nodes (since such nodes are
not hereditarily justified by the root) and we have either ptrdist(n;) # ptrdist(na) or ¢(ny1) =
¥(n1) # (na) = p(ng2). Hence ¢(t7) # ¢(t3).

(ii) Suppose that t; [® # to [® then necessarily t; # to. W.l.o.g. we can assume that the two
sequences differ only by their last occurrence. Hence we have t; = t - nqy, to = t' - ny for some
sequence ¢ and some nodes ny,ny where either ny # ng or ptrdist(n;) # ptrdist(ns).

If ny # ny then Lemma 4.2.9 gives ¢(t; [®) # ¢(ta | ®). Otherwise ny = ny and
ptrdist(n1) # ptrdist(ny). The only rules that can visit the same node with two different pointers
are (InputVar) and (InputValue), thus n; and ng must be in VA®'_. Hence:

Pt | @) = ¢(t | ®) - p(ng) for i € {1..2}

where ptrdisty, 1) (1(ni)) = ptrdist,,}, (1;).
Furthermore, since ptrdist(ni) # ptrdist(ng) and t1.,, = ta,, we have ptrdist, 15(n1) #
ptrdistt2 r®(n2). Thus ¢¥(t; | ®) # Y(ta | ®).]

Corollary 4.2.1.
(i) ¢ defines a bijection from Trav(M)* to o(Trav(M)*) ;

(ii) < defines a bijection from Trav(M)'® to y(Trav(M)!®) .

The following lemma says that extending a traversal locally also extends the traversal glob-
ally: the traversal t of M can be extended by extending a sub-traversal ¢’ of some subterm of
M. This is not obvious since t’ is a subsequence of ¢ which means that the nodes in ¢’ are also
present in ¢t with the same pointers but with some other nodes interleaved in between. However
these interleaved nodes are inserted in a way that allows us to apply on t the rule that was used
to extend the sub-traversal ¢':

Lemma 4.2.11 (Sub-traversal progression). Let ®; be a lambda node in 7(M), t =t'-t* be a
Jjustified sequence of nodes of T(M), and rj be an occurrence of ®; in t different from t*. If

1. t' is a traversal of T(M),

2. t“ appears in t || r;,

138 Chapter 4. A Concrete Presentation of Game Semantics

8.t I r; is a traversal of T(M(®J')) and its last node is visited using a rule different from
(InputVar) and (InputVar*?),

then t is a traversal of T(M).

Proof. Let t; =t || rj. Since t’ is a traversal of M, by Prop. 4.1.5 the sequence ¢ [[7; (which is
also the immediate prefix of ¢;) is a traversal of 7(M (®5)). We proceed by case analysis on the
last rule used to produce the traversal ¢; and we show that ¢ is a traversal of M:

e (Empty), (Root). These cases do not occur since |t;| > 2. Indeed, t; contains at least t*
and r; which are two different occurrences.

e (Lam) We have t; = .. .- X -n. Since t; C t, the node XE also occurs in t. Therefore using
the rule (Lam) in M we can form the traversal { yz-n. But then we have (tyz-n) [l 7; =tz |
[7j-n = ticxe n=1=1 Il 7j. Thus, since t’s last node and n both appear in ¢ || r;, this
implies that ¢ < n=t Hence t is a traversal of M.

o (App)tj =.. AE-@Q-n. The same reasoning as in the previous case permits us to conclude.
L/\ . —
o (Value®?) tj=...- A~ @ﬁ}@ “Vyg- Since t; C t, the nodes A\, @, va and Ve all

appear in t. Moreover, since A¢ is a lambda node appearing in ¢ || rj, its immediate successor
must also appear in ¢ || ;. Thus the two nodes ¢ and @ are also consecutive in t. Hence we
can use the rule (Value®~*) in the computation tree 7(M) to produce the traversal t<oyg ' and
by the same reasoning as in the previous case, we conclude that necessarily ¢ = t@AE -n.

v

e (Valuea—?) tj=... N2l g A This case is identical to the previous case.
A—@ f& . . .
e (Value Jtj=...-@-AZ...0xz - Va. Same as in the previous case by observing that @

and AZ are necessarily consecutive in t.
e (InputValue) and (InputVar). By assumption these cases do not happen.

var *
In general, two nodes p and AT appearing consecutively in ¢; are not necessarily consecutive in t.

For in M, t can “jump” from p to a node that do not belong to the subterm M (®i), and thus not
appearing in ¢; = t || r;. This situation cannot happen here, however. Indeed, suppose that t,
extends to tg,-m in 7(M). All the nodes in the thread of A7;, in ¢;, are hereditarily justified by
the same initial @-node o which necessarily occurs after r; (the first node of ;). Consequently
p belongs to Nyar and therefore the traversal t<,-m must have been formed using the rule (Var)
in 7(M). Since p appears in ¢ [| r;, by Lemma 4.1.14(i), all the nodes in the thread of p in ¢
appear in ¢ [[r;. Thus m appears in t [[7; (since by O-visibility it points in the thread of p).
Hence (tg, - m) || ro = t<p [l 7o - p- m which implies that m is precisely the occurrence AZ.
Hence the nodes p, AT, xz; and A7; all appear in ¢ with the two nodes p and AT appearing
consecutively. We can therefore use the rule (Var) in M to form the traversal t.

e (Value*¥2") Same proof as in the previous case.

e (X)/(X-var) Same as (App) and (Var).

e (X-Value) Same as (Value V). O

e (Var)tj=...-p- AT ... % - \j; for some variable z; € N2

The correspondence theorem

We now state and prove the correspondence theorem for the simply-typed lambda calculus
without interpreted constants (X = (). This theorem establishes a correspondence between the
denotation of a term in the intentional game model and the set of traversals of its computation
tree. The result extends immediately to the simply-typed lambda calculus with uninterpreted
constants since we can regard constants as being free variables.

Theorem 4.2.2 (The Correspondence Theorem). For every simply-typed term T'= M : T, @
defines a bijection from Trav(M)* to (I'+ M : T)), and 1 defines a bijection from Trav(M)!®

Chapter 4. A Concrete Presentation of Game Semantics 139

to[I'+M:T]:
ov : Trav(TbF M :T)" = (TF M :T),
vy Trav(Fl—M:T)@i[[I‘I—M:T]].

REMARK 4.2.1 By Corollary 4.2.1, we just need to show that s and ¥y are surjective, that
is to say: o (Trav(M)*) = (T'F M : T, and ¢p (Trav(M)!®) = [[+ M : T]. Moreover the
former implies the latter, indeed:

MEM:T)=('FM:T), | [I'=1T] by (4.7) from Sec. 4.2.1.5
= pym(Trav(M)*) [[T — T by assumption
= Y (Trav(M)'®) by Lemma 4.2.8.

Therefore we just need to prove ¢y (Trav(M)*) = (I' = M : T))..

Since the proof is rather technical, we first give an overview of the argument: We proceed by
induction on the structure of the computation tree. The only non-trivial case is the application;
the computation tree 7(M) has the following form:

AE
\
b
rNo) b T

A traversal of 7(M) goes as follows: It starts at the root A of the tree 7(M) (rule (Root)),
visits the node @ (rule (Lam)) and the root of 7(Np) (rule (App)) and then proceeds by traversing
the subtree 7(Np). While doing so, some variable y; bound by 7(Ny)’s root may be reached,
in which case the traversal is interrupted by a jump to 7(XV;)’s root (performed with the rule
(Var)) and the process goes on with 7(N;). Again, if the traversal encounters a variable bound
by 7(N;)’s root then the traversal of 7(N;) is interrupted and the traversal of 7(NNy) resumes.
This schema is repeated until the traversal of 7(Np) is completed®.

The traversal of M is therefore made of an initialization part followed by an interleaving of
a traversal of Ny and several traversals of V; for ¢ = 1..p. This schema is reminiscent of the way
the evaluation copy-cat map ev works in game semantics.

The crucial idea of the proof is that every time the traversal jumps from one subterm to
another, the jump is permitted by one of the “copy-cat” rules (Var), (Value®), (Valueva—?),
(Value®~?), or (Value*~var). We show by a second induction that these copy-cat rules implement
precisely the copy-cat evaluation strategy ewv.

Proof. Let I' = M : T be a simply-typed term where I' = x1 : X1,...x, : X,,. We assume that M
is already in 7-long normal form. By remark 4.2.1 we just need to show that ¢y (7 rav(M)*) =
(I'+ M : T)),. We proceed by induction on the structure of M:

e (abstraction) M = AN :Y — B where £ =& : Y1,...&, ¢ Yy, On the one hand we have:

(PFXEN:T), = A(ETHN:B),)
~ (¢, 'FN:B), .
On the other hand, the computation tree 7(N) is isomorphic to 7(A6.N) (up to renaming

of the computation tree’s root), and 7rav(N) is isomorphic to 7rav(Aé.N). Hence we can
conclude using the induction hypothesis.

4Since we are considering simply-typed terms, the traversal does indeed terminate. However this will not be
true anymore in the PCF case.

140 Chapter 4. A Concrete Presentation of Game Semantics

e (variable) M = z;. Since M is in n-long normal form, x must be of ground type. The
computation tree 7(M) and the arena ((I' — o)), are represented below (value leaves and
answer moves are not represented):

A q0

‘ q1 /QQ/ \\ qn

Let m; denote the i*" projection of the interaction game semantics. We have:
SN N
(M) =m; = Pref({g0 - ¢" vy - Vg | v ED}) .

It is easy to see that traversals of M are precisely the prefixes of X - z; - vy, - Uy. Since M is in
B-normal we have 7rav(M)* = Trav(M), and since () = qo and s (x;) = ¢° we have:

e (Trav(M)*) = ou(Trav(M)) = oar(Pref(A - z; - va, - vx)) = (M)

< -
e (@-application) M = NoN;...N, : o where Ny is not a variable. We have the typing judg-

ments I' = NgN;...N, : oand I' = N; : B; for ¢ € 0..p where By = (By,...,Bp,0) and
p =L

The tree 7(M) has the following form:

)\yl e yp [@1]

7(No) 7(N1)

where ®; denote the root of 7(N;) for j € {0..p}.

We have:
(=M :o)y=((T'FNo:Bo)g, .-, (['FNp:Bp)) |l ev .

by

In the following, we use the notations introduced in Fig. 4.1 from section 4.2.1.3 which fixes
the names of the different games involved in the interaction strategy (M)).. In particular the
games A, B and C are defined as:

A = Xix...xX,
B ((By x...x B,) =0)xBy x...x B,

By
cC = o.

Let go and g{ be the initial question of C' and By respectively.

C We first prove that (I' =M : T), € pap(Trav(M)*). Suppose u € (I' M : T)) .. We
give a constructive proof that there is a traversal ¢ such that ¢y (t*) = u by induction
on u.

Chapter 4. A Concrete Presentation of Game Semantics 141

For the base case u = ¢, take ¢ to be the empty traversal formed with (Empty). Step case:
Suppose that v =« -m € (I' = M : T)), for some move m € My where v’ = @y (') for
some traversal ¢’ of 7(M).

By unraveling the definition of u € (I' - M : T'))_ we have:

(@) wedr;
(b) For every occurrence b in u of an initial Bg-move, for some k € {0..p}:
ul T% 1be (N, , (4.8)
{ u | T [b=€ forevery k' € {0.p}\ {k} ;

(¢) ulBy=ulbB,...,By,C .

We recall that each m € Mr is an equivalence class of moves from M. For every game
A appearing in the interaction game T we will write “m € A” to mean that some element
of the class m belongs to the set of moves M 4. Similarly, for every sub-interaction game
T of T, we write “m € T'” to mean that some element of the class m belongs to the set
of moves M. We proceed by case analysis on m: We either have m € C or m € TY;
in the last case m is either in A, a superficial internal move in B or a profound internal
move in B:

— Suppose m € C. Moves in C are played by the standard strategy ev that does not
contain any internal move. Hence m is either go or vy, for some v € D.
Suppose that m = ¢gg. Since gy can occur only once in u we have u = ¢o and the
traversal t = A® formed with (Root) clearly satisfies p(t*) = w.
Otherwise m = vg,. This P-move is played by the copy-cat strategy ev therefore it is
the copy of some answer vy to the question gf, from the sub-game o/. The move Uy
is necessarily the immediate predecessor of m in u. (Indeed the play Uy [A, B is

complete since its first move g is answered by Vg 5 and therefore U, ' T0 is also

complete by Lemma 4.2.5; thus no profound internal move can be played between
Vg and vg,, and therefore these two moves are consecutive.)

Hence by the induction hypothesis the last move in ¢ is <p(vq6) = U)y,- The rules
(Value’®) and (Value®~*) permits us to extend the traversal ¢’ to t'-va -vyg Where
va and vyg point to the second and first node of ¢’ respectively. Clearly we have
em((t' - va - vyg)*) = u.

— Suppose m € TY and m is an initial move in By. Then necessarily m is gy € [o'], the
copy-cat move of the initial move gg € C' of u. Hence u = ¢ - ¢(. The rules (Root),
(App) and (Lam) permit us to build the traversal t = Al® . @ . \7l®0] which clearly
satisfies pps (t*) = w.

— Suppose m € T° and m is an initial move in By for some k € {1..p}. Then m is
necessarily a copy-cat move played by the evaluation strategy, and the move m!
immediately preceding m in u is an initial move of the component B; of By.

Thus since ¢ (#) = m?!, #“ must be an occurrence of the node y—the k' variable
bound by A\y. We can thus form, with the rule (Var), the traversal t = t'-®;, satisfying
em(t*) = om(t™) -m=u.

— Suppose m € T and m is not initial in B. In u [79, m must be hereditarily justified
by some initial move b in By, for some k € {0..p}. Since u | T | b € (Ny),, the
outermost induction hypothesis gives us:

u | T% | b= pp, () (4.9)

for some traversal t;, € Trav(Nj) where w.l.o.g. we can assume that ¢y & Va. We
have:

par(ty) = (par(t))” since 19 ¢ Va

142

Chapter 4. A Concrete Presentation of Game Semantics

((w'-m) 1 T% 1 b)” by (4.9)
((u' T% 1 b) - m))* since m is h.j. by b and belongs to T

m .

Take t = t’ - t¢ where t{ points in ¢’ to the image by ¢as of the occurrence justifying
m in u. Since t§ # @ we have t* = t"* - t¢’ where t{ justifier in ¢"* is the same as its
justifier in t.

Hence we have o (t*) = par(t™) - o (ty) which, by the innermost I.H. together
with the previous equation, equals u' - m where m’s justifier in u’ corresponds to
o (tY)’s justifier in a7 (t"*). Consequently:

eut) =u . (4.10)

We are half-done at this point, it remains to show that ¢ is indeed a traversal of 7(M).
Let r; denote the occurrence of the root ® in ¢ that is mapped to the occurrence b
in @ (t*). We make the following claim:

tp=tre . (4.11)
Indeed we have:
N (tF) =u [T Tb by (4.9)
= ou(t) [T b by (4.10)
= N, (T V) T ry) by Lemma 4.2.7.

Since ¢n, is a bijection from Trav(Ng)* to ¢n, (Trav(Ng)*) (by Corollary 4.2.1)

this implies that ¢} = ¢* | V(®) |, which in turn equals (¢ || r)* by Lemma

4.1.17 from Sec. 4.1.3.6. But since t; and ¢ do not end with an @-node, this implies

equality (4.11).

We now show that t is indeed a traversal by a case analysis of the rule used to visit

the last occurrence of ¢, in the tree 7(Ny):

(a) Suppose the rule used to visit £ is neither (InputVar) nor (InputVar*?). Then
by Lemma 4.2.11, ¢ is a traversal of M.

(b) Suppose t{ is visited with (InputVar). Then ¢ is of the form

for some input-variable z € N\%’ﬁ'_ occurring in Lt and where ¢ € N;B’“'_.
Thus: /—\
T/JNk(z) YN ()
=m3 =m

The occurrence t§ is hereditarily enabled by the root ®;, itself enabled by an
application node, thus t{ is not hereditarily enabled by the root ®. Since only
nodes that are hereditarily enabled by the root are mapped to move in A we
know that ¢y, (t7) is not played in A and therefore ¢y, (t¢) € By. Similarly we
have ¢, (2) € By.
Now consider the top-most composition in the interaction strategy (M) —that
of the interaction strategy ¥ : A — B with the evaluation copy-cat strategy

v : B — o. Consider the sub-sequence u [A, B, C' of u consisting only of moves
involved in this top-most composition (i.e., the internal moves coming from other
compositions at deeper level in the revealed semantics are removed). Since z is a

Chapter 4. A Concrete Presentation of Game Semantics 143

S v © v O

variable node, the move m? = YN, (2) € By, is a P-move with respect to the game
[A — Bg], and therefore it is an O-move in the game [B — o]. Consequently
the strategy ev is responsible to play at ug,,s [4, B,C. Let m? denote the move
played by ev which immediately follows m! in u [A, B, C.

We claim that m3 and m? are also consecutive in u. That is to say that no
internal moves generated from the other compositions at deeper levels in the
interaction strategy can ever be played between m? and m?. Indeed, firstly the
strategy ev is a pure standard strategy thus it does not play any (profound)
internal move. Furthermore, suppose that the strategy > comes from the com-
position ¥;||X, of two interaction strategies ¥; : A — D and %, : D — B for
some game D, then by the Switching Condition for function-space game |]
34

the Opponent cannot switch of component, and thus the move following m® in

the interaction sequence u [A, D, B must belong to B. Hence internal moves
from D cannot be played immediately after m?>.

Similarly, we can show that the move m is played by the strategy ev and is the
copy of the move m! immediately preceding it in u | A, B,C as well as in u.

Hence the sequence u has the following form:

Consequently we have:

o= ez X .

The first equation implies that t{ is the ith child of z in the computation tree,
thus since z ¢ N® | we can apply the (Var) rule to the second equation which
produces the traversal of 7(M):

7

Vot = NGyt

which is precisely the sequence ¢. Hence ¢ is indeed a traversal of 7(M).
The diagram on Fig. 4.3 shows an example of such interaction sequence u.

A — (B - o) X By) — 0

Q__——— QO()‘g) 0
hOD) P

3 —
m?(z) 0
<m2()\§) P
m'(y) 0
m(ty) P

Figure 4.3: Example of a sequence u [A, B,C for u € (M)), and [= 1.

()

Suppose t;’s last move is visited with the rule (InputVar"a') then the proof is the
same as in the previous case but with (InputVar*?') substituted for (InputVar).

DO The converse, @y (Trav(M)*) C (M)),, is the easy part of the proof.
Let u be as sequence of pps(7rav(M)*). Then u = @pr(t*) for some traversal ¢ of 7(M).
To show that w is a position of (I' - M : T')_ we have to prove that it satisfies the three
conditions of (4.8):

144 Chapter 4. A Concrete Presentation of Game Semantics

— (a) By definition, ¢j; maps justified sequences of nodes to justified sequences of
moves from My therefore ¢/ (t*) € Jr.

— (b) Take an initial B-move b € By, for some k € {0..p}, occurring in ¢ (t*). There
is a corresponding occurrence r in t of a level-2 lambda node ®; of 7(M). By
definition, the function s maps nodes from the subtree of 7(M) rooted at ®y, for
every k' € {0..p}, to moves of the game (I — By)), that are hereditarily justified
by some occurrence of oy (®y/). Hence for every &' € {0..p} \ {k} we clearly have
on () [TO¥ | b = e. Moreover:

w T% b= p(t*) | T% b

= oMt] V(@) [7x) by Lemma 4.2.7
= on((t T re)") by Lemma 4.1.17
=N, ((t I 7%)%) since t || ry is a traversal of Ny by Prop. 4.1.5
€ on, (Trav(Ng)*)

= (V) by the induction hypothesis.

— (c) We can show that ¢p(t*) [Bo = om(t*) | By, ..., By, C by a trivial induction
on the traversal t. (This property holds because of the way the traversal rules mimic
the behaviour of the evaluation strategy.)

e (Var-application) M = x;Ny... N, : o.
The revealed denotation is (I' = M : o) = (m;, (I'F Ny : B, ..., (T F Ny : Bp)))07} ey

b
and the computation tree is

We use the notations of Fig. 4.1 for names of the games involved in the interaction strategy.
The composition of ¥ with ev takes place on the following games:

N B
X; | Bo | c
X1><...((B{’x...xBI’)’)—>o”)...><Xni>i(([X...xB))—=0d)xByx...B,| =0

Let qo, q(and ¢ be the initial question of C', By and X; respectively.

('EM:T), Com(Trav(M)*). We show (constructively) by induction that for every v €
Y|lev, there is some traversal ¢ such that the sequence u = hide(v, {0..p},{0}) equals
e (tF).
The base case v = € is trivial. Suppose that v = v'-m € X||ev where hide(v’, {0..p}, {0}) =
o (87*) for some traversal t' of 7(M) and move m € Mp. Unraveling the definition of
v € X|lev gives

-v € Jr;
- for every occurrence b in v of an initial Bj-move for some k € {0..p}:
v TP Tbemifk=0andv|[T%[be (N), if k>0, (4.12)

and VE € {0.p} \ {k}. v | T | b=¢
-andv [Byg=v | By,...,B,C .

We proceed by case analysis on m. It is either played in A, B or C.

Chapter 4. A Concrete Presentation of Game Semantics 145

1. m € C. The proof is the same as in the @-application case except that the rules
(Value’a") and (Value"®"=?) are used instead of (Value*~®) and (Value®~*) respec-
tively.

2. m is a superficial internal B-move. Then hide(v, {0..p}, {0}) = hide(v’, {0..p},{0}) so
we can directly conclude from the I.H.

3. m is a profound internal B-move. Then necessarily m belongs to By for some k €
{1..p} (since m; does not contain internal moves). Thus m must be hereditarily justified
by some b € By. The treatment of this case is identical to the @-application case where
m € TV is not initial in B and b € By, for some k € {0..p}.

4. m € A. Let b denote the initial Bi-move that hereditarily justifies m for some
k € {0..p}. If £ > 0 then the treatment is the same as in case 3. Otherwise b € By:

— Suppose m is an occurrence of the initial o”-move ¢j. Then m is played by m;
and therefore is the copy of ¢ itself the copy of the initial move gy of v. Thus
v=yqo-qy-qy and u = qo - ¢l The traversal t = A[®] . z; formed using the rules
(Root) and (Lam) meets the requirement.

— Otherwise since v [b € m; we have v [b | X; = v [b [By therefore m must
necessarily be hereditarily justified by the first occurrence of ¢j in v.

*x Suppose m is an e-question. Then the preceding move in v is necessarily a
o-move also played in A by the strategy m; and therefore it is also hereditarily
justified by the first occurrence of .
By definition of ¢/, the last node in ¢’ is a variable node (if the preceding move
is a o-question) or a value-leaf of a lambda node (if the preceding move is a o-
answer) that is hereditarily justified by the node z;. Hence the rule (InputVar)
can be applied at t'.
Let m/' be m’s justifier in v' and o be the corresponding node in ¢’ that ¢y,
maps to m/. Suppose m is the i move enabled by m’ in the arena and let o be
the 7" child node of o/ in 7(M). By definition of py; we have @ys(a) = m. We
want to show that we can use the rule (InputVar) to append « to the traversal
t'. Since we have v [A,C € [M], by O-visibility m’ appears in Lv' | A, CJ, and
by the induction hypothesis we have v' | A,C = ¢ (t' | r). Hence

m' € LwM(t/ fT)J = wM(Lt/ [m)
= oun(ct’ [rl) since gy and 9y coincide on VEF,

— (pM(Lt’J) by Lemma 4.1.18.

This implies that o/ appears in L' which allows us to use the rule (InputVar)
to form the traversal t =t - « satisfying ¢ps(t*) = hide(v, {0..p}, {0}).

x Suppose m is a o-answer. The same argument as above holds but using
(InputValue) instead of (InputVar).

* Suppose m is an e-question. We proceed identically using the rule (Lam) instead
of (InputVar). The proof that o/ appears in the P-view "t/ goes as follows:
Let "v™ denote the core of the interaction sequence v [|. By P-visibility
inv | A, C, m occurs in "v' | A, C7. Further we have v/ | A,C7 =071 A, C
[], and clearly "v'7 [A, C equals Thide(v’, {0..p},{0})7 | A,C. Hence

m €T ()T A CE Top(t)T .

This implies that o/ occurs in "t”*7, which is a subsequence of "t'™ by (4.1).
(See Sec. 4.1.3.5).

« If m is a o-answer then we proceed as above but using the rule (Value) instead.

146 Chapter 4. A Concrete Presentation of Game Semantics

om(Trav(M)*) C (M)),. Let t be some traversal of 7(M). To show that par(t¥) is a
position of (I' = M : T'))_ we have to prove that ¢y (t*) = hide(v, {0..p}, {0}) for some
v satisfying condition (4.12). It suffices to take v = Y5 ¢, (9 (t*)) where Yy ¢, denotes
the function defined in Sec. 4.2.1.4 that transforms plays of the syntactically-revealed
semantics to their corresponding plays of the fully-revealed semantics. The rest of the
argument is the same as in the @-application case.]

Corollary 4.2.3. If M is in B-normal form then for every traversal t, par(t) is a mazimal
play if and only if t is a maximal traversal.

Proof. If M is in -normal form then 7rav(M)!® = Trav(M) therefore ¢ defines a bijection on
Trav(M). Let t be a traversal such that ¢(¢) is a maximal play. Let ¢’ be a traversal such that
t < t'. By monotonicity of ¢ we have ¢(t) < (') which implies p(t) = ¢(¢') by maximality of
©(t) which in turn implies ¢’ = ¢ by injectivity of ¢. The other direction is proved identically
using injectivity and monotonicity of ¢ 1. O

The diagram on Fig. 4.4 recapitulates the main results of this section.

M
Trav(M)* (M)
~1
Pm
Trav(M) full uncovering | | - [[I" — 17
&
M
Trav(M)'® [M]
—1
Pm

where an arrow ‘A —» B’ indicates that f(A) = B.

Figure 4.4: Transformations involved in the Correspondence Theorem.

Example 4.2.5. Take M = \fz.(Agz.fz)(Ay.y)(fz) : ((0,0),0,0). The figure below represents
the computation tree (left tree), the arena [((o, 0), 0,0)] (right tree) and 15, (dashed line). (Only
question moves are shown for clarity.) The justified sequence of nodes t defined hereunder is an
example of traversal:

e
Q@ /\q

N VR
t=Mz-Q- gz fI AR \BLL pll APy

)\gx/)\‘y\)\[?’] [T ‘{1 3 ‘m

£l ;‘/fvu ¢ tiafz= Sz FIU LN\

RO et

P Lo ot D) =0 gl gl P em] .

REMARK 4.2.2 Observe that the way we have defined traversals, the Opponent, contrary to
the Proponent, is not required to play deterministically, let alone innocently. It is only required
that he plays visibly (i.e., his justifiers must appear in the O-view) and respects well-bracketing.
This means that the game-denotation given by the Correspondence Theorem also accounts for
contexts that are not simply-typed terms. This indeed corresponds to the standard innocent
game model of PCF: the morphisms of the category C;;, are P-innocent strategies but not O-
innocent. The addition of O-knowing-plays in the denotations is conservative for observational
equivalence because the full-abstraction result holds in the category quotiented by the intrinsic
preorder, and in the definition of the preorder, the “test” strategy « ranges over innocent
strategies only.

Chapter 4. A Concrete Presentation of Game Semantics 147

4.3 Extension to PCF and TA

In this section, we show how to extend the game-semantic correspondence established for the
lambda calculus to other languages such as PCF and IA.

4.3.1 PCF fragment

The Y combinator needs a special treatment. In order to deal with it, we use an idea from
Abramsky and McCusker’s tutorial on game semantics | |: we consider the sublanguage
PCF; of PCF in which the only allowed use of the Y combinator is in terms of the form Y (Az4.z)
for some type A. We will write Q24 to denote the non-terminating term Y (Az?.x) for a given
type A.

We introduce the syntactic approrimants to Yo M:

YIM = THQu:A
Yit'M = MY"M) .
For every PCF term M and natural number n, we define M,, to be the PCF; term obtained from

M by replacing each subterm of the form YN with Y"N,,. We then have [M] = U M,
[, lemma 16].

new [[

4.3.1.1 Computation tree

In order to define the notion of computation tree for PCF terms, we first extend the inductive
definition of computation tree for simply-typed terms (Def. 4.1.2) to PCF; terms by adding the
new inductive case:

T(Q(A17~~~7An70)) =)\xfl . xf".J_

where | is a special constant representing the non-terminating computation of ground type €2,.

We now introduce a partial order on the set of trees. A tree t is formally defined by a
labelling function ¢ : T — L where T, called the domain of t and written dom(t), is a non-
empty prefix-closed subset of some free monoid X* and L denotes the set of possible labels.
Intuitively, T' represents the structure of the tree—the set of all paths—and ¢ is the labelling
function mapping paths to labels. Trees are ordered using the approzimation ordering | ,
section 1]: we write ¢’ C t if the tree ' is obtained from ¢ by replacing some of its subtrees by
1. Formally:

t'Ct < dom(t') Cdom(t) ANVw € dom(t').(t' (w) = t(w) V' (w) = L) .

The set of all trees together with the approximation ordering form a complete partial order.
Here we take L to be the set of labels consisting of the »-constants, @, the special constant
1, variables, and abstractions of any sequence of variables. It is easy to check that the sequence
of computation trees (7(M,,))new is a chain. We can therefore define the computation tree of a
PCF term M to be the least upper-bound of the chain of computation trees of its approximants:

(M) = U (T(Mn))new -

In other words, we construct the computation tree by expanding ad infinitum any subterm of
the form Y M. Thus for a term of the form Y4 F with A = (Ay,..., A,,0), the computation tree
is the unique (up to alpha-conversion) infinite tree that is solution of the equation:

T(YAF) = X4 7(F) 7(YaF) 7(x1) ... 7(x) (4.13)

where T = x7 ...z, are fresh variables.
We will write (CT,C) to denote the set of computation trees of PCF terms ordered by the
approximation ordering C defined above. Clearly (CT,C) is also a complete partial order.

148 Chapter 4. A Concrete Presentation of Game Semantics

Example 4.3.1. Take M =Y (Afz.fx) where f : (0,0) and z : 0. Its computation tree 7(M),
is the tree representation of the n-long nf of the infinite term (Afz.fx)((Afz.fz)(Afz.fz)(....
It is the unique (up to alpha conversion) solution of the following equation on trees:

The remaining operators of PCF are treated as standard constants and the corresponding
computation trees are constructed from the n-long normal form in the standard way. For instance
the diagram below shows the computation tree for cond b z y (left) and Az.5 (right):

Abxy A
co‘nd {"')
A /‘\ A
yor

The node labelled 5 has, like any other node, children value-leaves which are not represented on
the diagram above for simplicity.

4.3.1.2 Traversal

New traversal rules are added to interpret PCF constants. The arithmetic constants are traversed
as follows:

e (Nat) If - n is a traversal where n denotes a node labelled with some numeral constant
1 € N then ¢t - n’-/fn is also a traversal where i,, denotes the value-leaf of m corresponding
to the value 7 € N.

1
e (Succ) If ¢ - succ is a traversal and A denotes the only child node of succ then ¢ - suéc - A

is also a traversal.
/ ‘/1_\"/\ . . ! "/\ . .
o (Succ’) If t1 - succ - A -ty - iy is a traversal for ¢ € N then t1 - suéc- Xty -y - (1 + 1)succ 18
also a traversal.

e The rules for pred are defined similarly to (Succ) and (Succ’).

The conditional operator is implemented as follows. (We recall that a cond-node in the
computation tree has three children nodes numbered from 1 to 3 corresponding to the three

parameters of the conditional operator.)
1

e (Cond-If) If t; - cond is a traversal and A\ denotes the first child of cond then ¢; - cond - \ is
also a traversal. 24 [i> 0]

e (Cond-ThenElse) If ¢; - cond - A - t9 - i) is a traversal then so is ¢; - cond - A - tg - iy - A.

e (Cond’) If t -cond-ty- A-t3-iy is a traversal for Kk = 2 or k = 3 then the sequence

t1-cond -ty - A-t3- 1) - icong 1S also a traversal.

It is easy to verify that these traversal rules are all well-behaved. This completes the definition
of traversals for PCF.

Chapter 4. A Concrete Presentation of Game Semantics 149

4.3.1.3 Revealed semantics

We recall that the definition of the syntactically-revealed semantics (Sec. 4.2.1, Def. 4.2.6) ac-
counts for the presence of interpreted constants: For every Y-constant f:(A1,..., A, B) in the
language, the revealed strategy of a term of the form A.fNy... N, is defined as:

(MEFN1- N = (N1, (N D) 8P []

where [f] is the standard strategy denotation of f.

4.3.1.4 Correspondence theorem

We now show how to extend the Correspondence Theorem of the simply-typed lambda calculus
(Theorem 4.2.2) to PCF.

Lemma 4.3.1. Let (S, C) denote the set of sets of justified sequences of nodes ordered by subset
inclusion. The function Trav()!® : (CT,C) — (S, C) is continuous.

Proof. - Monotonicity: Let T and T” be two computation trees such that T'C T" and let ¢ be
some traversal of T'. Traversals ending with a node labelled | are maximal therefore | can
only occur at the last position in a traversal. We prove the following properties:

(i) If t =t - n with n # L then t is a traversal of T”;

(ii) if t =¢t1 - L then t; € Trav(T").
(i) By induction on the length of ¢. It is trivial for the empty traversal. Suppose that t = t1-n
is a traversal where n # 1 and t; is a traversal of T'. We observe that in all traversal rules,
the produced traversal is of the form ¢; - n where n is defined to be a child node or value-leaf of

some node m occurring in t;. Moreover, the choice of the node n only depends on the traversal
t1 (provided that the constant rules are well-behaved).

Since T'C T, any node m occurring in ¢; belongs to T” and the children nodes of m in T also
belong to the tree 7. Hence n is also present in 7" and the rule used to produce the traversal
t of T can be used to produce the traversal ¢ of T".

(ii) L can only occur at the last position in a traversal therefore ¢; does not end with L and
by (i) we have t; € Trav(T’).

Hence we have:

Trav(T)!® = {t | r |t € Trav(T)}
={(t-n)r|t-neTrav(T)An#L}U{t-L)Ir|t-LeTraw(T)}
(by (i) and (ii)) C{(t-n)|r|t-neTrav(T")An# L}U{t|r|te Trav(T")}
= Trav(T)'® .
- Continuity: Let t € Trav (U T,) We write t; for the finite prefix of ¢ of length 7. The

new - N
set of traversals is prefix-closed therefore t; € 7rav (UnEw Tn) for every 7. Since t; has finite

length we have t; € Trav(T},) for some j; € w. Therefore we have:

tlr= (\/ t) | r (the sequence (t;);e., converges to t)
(S

= U(t, [r) since _ [r is continuous (Lemma 4.1.1)
€W

€ U Trav(T},)'® since t; € Trav(T},)

€W

150 Chapter 4. A Concrete Presentation of Game Semantics

- U Trav(T;)'® since {j; | i € w} Cw.
€W

Hence Trav({J, .., T,)!® C Uneo Trav(Ty) ®, =

new - N

Proposition 4.3.1. Let ' M : T be a PCF term and r be the root of T(M). Then:

(1) ou(Trav(M)") = (M) ,

Proof. We first show the result for PCFy: For (i), the proof is an induction identical to the proof
of Theorem 4.2.2; we just need to complete it with the new constants cases. The cases succ,
pred, cond and numeral constants are straightforward. Case M = €,: We have Trav(Q,) =
Pref({\ - 1}) therefore Trav(Q,)!® = Pref({\}) and [Q,] = Pref({¢}) with ©(\) = ¢. Hence
[Q0] = ©(Trav(9,)!®). (ii) is a direct consequence of (i) and the Projection Lemma 4.2.7.

We now extend the result to PCF. Let M be a PCF term, we have:

[M] = U [My] [, lemma 16]
new
= U Trav(r(M,))® since M, is a PCF; term
new
= Trav(U 7(M,))'® by continuity of Trav(_)!®, Lemma 4.3.1
= Trav(:?;\}f)) ® by definition of 7(M)
= Trav(M)'® . O

Hence by Corollary 4.2.1, ¢ defines a bijection from Zrav(M)'® to [M]:

~

¢ : Trav(M)!® — [M] .

Example 4.3.2 (Successor operator). Consider the term M = succ 5 whose computation tree
is represented below. Vertices attached to their parent node with a dashed line represent the
value-leaves.

AN
suee 0 1T
N
5.0 i

ST

The following sequence of nodes is a traversal of 7(M):

0. N .
t=MA -succ- A -5H-55 951 bgycc - 60 .

The subsequences t* and t | r are given by:

0 s, —0.¢
t —)\)\ 5)\1 6)\0 and tr’l“—)\ 6)\0.

The sequence ¢(t*) = qo - ¢5 - g5 - Dg, Where go and g5 both denote the root of the flat arena over
N, corresponds to a play of the syntactically-revealed semantics. The sequence ¢(t [) = qo - 5y,
corresponds to a play of the standard semantics. The interaction play (t*) is represented below:

Chapter 4. A Concrete Presentation of Game Semantics 151

1 > N =N
q0
a5
S¢s
640
Example 4.3.3 (Conditional).
Azy Take the computation tree represented on the left (value-leaves are not
co‘nd shown). For every value v € D we have the following traversal:
Al A2 A3
{ x‘ :‘y t=MAzxy-cond- A\ 11 - A3 Y Uy - V)3 - Vcond * Vrzy -

Figure 4.5: Computa- Tpe subsequence t* is given by:
tion tree of the term

Azy.cond 1 x y. £ = Ary - AL A3 Y Uy - VA3 Unay

and the core of ¢ [® is given by:

AN
LI ®=Axy -y Uy Uxgy -

By the correspondence theorem, the sequence of moves ¢(t*) (represented in the diagram below)
is a play of the revealed semantics, and the sequence ¢(t | ®) is the play of the standard semantics
obtained by hiding the internal moves from ¢(t*).

N x N mm o y o § x N N
/ q(())\xy)
1
e
1
2
/ ql()A)
qéy)
'qu
Vg,

Vqo

REMARK 4.3.1 (Finite representation of the computation tree) Due to the presence of the Y
combinator, computation trees of PCF terms are potentially infinite. It is possible to give an
equivalent finite representation using computation graphs. We briefly describe here how this can
be achieved.

The idea is to replace Y-recursion by p-recursion: each subterm of the form Y4 M is replaced
by puf.M f for f fresh. The computation graph is then obtained from the eta-long normal form of
the term. The abstraction nodes are generalized to take into account p binders: an abstraction
node is of the form MZ where T is a list of y-bound and A-bound variables where the p-bound
variables are written in parenthesis to distinguish them from A-bound variables.

The computation graph of Y4(AfA.M) for A = (Ay,...,A,,0) is then obtained from the
syntax representation of \(f)z1...x,.[M]| by adding a child edge going from each occurrence
of the recursion variable f in [M] to the root M\(f)z1...zy.

152 Chapter 4. A Concrete Presentation of Game Semantics

This presentation also accounts for ground type recursion, for instance the computation graph
of the while operator of Idealized Algol defined as while C'do I =Y (\f.cond C skip (seq If))
is given by the graph of \(f).cond C skip (seq If).

The order of a generalized abstraction node is still defined as the order of the term represented
by the subtree rooted at this node. In other word, the order of WT is defined as the order of \y
where 7 is the sublist of Z obtained by removing all the recursion variables (those in parenthesis).

Bound variables in a generalized abstraction node WZ are numbered as follows: The i
A-bound variable in 7 is denoted by 4 and the " recursion variable is denoted by (i). The links
in a justified sequence of nodes are labelled accordingly.

All the traversal rules are kept unmodified. The recursion variables in the A-nodes are
ignored by the rules since such variables are numbered differently from standard variables. In
particular, the (Var) rule only applies to non-recursion variables. We only need to add a rule
to handle recursion variable: whenever a traversal meets a recursion variable f in the subgraph
7(F'), the traversal jumps to the root of the graph:

(Vareee) Ift' -mn - T ... f; is A traversal for some recursion variable f; bound
N

by WT then sois t/-n- NT... fﬁ)@

The enabling relation - needs to be adapted to allow the root to be justified by a recursion
variable (as if it was a child of the recursion variable). Since a traversal can now visit the root
multiple times, the definition of the traversal core also needs to be adapted: instead of keeping
all the nodes hereditarily enabled by the root, it keeps the nodes that are hereditarily justified by
an occurrence of the root with no justifier. The definition of the mapping v from nodes to moves
remains consistent with this notion of computation tree, and the game-semantic correspondence
follows.

4.3.2 Idealized algol

We now consider the language Idealized Algol. The general idea is the same as for PCF, however
there are some difficulties caused by the presence of the two base types var and com. We briefly
sketch how our framework can be adapted to IA without going into the details of the proof of
the Correspondence theorem.

Computation hypertree

The languages that we have considered up to now (lambda calculus and PCF) do not have
product types. Consequently, the arenas involved in their game model only have a single initial
move at most, and can therefore be regarded as trees. This property permitted us to represent
the game denotation of term directly on some representation of its abstract syntax tree—the
computation tree. This cannot be done in IA because the base type var is given by the product
com“ X exp which corresponding game has infinitely many initial moves, whereas the AST of
the term is a tree and therefore has a single root.

The overcome this mismatch, we use hypertrees instead of trees. These hypertrees provide
an abstract representation of the syntax of the term in which some nodes, called generalized
lambda nodes, are themselves constituted of (possibly infinitely many) subnodes. Furthermore
each individual subnode can have its own children nodes.

NOTATIONS 4.3.1 For every type u, we write D,, to denote the set of values of type p. We
have Deyp = N, Deon = {done} and Dyar = Dexp U Deon. For every node n, if x(n) is of type
(Ay,... Ay, B), we call B the return type of n. The set of value-leaves of a node n is given
by D,, where p is the return type of n. For conciseness, when representing value-leaves in the
hypertree, we merge all the value-leaves of a given node of type p into a single leaf labelled D,,.
For instance we use the tree notation

Chapter 4. A Concrete Presentation of Game Semantics 153

n to mean n and N for

n
| SN\ | |
Dexp 0 1 2 - Dcom done

The computation hypertree of a term with return type var has infinitely many root lambda-
nodes which are merged all-together into a single node called a generalized lambda-node.
The subnodes of a generalized lambda nodes are labelled A", A%, A% A%2 .. Suppose that M
is a term of type var, then the computation hypertree for Aé.M is obtained by relabelling the
root A-nodes A", AW0, AW \®2into A€, AWOE, AW1E, \W2¢€, ... For a term M of type exp or
com, the computation hypertree for Aé.M is computed the same way as for computation trees
of lambda-terms.

Table 4.4 defines the computation hypertree for each term-construct of IA. A generalized
lambda node is represented by a frame surrounding its subnodes (2"¢ and 6" row in the table).

Enabling relation, justified sequence

The notion of binder is redefined as follows: Given a variable node x, the binder of x is the first
node occurring in the path to the root that is a lambda node AT with x € T or a block-declaration
node new x.

The enabling relation and the definition of justified sequence is modified so that occurrences
of block-allocated variables are justified by nodes of type new x instead of lambda nodes.

Children numbering convention

Let p be a node and suppose that its i** child n has return type var. Then n is a generalized
lambda-node with subnodes \"€, A¥°¢, From the point of view of the parent node p, these
subnodes are referenced as “i.a” where 0 < i < arity(p) and o € {r} U{wy | ¥ € N}. For
instance 4.1 refers to the root labelled A"€ of the " child of p, and i.wj refers to the root

labelled \“k€.

Traversals

The following new rules are added on top of those defined in Sec. 4.1.3:

e Application rules

The rule (app) is now split up in three rules (appexp), (aPPcon) and (appvar) corresponding
to traversals ending with an @-node of return type exp, com and var respectively. The
rules (appexp); (aPPcom) are defined identically to (app) (see Sec. 4.1.3). The rule (appyar)

1S
0

0 0.k
(appvar) t -)\k?-\@ € Trav and k € {r,wp,wy,...} = t-)\k%-\@/--)\\kﬁ € Trav .

e Input-variable rules

We define the rules (InputVal®) for $ ranging in {com,var,exp}. For com and exp, the
rules are defined identically to (InputVal) of Sec. 4.1.3. The var case is implemented by
two rules:

t- N'E x-ty € Trav
t -2ty - Uy € Trav

x pending node A z €N Az:var, veD .

var

(InputValue

var)
r

t1-AYE-x -ty € Trav)
(InputValue/?*) — 5’1) 2 x pending node A z € N& Az :var .

var

t1 - xﬂnex € Trav

Chapter 4. A Concrete Presentation of Game Semantics

154
M (M)
X[
p € {com, exp})‘\ .
z_ Dy,
< D,
newx in N : pu
new X
p € {com, exp} | T~
T(N:p) Dy
X : var [)\T AW AW \w2)\w--}
Dexp T R c\ione
Dexp done
skip: com '
skip \done
done
AL

de:‘ref ‘done

deref L : exp =

7(L : var) done

assign L N : com)‘\\\
assign \\done
e
7(N :exp) 7(L :var) done
seq, N7 N3 : com)‘\ ~
p € {exp, com} seq, T- D,
T
done

T(Ny : com) 7(Ng:p)

mkvar N, N, :var [)\T AWo WL (w2)\wm]

N
mkvar " done

Dexp NS
/ ~

T(Ny) T(Nw) Dexp done

~
N ~

N ~

Table 4.4: Computation hypertrees of TA constructs

Chapter 4. A Concrete Presentation of Game Semantics 155

t-deref € Trav t-deref -n-ty-v, € Trav
(deref) — (deref”) 2. n

t-deref - € Trav

t-deref -n -ty - v, - Vgerer € 7 rav

., t-assign- A@A € Trav
(assign’) T

) t- ign € 7
(aSS|gn) asm;gn rav

t fen- \eT
- assign- rav
g t-assign-)\m)\ -\ € Trav

2.wp

/\h
t-assign-ty - \ij-t3-doney; € Trav

(assign”)

T
t-assign -ty - A7) - t3 - doneyy - doneassign € 7 TaV

t- cT t- “n-ty-v, €T
seq rav (seq’) seq n2 2 Up rav

— , T
t-seq-n-ty-v,-mé€Trav

(seq)

1
t-seq-n € Trav

2
t-se‘q/-t_g-\m-tg-vme’]'rav

(seq”)

t-seq-ty-m- 13- Uy - Vseq € Trav

t-N'€é-mkvar € Trav t - mkvar -)\m)\ € Trav

(mkvar,) (mkvar,)

_ P /\
t-)\T§ - mkvar -)\ S TTG/U t -mkvar - A/tQ\/U)\ - Umkvar = T'I"CL’U

t- A\ . mkvar € Trav

(mkvary,) ——
t- AWkE -mkvar - \fj € Trav

— —
(mkvar) t- \k{ -mkvar - A\j - tg - doneyy € Trav
w

— — T~
t- AYF¢ -mkvar - A7) - t3 - done)y; - donepgyar € 7 rav
where v denotes some value from D.

Table 4.5: Traversal rules for IA constants.

156 Chapter 4. A Concrete Presentation of Game Semantics

o JA constants rules

The rules for the constants of TA are given in Table 4.5. These rules for new are purely
structural, they are defined similarly to (appexp), (aPPcom) and (appPdaone)-

The rules from Table 4.5 do not suffice to model mkvar however. We need to specify what
happens when reaching a variable node that is hereditarily justified by the constant mkvar.
Take for instance the term assign (mkvar (Az.M)N)7. The rule (mkvar])) permits one to
pass the node mkvar and to continue with the traversal of the computation tree of A\z.M,
which may subsequently lead to some occurrence of x. The behaviour of the traversal at
this point is specified by the traversal rules defined in the next paragraph.

o Variable rules

Let x be an internal variable node. Then by definition it is either hereditarily justified by
an @-node or by a Y-constant node.

— Suppose that 2’s binder is a lambda-node AT and 2 € N°".
This case is a generalization of the rule (Var) (Sec. 4.1.3). The only difference is that
for variables of type var, the lambda nodes preceding = in the traversal determines
the lambda-node that is visited next:

7

t-n-AT... .\ -z, €T
(Varyar) DAL A T T rav z; e Nobhnae{ryu{w | ieN} .

var

i

t-n-)\mi-)\me’frav

— Suppose that z’s binder is a lambda-node and z € N¥=". Then 2’s binder is nec-
essarily the second child of a mkvar-node (since mkvar is the only constant of order
greater than 0).

t- A€ . mkvar -)\m e Trav

(mkvar-Var) —
t- AWkE -mkvar - Az - by - - ky € Trav

— Suppose that z is a block-allocated variable.

Given a block-declaration new x, we call assignment of x any segment of traversal of
the form A“#¢ -z for some k € Deyp and occurrence x of a node bound by new z. We
call k£ the value assigned to x.

t- A€ x € Trav - e Nme

(new-Vary,) o

t- \"k€ . 2~ done, € Trav

A
te - bty - NEnEeT
1-new -ty A rav where £ € N is the last value as-

t-new -ty NE-4ky € Trav signed to x in t9, or 0 if there is no
such assignment.

(new-Vary)

4.3.2.1 Game semantics correspondence

The properties that we proved for computation trees and traversals of the lambda calculus with
constants can easily be lifted to computation hypertrees of IA. In particular:

e Constant traversal rules are well-behaved (for order-0 and order-1 constants, this is a
consequence of Lemma 4.1.3; for mkvar and new this can be easily verified);

e P-view of traversals are paths in the computation hypertrees;

Chapter 4. A Concrete Presentation of Game Semantics 157

e For beta-normal terms, the P-view of a traversal core is the core of the P-view (Lemma
4.1.20, and the O-view of a traversal is the O-view of its core (Lemma 4.1.18);

e There is a mapping from vertices of the computation hypertrees to moves in the interaction
game semantics;

e There is a correspondence between traversals of the computation tree and plays in inter-
action game semantics;

e Consequently, there is a correspondence between the standard game semantics and the set
of justified sequences of nodes 7rav(M)'®.

4.4 Conclusion and related works

We have given a new presentation of game semantics based on the theory of traversals. This
presentation is concrete in the sense that the traversal denotation carries syntactic information
about the term. We established the connection with the Hyland-Ong game semantics by means
of a Correspondence Theorem: The set of traversals of a term is isomorphic to the revealed
game denotation of the term.

One advantage of the traversal theory lies in its ability to compute beta-reduction locally
without having to perform term substitution. As observed by Danos et al. | |, “the
interaction processes at work in game semantics are implementations of linear head reduction”.
In that regards, the traversals theory can be viewed as a rule-based implementation of the head
linear reduction strategy |]. Although the idea of evaluating a term using this strategy is not
new, our presentation has several advantages and novelties. Firstly, the Correspondence theorem
establishes a clear correspondence with game semantics, namely that traversals gives you a way
to compute precisely the revealed game denotation of a term. To our knowledge, although the
notion of revealed game semantics was mentioned in previous works [|, it was never formally
defined. Secondly, our presentation highlights more clearly the algorithmic aspect of game
semantics. The rule-based definition of traversals lends itself well to automaton characterization.
An example is the characterization of higher-order recursion schemes by collapsible higher-order
pushdown automata |].

Another advantage of the traversal theory is its efficiency for effectively computing the game-
semantic denotation of a term. The traditional approach is to proceed bottom-up by appealing
to compositionality. Although the compositional nature of game semantics is very attractive
from a theoretical point of view, in practice it is not efficient to compute a denotation in that
way. Indeed, for every subterm one has to compute all the possible ways to interact with the
environment for that subterm. But this denotation is then immediately composed with another
subterm, which determines part of the environment’s behaviour, thus it was wasteful in the first
place to consider all the possible behaviours of the environment for the first term.

The traversal theory follows a top-down approach which means that we only consider possible
behaviour of the outermost environment. Moreover contrary to the compositional method, there
is no need to implement any composition mechanism: the set of traversals is just obtained by
following the traversal rules; the hiding of internal nodes is postponed until the end.

The lazy nature of the traversal evaluation provides a further source of efficiency: the beta-
redexes are computed “on-demand” instead of performing a global substitution.

Last but not least, we believe that the syntactic correspondence between game semantics and
its syntax is of pedagogical interest. Game semantics is often found hard to understand due to
some obscure technical definitions. A concrete presentation such as the one given by the traversal
theory, allows one to explain game-semantic concepts (such as P-view, innocence, visibility) from
a programmer point of view. I have implemented a prototype tool using the F# programming
language, which among other things, illustrates the theory of traversals []. The tool lets

158 Chapter 4. A Concrete Presentation of Game Semantics

the user “play” the game induced by a simply-typed term (or a higher-order grammar) just by
choosing nodes from the computation tree. As the game unfolds the corresponding traversal is
shown. A calculator mode allows the user to perform various operations on justified sequences.
(All the examples from this chapter were generated using this tool.)

Further correspondences

The traversal theory that we have presented here captures the lambda calculus fragment of the
game model of call-by-name programming languages such as PCF and Idealized Algol. A natural
way to extend this work would be to define the appropriate notion of traversal corresponding to
the call-by-value games | ,].

Applications

The theory of traversal has applications in several domains of research:

Verification

The theory of traversal was originally introduced by Ong to study the decidability of MSO
theories of infinite trees generated by higher-order recursion schemes. This result was recently
used by Kobayashi to develop a novel framework for verification of temporal properties of higher-
order functional programs |].

Another promising application of the traversal theory concerns the study of reachability
problems. In its most general form, the reachability problem for programming languages can
informally be stated as: Given a term M and coloured subterm N, is there a context C[—]
such that evaluating C[M] involves the evaluation of N 2. In an ongoing research project, Luke
Ong and Nikos Tzevelekos make use of the traversal theory to study several variations of the
reachability problem for finitary PCF [OT].

Automata theory

The traversal theory has led to an equi-expressivity result between a certain type of automa-
ton device called collapsible pushdown automaton (CPDA) and higher-order recursion schemes
(HORS) | |. One direction of this proof relies on the traversal theory: for a given HORS,
a CPDA is constructed that computes precisely the set of traversals over the computation tree
of the HORS.

A crucial point in this encoding is that structures generated by recursion schemes are of
ground type. Because such structures do not interact with the environment, their game-semantic
denotation is relatively simple. In particular, the O-view of the traversal does not play any role
in the traversal rules and therefore the automaton does not need to calculate or remember it. A
natural extension would be a similar automata-characterization for higher-order structures such
as simply-typed terms.

Pattern matching

Higher-order matching is the following problem: Given an equation M = N where M is an open
simply-typed term and N is a closed simply-typed term, is there a solution substitution 6 such
that M6 and N have the same (n-normal form? Huet conjectured in 1976 that this problem
is decidable []. It was proved only recently by Colin Stirling that it is indeed the case
[Stioo].

Stirling’s argument is based on a game-theoretic argument, namely the concept of tree-
checking games. As pointed out by Luke Ong, Stirling’s games are closely related to the innocent
game semantics framework provided by the theory of traversals. The concept of traversals is

Chapter 4. A Concrete Presentation of Game Semantics 159

implicitly present in Stirling’s proof (though the notion of justification pointers is replaced by
“iteratively defined look-up tables”).

Analyzing syntactic constraints

The connection between syntax and semantics provided by the traversal theory enables us to
analyze the effect of a given syntactic constraint on the game model. The next chapter is an
example of such an application: By making simple observations about the computation tree of
safe terms, the Correspondence Theorem allows us to show that their strategy denotations are
of a particular kind: Their plays satisfy a certain property called incremental justification.

160 Chapter 4. A Concrete Presentation of Game Semantics

Chapter 5

Syntactic Analysis of the (Game
Denotation of Safe Terms

Our aim is to characterize safety by game semantics. This chapter assumes that the reader
is familiar with the basics of game semantics introduced in Chapter 2. Recall that a justified
sequence over an arena is an alternating sequence of O-moves and P-moves such that every
move m, except the opening move, has a pointer to some earlier occurrence of the move mg
such that mg enables m in the arena. A play is just a justified sequence that satisfies Visibility
and Well-Bracketing. A basic result in game semantics is that lambda-terms are denoted by
innocent strategies, which are strategies that depend only on the P-view of a play. The main
result (Theorem 5.4.1) of this section is that if a lambda-term is safe, then its game semantics (is
an innocent strategy that) is, what we call, P-incrementally justified. In such a strategy, pointers
emanating from the P-moves of a play are uniquely reconstructible from the underlying sequence
of moves and pointers from the O-moves therein: specifically a P-question always points to the
last pending O-question (in the P-view) of a greater order.

The proof of Theorem 5.4.1 relies on the Correspondence Theorem from Chapter 4 that
relates the strategy denotation of a lambda-term M to the set of traversals over a souped-up
abstract syntax tree of the n-long normal form of M. In the language of game semantics, this
theorem says that traversals are just (concrete representations of) the uncovering (in the sense
of Hyland and Ong |]) of plays in the strategy denotation.

Since the safety condition is a syntactic constraint, it seems difficult to give a characterization
in term of game semantics, as game models are in essence syntax-independent. This is where
the Correspondence Theorem comes to the rescue by helping us to reason syntactically about
the game denotation of a term. This ultimately permits us to give a precise game-semantic
characterization of the safety restriction.

One of the main results of this chapter (Proposition 5.4.2) states that pointers in a play of a
strategy denoting a safe term can be uniquely recovered from O-questions’ justification pointers
and from the underlying sequence of moves. In the first section we introduce the notion of
P-incrementally justified strategies, a particular kind of strategy in which justification pointers
emanating from P-moves can be reconstructed uniquely from the underlying sequences of moves
and from O-moves’ pointers. We then introduce the notion of incrementally-bound computation
trees and establish a relationship between incremental-binding and P-incremental justification
(Proposition 5.3.2). Finally, we show that safe simply-typed terms have incrementally-bound
computation trees, consequently their game denotation is P-incrementally justified.

The third section of this chapter is concerned with the safe lambda calculus without in-
terpreted constants. In the following sections we extend the result by taking into account the
interpreted constants of PCF and IA: we show that safe PCF and safe IA terms are denoted by
P-incrementally justified strategies.

Some of the results presented in this chapter were first published in TLCA |]. They
are reproduced here with complete proofs and generalized to the languages PCF and IA.

162 Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms

5.1 P-incrementally justified strategies

In the game semantics literature, some authors use the term “order of a question move” to refer
to the length of the path in the arena to the initial move that hereditarily enables it. For the
purpose of studying the safety restriction, however, it will be convenient instead to call it the
level of the node, and reserve the term “order” to refer to another quantity: The order of
a question move ¢, written ord ¢, is defined as the length of the longest enabling-chain of
questions starting from ¢ minus 1 (see Def 2.3.15). Thus the order of an arena can be defined
in term of move-order: it is precisely the greatest order of its initial moves.

Definition 5.1.1. A strategy o is said to be P-incrementally justified if for every play
sq € o where q is a P-question, ¢ points to the last unanswered O-question in "s' with order
strictly greater than ord q.

Note that although the pointer of ¢ is determined by the P-view, the choice of the move ¢
itself can be based on the whole history of the play. Thus P-incremental justification does not
imply innocence.

The definition suggests an algorithm that, given a play of a P-incrementally justified de-
notation, uniquely recovers the pointers from the underlying sequence of moves and from the
pointers associated to the O-moves therein. Hence:

Lemma 5.1.1. In P-incrementally justified strategies, pointers emanating from P-moves are
superfluous.

Proof. Suppose o is a P-incrementally justified strategy. We prove that pointers attached to
P-moves in a play s € o are uniquely recoverable by induction on the length of s. Base case: If
|s] <1 then there is no pointer to recover. Step case: Suppose sm € o. If m is an answer move
then by the well-bracketing condition m points to the last unanswered question in s. If m is a
P-question then by P-incremental justification of o, m points to the last O-move in "s™ with
order strictly greater than ordg. Since we have access to O-moves’ pointers, we can compute
the P-view "s™. Hence m’s pointer is uniquely recoverable. O

Example 5.1.1. Copycat strategies, such as the identity strategy id4 on game A or the evalu-
ation map evy g of type (A — B) x A — B, are all P-incrementally justified.!

5.2 Dead code elimination

We recall that the S-normal form of a term of an applied lambda calculus is the (possibly infinite)
term obtained by reducing all the §-redexes. Because of the presence of interpreted constants, a
B-normal form is not necessarily normal with respect to the small-step semantics. For instance
in PCF, the term cond0 M N is G-normal but it reduces in one step to M.

We say that a coloured subterm N of M : (A4,...,A,,0) is dead code if for every context
C[—] such that C[M] is of ground type, every reduction sequence starting from C[M] does
not involve a reduction of the subterm N; formally, there is no reduction sequence of the form
C[M] — ... — E[o(N)] — E[N'] for some evaluation context F[—], term N’, and substitution
o of free variables of N.

Example 5.2.1. The subterm N in cond0M N is dead-code, whereas in Az.(cond0z N) M
the subterm x is not dead-code.

The dead code elimination problem is the converse of the reachability problem: Given
a term M containing a coloured subterm N of M, is there a context C[—] such that C[M] is

In such strategies, a P-move m is justified as follows: either m points to the immediately preceding move in
the P-view, or the preceding move is of smaller order and m is justified by the second last O-move in the P-view.

Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms 163

of ground type, and a reduction sequence C[M]| — ... — E[o(N)] for some evaluation context
E[—] and substitution o of free variables of N7 The reachability problem is clearly not trivial. In
fact for PCF it is not decidable since the halting problem for PCF—which is a Turing-complete
language—can be encoded into a reachability problem.

Let M be a term in eta-long normal form. Occurrences of variables that are in the dead
code of M are called dead occurrences. Given a term M, we define M™* as the term obtained
from the (possibly infinite) n-long normal form of M by substituting all subterms of the form
xNj ... Ny where = : (By,...,Byg,0) is a dead variable occurrence, by the constant L of type o.
This process is called dead variable elimination. We write 7(M)* to denote the equivalent
transformation on the computation tree of M.

Clearly we have:

Trav(M*) C Trav(M) . (5.1)

Reachability by traversals

A node of a computation tree is said to be reachable if there exists a traversal that visits it.
By the Correspondence Theorem, it is easy to show that if a node is not reachable then the
corresponding variable occurrence is a dead occurrence. In particular:

Lemma 5.2.1. Ifz is a variable node in 7(M)* then the corresponding node in 7(M) is reachable
by some traversal.

However the converse does not hold. This is because the Correspondence Theorem concerns
the intentional innocent game model where the Opponent is not restricted to play determinis-
tically, let alone innocently. Thus in this model, the strategy denotation accounts for contexts
C[—] that are not part of the language considered, whereas in the definition of dead-code elim-
ination, the context ranges over term of the language only. Hence a variable node may be
reachable by a traversal (as defined in Chapter 4) but not reachable in the sense defined above
(with respect to the operational semantics of the language).

Example 5.2.2. Take the following simply-typed lambda-term:
M = Ap(90) 2040 2°.0x(pyz) .

The node of its computation tree corresponding to the occurrence y is reachable by the traversal
Apzyz - @ - X+ - A-y but there is no simply-typed context C[—] such that the evaluation of
C[M] leads to the evaluation of y.

The two notions of reachability can be reconciled by enforcing O-innocence in the rules of
Table 4.3, so that whenever a lambda node is visited, it is uniquely determined by the O-view
of the traversal at that point.

5.3 Incremental binding

In this section, we work in the general setting of an applied simply-typed lambda calculus
extended with a stock of interpreted constants ¥ (but without recursion), whose terms are of
the form I' = M : T. We consider its safe fragment, as defined in Sec 3.5.3, whose terms are
written I' = M : T

We fix a term I' = M : T of this unspecified language for the rest of this section. We assume
that the language has a fully-abstract game-semantic model. We write [I' - M : T] to denote
the strategy denotation in the intensional model. We further assume that there are well-behaved
(see Def. 4.1.14) traversal rules modeling the behaviour of the constants in such a way that the
game-semantic correspondence (Theorem 4.2.2) holds for that language.

164 Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms

NOTATIONS 5.3.1 We call path any sequence of nodes such that for every two consecutive nodes
a-b in the sequence, a is the parent of b. We write [n1,ns] to denote, if it exists, the unique path
going from node nq to node no equipped with the justification pointers induced by the enabling
relation F (A node has a unique enabler in the path to the root thus for each occurrence in
[n1,m2] there is at most one occurrence of its enabler in [ng,ns]). We write |ni, no] for the
sub-sequence of [n1,ns| obtained by removing n; together with all the associated pointers.

The symbol ® denotes the root of the computation tree 7(M), N® denotes the subset of
N consisting of nodes that are hereditarily enabled by ®, and N> denotes the nodes that are
hereditarily enabled by some constant in .

Definition

Recall from the definition of computation trees (Chapter 4) that a variable node n labelled x is
said to be bound by a node m if m is the closest node in the path from n to the root such that
m is labelled A\¢ with € £&. Thus the binder node always occurs in the path from the variable
node that it binds to the root. We now introduce a class of computation trees in which the
binder node is uniquely determined by the nodes’ orders.

Definition 5.3.1 (Incrementally-bound computation tree). Let A be a subset of nodes of the
computation tree.

(i) A variable node x of a computation tree is said to be A-incrementally-bound if its
enabler is the first A-node from A in the path to the root that has order strictly greater
than ord z. Formally:

x is enabled by b € [®,2] N A ;
x is A-incrementally-bound <= ordb > ord x
VA-node n’ €n,z] N A.ordn’ <ordz .

This definition can be split into two cases:

(a) x is bound by the first A-node from A occurring in the path to the root that has order
strictly greater than ord x.

(b) or z is a free variable and all the A-nodes from A occurring in the path to the root

except the root have order smaller or equal to ord x.

(ii) A computation tree is said to be A-incrementally-bound, also abbreviated A-i.b., if all
the variable nodes from A are A-incrementally-bound

(iii) A node (resp. a tree) is incrementally-bound if it is (N \ N*")-incrementally-bound
where N is the entire set of nodes of the computation tree and N> is the set of nodes
hereditarily justified by some constant node.

Lemma 5.3.1.

(i) For every two sets of nodes A and B satisfying A C B, B-incremental-binding implies
A-incremental-binding.

(i) T(M) is A-incrementally bound if and only if T(closure(M)) is.

where closure(M) denotes the closed term obtained by abstracting the free variables in M (see
Sec. 2.1).

Proof. (i) follows immediately from the definition. (ii) This is because the computation trees
7(M) and 7(closure(M)) are isomorphic and the enabling relation F is defined identically on
these two trees (since free variable nodes are enabled by the root). O

Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms 165

Safety and incremental binding

We recall that a term is almost safe if it can be written Az ...x,.Ng... N, for some n,p > 0
where N; is safe for all 0 < i < p. It is an almost safe application if further n = 0 (i.e., no
abstraction).

Proposition 5.3.1 (Safe terms have incrementally-bound computation trees). Let ' = M : T
be a term of some applied typed lambda calculus (without recursion).

(i) If M is almost safe then 7(M) is incrementally-bound ;

(ii) conversely, if T(M) is incrementally-bound then the n-long normal form of M is almost
safe, and safe if further M is closed.

Proof. (i) Suppose that M is almost safe. Computation trees are defined modulo eta-long normal
expansion thus since this transformation preserves almost safety (Lemma 3.1.16) we can assume
that M is in eta-long nf. By the previous lemma, to show that 7(M) is incrementally-bound we
just have to show that 7(closure(M)) is incrementally-bound. We now consider 7(closure(M)).

In an applied safe lambda calculus, the I'-variables with the lowest order must be all ab-
stracted at once when applying the abstraction rule. Since the computation tree merges consec-
utive abstractions into a single node, any I'-variable x occurring free in the subtree rooted at a
A-node \é ¢ N> different from the root must have order greater or equal to ord Aé. Conversely,
if a lambda node \¢ binds a variable node z then its order is 1 + max, g ord z > ord z.

Let x be a I-variable node in 7(closure(M)). Its enabler necessarily occurs in the path to
the root, therefore, according to the previous observation, x must be bound by the first A-node
occurring in [®, 2]\ N>" with order strictly greater than ord z. Hence 7 is incrementally-bound.

(ii) We first show the result for closed term. Let = M : T be a closed term such that 7(M)
is incrementally-bound. We assume that M is already in 7-long normal form. We prove by
induction that M is safe. The base case M = M.« for some variable or constant « is trivial.
Step case: M = NN ... N,. Let 1 < i <p. Each N; can be written A\7;. N/ where N/ is not an
abstraction. By the induction hypothesis, A\é.N; = AEW.NZ-’ is safe which means that the term
N/ is also safe: we have T Fs N/ : A; for some type A;. Let z be a variable occurring free
in N/. Since M is closed, z is either bound by A7y or A, In the latter case, since 7(M) is
i.b. we have that ord z is smaller than ord Ay = ord V;, thus in both case we are allowed to
abstract the variables 771 using the rule (abs), which shows that N; is safe. Since all the N;s are
safe and the term Nj... N, : o is of order 0, by the rule (app) we have that Ny ... N, is safe:
€Fs N1...N,:o0. The rule (abs) then gives us the sequent kg A&. Ny ... N,,.

Now if M is open, by the preceding case we have that closure(M) is safe. But by “pealing-off”
abstractions from a safe term we obtain an almost safe term, thus M is almost safe. O

Note that the hypothesis that M is closed in (ii) is necessary. Take for instance the two
terms Axy.r and A\y.z, where x,y : 0. Their have isomorphic incrementally-bound computation
trees. But Azy.x is safe and Ay.z is only almost safe.

For the second part of this proposition a slightly stronger result holds if the term is G-normal
and does not contain any interpreted constant:

Corollary 5.3.1. Let M be a B-normal term containing no interpreted constant. If all the input
variables are incrementally-bound then the n-long normal form of M is almost safe, and safe if
further M is closed.

This is simply because in the computation tree of such terms all the variable nodes are
input-variable nodes. This stronger result does not hold for terms containing redexes: for every
unsafe closed term U, the term (Au.u) U is unsafe but the only input-variable is u and it is
incrementally-bound. It does not hold either for terms with interpreted constants: for every
closed unsafe term U of type exp, the PCF term succ U has no input variable but it is unsafe.

166 Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms

Corollary 5.3.2. If 7(M) is incrementally-bound and M —g, N then 7(N) is incrementally-
bound.

Proof. Suppose that 7(M) is i.b. Then by Proposition 5.3.1(ii) the eta-long normal form of M is
almost safe, therefore so is M by Lemma 3.1.16. But almost safety is preserved by (s-reduction
(Lemma 3.1.17) therefore N is almost safe, and by Proposition 5.3.1(i), 7(/V) is incrementally-
bound. 0

Note that this corollary cannot be generalized to A-incremental-binding for every set of
node A. Take for instance the term M = Au®v((©0)0) (\z°.v(A2°.2))u which beta-reduces to
N = Muv.v(Az.u). The computation trees are:

T(M) = # 7(N) :)\‘M
@ v
/ N\ |
)\‘m /‘\ Az
v u Q‘i_
|
Az
'

If we take A to be the set of nodes that are hereditarily enabled by the root (underlined in the
figure above) then 7(M) is A-incrementally-bound but 7(NN) is not.

Incremental justification and incremental binding

Proposition 5.3.2 (Incremental-binding and P-incremental justification). Let T'+ M : T be a
term-in-context of some applied typed lambda calculus.

(i) Suppose M is B-normal. If all the reachable input-variable nodes of the computation tree
T(I'= M : T) are incrementally bound then [I' = M : T is P-incrementally justified.

(i) If [I' = M :T] is P-incrementally justified then all the reachable input-variable nodes of
the computation tree (' = M : T) are N® -incrementally bound.

Proof. (i) Suppose M is a -nf. W.lLo.g we can assume that M is a closed term since the
incremental-binding property is conserved when taking the closure of a term and since the
denotation of the closure is isomorphic to the denotation of the term.

Suppose that all the reachable input-variable nodes of 7(M) are incrementally bound. We
want to show that [M] is P-incrementally justified. Take a play s € [M] ending with a question
P-move q. By the Correspondence Theorem 4.2.2, there is a traversal ¢ of 7(M) starting with
an occurrence r of the root ® such that ¢ (¢t [7) = s. We assume ¢ to be the shortest such
traversal, so that the last occurrence of t—mame it n—is hereditarily justified by r, and is
by definition an occurrence of a reachable node. Since s maps n to the P-question ¢, n is
necessarily an occurrence of a variable node z. By Lemma 4.2.6 (iv), the P-views of s and ¢ | r
are computed identically and have the same underlying sequence of justification pointers so in
particular the node n and the move ¢ both point to the same position in the justified sequence
Tt [7 and "s™ respectively. Further by Lemma 4.2.6(iii), 15y maps nodes of a given order to
moves of the same order. Hence showing that s is P-incrementally justified amounts to showing
that n’s justifier in ¢ is the latest lambda-node in "t | 7 with order strictly greater than ord n.

Let m denote n’s justifier in t. The term M is closed therefore x is necessarily a bound
variable and n is an occurrence of z’s binder in 7(M). The traversal ¢ is incrementally-bound
by assumption and n belongs to N\ N> = N®" therefore by definition of incremental binding
the occurrence m is the last A-node in [®,n] N N®" with order strictly greater than ordn. The

Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms 167

Path-P-view correspondence (Prop. 4.1.1) gives [®,n] N N® = Tt7 | 7 which in turn equals
Tt [r7 by Lemma 4.1.20 (it is applicable because M is a f-nf and we have assumed that the
constant traversals are well-behaved).

(ii) Suppose [M] is P-incrementally justified. Let = be a reachable input-variable node of 7(M).
There exists a traversal of the form ¢ -z in 7rav(M) such that x is hereditarily justified in ¢ by
the first occurrence r of 7(M)’s root.

The correspondence theorem shows that ¢((t-z) [r) = ¢(t [r) - p(z) belongs to [M]. Since
[M] is P-incrementally justified, ¢(z) points to the last O-move in "p(¢ |)7 with order strictly
greater than ord ¢(x). Consequently z points to the last A-node in "¢ | r7 with order strictly
greater than ord x.

But by Lemma 4.1.19, "t | ' contains "¢ [r as a subsequence, and by P-visibility m occurs
in this subsequence, thus m is also the last A-node in "t [» with order strictly greater than
ordz. By the Path-P-view correspondence (Prop. 4.1.1) this means that m is the last A-node
in [®,z[N N® with order strictly greater than ordz. Hence 7(M) is N® -incrementally-
bound. O

Corollary 5.3.3. Let I' - M : A be a term-in-context of some applied typed lambda calculus.
(i) If T(T'+ M : A) is incrementally-bound then [I'+ M : A] is P-incrementally justified;

(i) if M is B-normal and [I'+ M : A] is P-incrementally justified then T(I' = M : A)* is
incrementally-bound.

Proof. (i) Let M’ denote the beta-normal form of M. If 7(M) is incrementally bound then by
Corollary 5.3.2 so is 7(M’). So in particular all the reachable input-variable node of 7(M') are
incrementally bound. Thus by Proposition 5.3.2(i), [M] = [M'] is P-incrementally justified.

(ii) Suppose that [M] is P-incrementally justified. Consider 7(M)*. By definition, a tree is
incrementally bound just if it is N \ N>"-incrementally bound. Since M is 3-normal, variable
nodes cannot be hereditarily enabled by an @-node thus N™® = N\ N>". Thus to show that
7(M)* is incrementally-bound we just need to show that its variables are N"™®-incrementally
bound. But by definition its variable nodes are precisely those of 7(M) that are reachable.
Hence we just need to show that the reachable input variables of 7(M) are N™®-incrementally
bound. This is precisely what Proposition 5.3.2(ii) says. O

5.4 Safe lambda calculus

We now consider the special case of the pure (i.e., without interpreted constants) safe lambda
calculus. For every simply-typed term I' Fo¢ M : T we write [I' Fg¢ M : T] to refer to the
innocent game denotation of I' ¢ M : T

Lemma 5.4.1. Let M be a simply-typed lambda-term in B-normal form. All the nodes of the
computation tree of M are reachable by some traversal obtained using the rules of Table 4.3.

Proof. Since M is in G-normal form, its computation tree has no application node and therefore
all the variable nodes are hereditarily justified by the root. Hence each variable node can be
reached by the traversal consisting of the path from the root to that node (The rule (Lam) and
(InputVar) permit us to visit the variable nodes and lambda nodes respectively). O

Proposition 5.4.1. Let I' b M : T be a pure (i.e., with no interpreted constants) simply-
typed term in B-normal form. Then [I' Fg M : T] is P-incrementally justified if and only if the
computation tree (M) is incrementally-bound.

Proof. By Lemma 5.4.1, all the variable nodes are reachable in a S-normal term thus 7(M) =
7(M)* and the result follows from Corollary 5.3.3. O

168 Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms

Example 5.4.1.

(i) For every higher-order variable z : A the computation tree 7(z) is incrementally-bound.
Consequently the projection strategies are all P-incrementally justified.

(i) Consider the B-normal term T g f(Ay.z) : 0o where y :oand I'= f : 2, z : o. A3
The figure on the right represents its computation tree with the node orders
given as superscripts. The node x is not incrementally-bound because the node |
z of order 0 is not bound by the order 1 node Ay. Therefore 7(f(Ay.x)) is Ay
not incrementally-bound and by Proposition 5.4.1, [I" F& f(Ay.x) : o] is not P- !
incrementally justified. Similarly we can check that [Ay.z] is P-i.j. while [f(Ay.z)]
is not.

(iii) By the previous examples we have that [I' e f: 2] and [I' b Ay.z : 1] are both P-ij.
whereas [I' ¢ f(Ay.z) : 0] is not. Hence application does not preserve P-incremental
justification. This suggests that P-incremental justification is not a compositional prop-
erty. In Chapter 6 we will identify a sufficient condition enabling compositionality of
P-incrementally justified strategies.

Putting Proposition 5.4.1 and Proposition 5.3.1 together gives us a game-semantic charac-
terization of safety. This result was first presented in TLCA2007, | , Theorem 3(ii)]:

Theorem 5.4.1 (Characterization Theorem for the safe lambda calculus). Let T' g M : A be
a pure simply-typed term (with no interpreted constants).

(i) If M is almost safe (and in particular if it is safe) then [I' b M : A] is P-incrementally
justified.

(ii) If [I' st M : A] is P-incrementally justified then the beta-normal form of M is almost safe,
and safe if further M is closed.

Proof. (i) Since M is almost safe, by Proposition 5.3.1(i), its computation tree is incrementally-
bound. Hence by Corollary 5.3.3(i) its denotation is incrementally justified.

(ii) Since a term has the same denotation as its beta-normal form we can assume that
M is betarnormal. By Proposition 5.4.1 its computation tree is incrementally bound, and by
Proposition 5.3.1(ii), the eta-long normal form of M is safe if it is a closed term and almost safe
otherwise. The same holds for M itself since both safety and unsafety are preserved by eta-long
normal expansion (Lemma 3.1.16 and 3.1.2). O

In particular, a term has a P-incrementally justified denotation if and only its beta-normal
form is almost safe.

REMARK 5.4.1

(i) Observe that the use of the Correspondence theorem makes the proof of the above theorem
almost trivial: just by making some observations about the computation trees of safe terms,
we are able to deduce properties in the denotational game model. We do not claim here
that it is the unique way to prove the result; however any proof would require at some
point to make a connection between the binding information found in the syntax of the
term, and the justification pointers of game semantics. In our argument, this connection
is provided by the concrete presentation of game semantics from the previous chapter.

(ii) In game semantics, the Opponent’s strategy is dictated by the denotation of a term—
the context—representing the environment so that if the language considered is a pure
functional language such as PCF then the Opponent necessarily plays innocently. In the
intentional game denotation, however, all possible O-moves are accounted for at every

Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms 169

position, including those moves that would break “O-innocence”. In the extensional de-
notation, non O-innocent plays do not have any effect since the test strategy from the
intrinsic preorder ranges over P-innocent strategies.

The second part of the previous theorem crucially relies on the presence of those non
O-innocent plays: It is true that an unsafe beta normal term is denoted by a non P-i.j.
strategy, but the failure to satisfy P-incremental justification may only be due to some play
that does not affect the extensional denotation of the term. For instance the beta-normal
term Ap((20):0:0) g0 p(Az®.x)(p(Ax°.y)y) is clearly unsafe and, as is implied by (ii), its
denotation in the intentional game model is not P-i.j. since for instance the last node in
the traversal t = Ay - ! - A - ¢? - Az -y is not incrementally justified. But the traversal
t corresponds to a play that does not respect O-innocence since we have Lt 10 = Lt 2.
and the node visited after ¢! and ¢? differ.

Putting Theorem 5.4.1(i) and Lemma 5.1.1 together gives:

Proposition 5.4.2 (P’s pointers are superfluous for safe terms). In the game semantics of safe
lambda-terms, pointers emanating from P-moves are unnecessary: they are uniquely recoverable
from the underlying sequences of moves and from O-moves’ pointers.

Example 5.4.2. If justification pointers are omitted then the denotations of the two Kierstead
terms My = Af.f(Az.f(Ay.y)) and My = Af.f(Az.f(A\y.x)) from Example 3.1.1 are not distin-
guishable. In the safe lambda calculus this ambiguity disappears since M is safe whereas M is
not (The free variable x in the subterm f(Ay.x), has the same order as y but it is not abstracted
together with y).

In fact, as the last example highlights, pointers are superfluous at order 3 for safe terms
whether from P-moves or O-moves. This is because for question moves in the first two levels of
an arena (initial moves being at level 0), the associated pointers are uniquely recoverable thanks
to the visibility condition. At the third level, the question moves are all P-moves therefore their
associated pointers are uniquely recoverable by P-incremental justification. This is not true
anymore at order 4: Take the safe term v : (((0%,0%),0%),0') s ¥(Ap.¢a) : o° for some constant
a : o, where ¢ : (0,0). Its strategy denotation contains plays whose underlying sequence of moves
iS o q1 92 g3 G2 q3 g4 Since g4 is an O-move, it is not constrained by P-incremental justification
and thus it can point to any of the two occurrences of gs.?

5.5 Safe PCF

We now extend the game-semantic characterization to safe PCF.

We have already established the correspondence between almost safety and incremental
binding in the general setting of an applied simply-typed lambda calculus without recursion
(Proposition 5.3.1). PCF can be cast into this setting by considering | 4 as ordinary constants:
In the computation tree of a PCF; term, subterms of the form 24 are represented by the single
constant node 1 4. In full PCF, however, a difficulty arises as computation trees are potentially
infinite due to the presence of the Y combinator. Nevertheless the result still holds:

Proposition 5.5.1 (Almost safety and incrementally-binding). Let '+ M : A be a PCF term.

(i) IfT'F M : A is almost safe then 7(I'= M : A) is incrementally-bound ;

2More generally, a P-incrementally justified strategy can contain plays that are not “O-incrementally justi-
fied” since it must take into account any possible strategy incarnating its context, including those that are not
P-incrementally justified. For instance in the given example, there is one version of the play that is not O-
incrementally justified (the one where g4 points to the first occurrence of ¢3). This play is involved in the strategy
composition [Fs Mz : (((0,0),0),0)]; [¢ : (((0,0),0),0) Fst Y(Ap.a) : o] where Mz denotes the unsafe Kierstead

term.

170 Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms

(ii) conversely, if T(I' = M : A) is incrementally-bound then the n-long normal form of T'
M : A is almost safe if M is open and safe if M is closed.

Proof. (i) Let M be an almost safe PCF term and i denote the number of occurrences of the Y

combinator in M. We first prove by induction on i that for every k € w, the k*" approximants

to M, denoted My, is almost safe. The base case i = 0 is trivial: My = M. Step case: i > 0.

Let Y4V be a subterm of M. Since M is almost safe, IV is also safe. The number of occurrences

of the Y combinator in N is smaller than ¢ therefore by the induction hypothesis N} is safe.

Consequently the term Y{ Ny, = Ni (... (NxQ)...) is also safe and by compositionality so is M.
——

k times
The result holds for PCF; terms, thus since My, is a safe PCF; term, 7(Mj) is incrementally-

bound. Now let z be a variable node in 7(M) = J,¢,, 7(M}). There exists k& € w such that z
belongs to 7(My) C 7(M). If we write 7, to denote the root of the tree 7(My) then the path
[rk, 2] in 7(My) is equal to the path [r,z] in 7(M). Hence, since z is incrementally-bound in
7(My), it is also incrementally-bound in 7(M).

(ii) Suppose that the term is not almost safe then necessarily one of its approximant is
not almost safe either. Since the result holds for every PCF; term, the computation tree of
the approximant is not incrementally-bound. But the computation tree of M contains the
computation tree of its approximant, therefore it is not incrementally-bound.]

Hence we obtain the following characterization of almost safety by P-incrementally justified
strategies:

Theorem 5.5.1 (Characterization Theorem for safe PCF). Let I' = M : A be a PCF term.
Then:

(i) If M is almost safe then [I' = M : A] is P-incrementally justified.

(i) If [T' = M : A] is P-incrementally justified then mins(Bns(M))* is almost safe if M is open,
and safe if M is closed.

Proof. (i) Let M be an almost safe term and M*° be the 8-normal form of M. Since almost-safety
is preserved by the small-step reduction of PCF, M is also almost-safe and by Proposition 5.5.1,
T(M*®°) is incrementally-bound. By Corollary 5.3.3(i), [M*°] is P-incrementally justified and by
soundness of the game denotation, [M*°] = [M], thus [M] is P-incrementally justified.

(ii) Let M be PCF term with a P-incrementally justified denotation. By Corollary 5.3.3(ii),
T(Bnf(M))* = T(minf(Bns(M))*) is incrementally-bound. Hence by Proposition 5.5.1(ii), if M is
closed then nynf(Baf(M))* is safe and almost safe otherwise. O

Consequently, P-pointers are superfluous (i.e., uniquely recoverable) in the game denotation
of safe PCF terms.

Example 5.5.1 (Counter-example). The use of dead-code elimination in the second part of the
theorem is crucial. Take for instance the closed PCF term:

M =)\ f(exp:exp).exp) y.exp yoxP £ () ,€%P cond(succ #)yz) .

This term is in S-normal form (the conditional operator cannot be reduced since the value of x is
undetermined). The n-long S-normal form of M is therefore M itself which is unsafe. But since
succ x will always evaluate to a positive integer, the first branch of the conditional operator will
never be evaluated. Hence M is observationally equivalent to the safe term N = Afzy.f(Az.2)
which by the Full Abstraction theorem implies that they have the same denotation. But since
N is safe, by the first part of the theorem, we have that [M] is P-incrementally justified.

Such counter-example arises because the conditional operator of PCF permits us to construct
beta-normal terms containing “dead code” (i.e., some subterm that will never be evaluated for

Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms 171

every value of M’s parameters). In the example above, the dead code consists of the subterm y. In
general, if the dead code part of the computation tree contains a variable that is not incrementally
bound then the resulting term will be unsafe even if the rest of the tree is incrementally bound.
In our example, it is possible to turn M into the equivalent safe term N by eliminating the dead
code from M.

5.6 Safe Idealized Algol

The argument used in the previous section for safe PCF can be reused identically for safe IA
(as defined in Sec. 3.5.2.2). Hence we have:

Theorem 5.6.1 (Characterization Theorem for Safe IA). Let I' = M : A be a IA term. Then:
(i) If M is almost safe then [I'+ M : A] is P-incrementally justified.

(ii) If [T' = M : A] is P-incrementally justified then nne(Bns(M))* is almost safe if M is open,
and safe if M is closed.

This shows that P-pointers are superfluous for safe IA terms. Since unsafety only appears
at order 3, this theorem implies the well-known result that pointers are uniquely recoverable
for TA, terms. This suggests potential applications in algorithmic game semantics: Ghica and
McCusker were able to show that the game denotation of TA, terms can be characterized by
(extended) regular expressions, thus giving a decision procedure for observational equivalence
in this fragment |]. Can we achieve a result for higher-order fragment of safe IA? We will
investigate this question in the next chapter.

5.7 Towards a game model of safe PCF

5.7.1 Definability

Recall (Sec. 2.3.4.6) that PCF. denotes the language obtained by extending PCF with the casey
construct. The case; construct is the obvious generalization of the conditional operator cond
to k € N branches instead of 2. We call safe PCF. the corresponding extension of safe PCF.
Clearly, all the results obtained so far concerning safe PCF also hold in safe PCF..

The characterization theorem allows us to show the following definability result for safe
PCF.,.:

Proposition 5.7.1 (Definability for safe PCF, terms). Let A = (Ay,..., A;) and B be two PCF
types for some i,l > 0 and o be a well-bracketed innocent P-i.j. strateqy with finite view function
defined on the game Ay x ... x A; — B. There erists an almost safe PCF, term T : A+ M : B
in n-long normal form such that:

[z: AWM, :B] =0
and a safe closed PCF, term \s M. : (A, B) in n-long normal form such that:
[Fs M. : (A, B)] =0 .

Proof. By the standard definability result for PCF,, there is a finite teem 7 : A - N : B
such that [Z: A+ N: B] = 0. Take M, to be inf(Bns(N))*. We have [Z: AF M, : B] =
[z: A N : B] = o and by Theorem 5.5.1(ii), M, is almost safe. For the second part, take M
to be the closure A\z.M, of M,. O

172 Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms

Note that because the argument relies on dead code-elimination, which is undecidable, it
does not constitutes a constructive proof: we know that the term M, exists but we do not have
an algorithm to compute it.

This result shows that the game model of safe PCF is intentionally fully-abstract: every
compact strategy (i.e., with finite view function) is definable |]. The property that all
denotations in the model are definable, including the recursive ones, is called universality.
Universality was shown for the game model of PCF | |. In order to show universality for
safe PCF, the “trick” used in the previous proof does not suffice: it is possible to perform dead-
code elimination on the infinite term obtained by unfolding the Y-recursion, but the resulting
term is a potentially infinite term, and it is not necessarily the unfolding of a “finite” PCF
term (with Y combinators). Thus one has to be slightly more subtle to handle recursion. One
way around this problem could consists in using a version of the Correspondence Theorem
expressed over a finite syntax representation of the term (as described in remark 4.3.1) and to
perform dead-code elimination on this representation rather than on its unwinding. We will not
investigate this question further as it is not essential to our understanding of the game semantics
of safe lambda-calculi.

5.7.2 Compositionality

In the next chapter we will give an in depth account of P-i.j. strategies. In particular we will
give a semantic argument showing that when suitably restricted, P-i.j. strategies compose. We
show here essentially the same result using a syntactic argument that relies on the definability
result from the previous section. The advantage is that the proof is much simpler that the one
given in the next chapter. The disadvantage is that it is slightly less general as it only works for
strategies that are denotations of compact PCF terms (i.e., the compact innocent ones) whereas
the proof in the next chapter works in the general case.

Let A= (Ay,...,A;), B=(B1,...,B;,0) and C = (Cy,...,Cy,0) be three PCF types for
some i > 1,1,k > 0.

Problem: Given two compact (with finite view function) innocent well-bracketed and P-
incrementally justified strategies f: A; x ... x A; — B and g: B — C. What is a sufficient
condition for the composite f;g to be P-incrementally justified?

We tackle the problem syntactically by appealing to the definability result: Since f and g
are compact innocent, there are two closed safe terms M : (A,B) and M, : B — C in n-long
nf denoted by f and g respectively. Composition is syntactically formulated by the term

My = A\T.My(MyT)

for some fresh variables T : A, whose denotation is clearly given by [M¢]; [M,] = f;g.
Observe that the safety of My and M, does not imply that of My,, as the following examples
illustrate:

Example 5.7.1. (i) Take A =0, B = (0,0), C = (((0,0),0),0), the variables z,u,v : 0,y : B
and ¢ : ((0,0),0) and the X-constant a : 0. Take the two closed safe terms My = \zv.z :
A — B and My = Ayp.p(Au.ya) : B — C. The eta-long beta-nf of My,, is Azp.p(Au.z)
which is unsafe because of the underlined term.
Consequently by Theorem 5.4.1(ii), the strategy [My.,] = [My]; [M,] is not P-i.j. This
shows that P-i.j. strategies do not generally compose. The following diagram illustrates a
play that is not P-i.j.:

Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms 173

AT oAy

(ii) A counter-example with ord B = ordC: Let A =0, B = C = (((0,0),0),0) and let = : A,
y: B, u:o,v,0: ((0,0),0) and g : (0,0) be variables and a : 0 be a X-constant. Take
the two closed safe terms My = Azv.x and My = Ayp.p(Au.y(Ag.a)). The ns-nf of My, is
Azp.p(Au.z) which is unsafe because of the underlined term, so f;g¢ is not P-i.j.

Since My and M, are in n-nf, they can be written:

Fs My =)\xfl . ﬂ:f" 901191 ...@Fl.Nf
b M, = MyBrBo) g@r g N

for some safe ground-type terms Ny and N, in n-nf. Substituting these two equations in My,
gives:

fr9=[7.(Ap1 ... d-Ng)[(MT) /3]
= [AZ¢1 ... ¢ Ny[(MsZT)/y]] (the z;’s and ¢;’s can be chosen to be disjoint). (5.2)

Thus by Theorem 5.5.1, f;g is P-incrementally justified just when nine(Baf(Ng[(MfZ)/y]))*
is safe.

A sufficient and necessary condition

Lemma 5.7.1. Let Iy : B b5 M be a safe term in n-nf and I' = R : B be an almost safe
application. Let N denote the set of nodes of the computation tree of M and ® be the root.
Then:

' M[R/y]: A <= Vz € FV(R)VNy € Np,.Vm € N\N|®,y] : ordm < ordzx .

Proof. The only cause of unsafety that can be introduced when substituting the almost safe
term R for y in M is when some variable free in R becomes not incrementally bound in 7(M).
The right-hand side of the equivalence expresses just this. O

Applying this lemma with R = M;T and M = M, gives us a necessary and sufficient
condition for My[(M¢T)/y] to be safe, and hence for f;g to be P-i.j. The problem is that this
condition is expressed on both M, and My at the same time rather than independently. This
is unsatisfactory because it does not give rise to a categorical notion of compositionality: two
morphisms should be composable as soon as the domain of one matches with the codomain of
the other.

174 Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms

A sufficient condition The solution consists in restricting the P-i.j. strategies to a smaller
class of composable strategies.

Lemma 5.7.2. Iford A; > ord B for all 1 < i <mn then f;g is P-incrementally justified.

Proof. For all 1 < i < n we have ordx; = ord A; > ord B = ord (Mff) thus we can use the
application rule of the safe lambda calculus to form the safe term Z : A ¢ M ¢x. The substitution
lemma then shows that M,[(M;Z)/y] is safe which by (5.2) implies that f;g is P-i.j. O

Strategies satisfying this condition are the closed P-incrementally justified strategies. This
property will be studied in depth in Sec. 6.2.4.

REMARK 5.7.1

1. The condition is not necessary: Take A = 0, B = (0,0), C' = (0,0) and consider the two
safe terms My = Az ul.u and M, = AyP.ya for some constant a : 0. Then we have
My., =5 Aw.a which is safe hence f; g is P-i.j. although ord A < ord B.

2. In general type homogeneity is not preserved after composition. For instance the types
0 — (0 — o) and (0 — 0) — ((0 — 0) — 0) are homogeneous but 0 — ((0 — 0) — o) is
not. Incidentally, the condition of Lemma 5.7.2 turns out to be a sufficient condition for
type-homogeneity to compose: if A — B and B — C are homogeneous simple types and
ord A > ord B then A — C is homogeneous.

5.7.3 Full abstraction

In Chapter 2 we have presented the well-known result that the standard game models of PCF
is fully abstract [,)]: two PCF terms are observationally equivalent if and
only they have the same denotations. Since safe PCF is a fragment of PCF this statement also
holds for safe PCF terms: Two safe PCF terms are observationally equivalent with respect to
PCF contexts (not necessarily safe) if and only if they have the same game denotation.

A natural question is whether there exists a fully abstract model with respect to safe contexts
only. Since safe PCF terms are denoted by P-incrementally justified strategies, it is reasonable
to think that O-moves also need to be constrained by a symmetrical notion of “O-incremental
justification” corresponding to the requirement that contexts are safe.

The definability result shown for safe PCF is a first step towards full-abstraction. This
problem will be studied in Chapter 6.

Chapter 6

Models of Safe Applied Lambda
Calculi

This chapter aims to formally define the notion of model of the safe lambda calculus and its
various extensions. We present a categorical interpretation of the safe lambda calculus in the
same vein as the characterization of the lambda calculus by Cartesian Closed Categories. We
then provide such a model by means of game semantics and show that it is fully-abstract when
observational equivalence is defined with respect to safe contexts. We conclude the chapter by
examining the model from an algorithmic game-semantic point of view: we consider the problem
of observational equivalence for finitary fragments of safe IA and show that up to order 3, the
complexity of deciding observational equivalence is essentially the same as for unrestricted TA
terms. We then give a version of the complete-play Characterization Theorem for safe terms:
we show that two safe terms are observationally equivalent if and only if the sets of complete
O-incrementally justified plays of the denotations are equal. This result leads us to conjecture
that observational equivalence is decidable for safe IA up to order 4.

6.1 Categorical model

It is well-known | | that cartesian closed categories (categories with a terminal object,
finite products and exponentials), CCCs for short, capture the notion of model of typed lambda
calculi: Every CCC is a model of the simply-typed lambda calculus, and conversely, every typed
lambda calculus generates a CCC. What is the categorical interpretation of the safe lambda
calculus? This section introduces incremental closed categories and shows that they capture
models of safe lambda calculi.

6.1.1 Safe lambda calculus with product

The safe lambda calculus defined in Chapter 3 does not have products. It is easy to add them
to the language. The type grammar is given by:

T:= B|T—-T|TxT

for some set B of base types. The order of a type is defined by induction as follows:

e ord(B) = 0 for every base type B,

e ord(A x B) = max(ord A, ord B),

e ord(A — B) = max(1 + ord A, ord B).

The typing system of the safe lambda calculus is then extended with three rules corresponding
to pairing, first projection and second projection (respectively (x), (m1) and (m) in Table 6.1).
This suffices to add product constructs to the safe lambda calculus but there is now a little
problem. Consider the following terms-in-context:

z:(0—0)Xokg A2° (mz) : (0 — (0 — 0)) = M

176 Chapter 6. Models of Safe Applied Lambda Calculi

z1:(0—=0),22:0Fs A2°. 23 : (0 — (0 —0)) =My .

In any model of the lambda calculus, these two terms-in-context have isomorphic denotations,
but M; is safe whereas M, is unsafe. Indeed, the side-condition of the abstraction rule only
requires that the variables in the context have order greater than the order of the term, therefore
My is unsafe because it contains the free occurrence xy. In My, however, 1 and xo are combined
into a single variable, this has the effect of increasing the order of the variable and therefore the
side-condition holds.

In the categorical model of the simply-typed lambda calculus, a term-in-context I' = M : T
is modeled by a morphism [I'] — [T'] where the context I' is identified with the product of the
types of the variables in the context: if the context variables are X1, -+, X,, then I' is identified
with the type X1 X --- x X,,. Thus the contexts x1 : A,z5 : B and = : A x B will be denoted
by two isomorphic objects in the category. Because variables in the context can be “combined”,
there is no way to tell—just by looking at the type I'—which subtypes corresponds to which
variable. Consequently the basic property of the safe lambda calculus—that all the variables in
the context have order greater than the order of the term—cannot be expressed in the standard
categorical model. For this reason we modify slightly the side-condition of the abstraction and
application rules to enforce a property stronger than the usual basic property of the safe lambda
calculus: instead of requiring that all variables in the context have order greater than the order
of the term, we require that the order of any prime sub-type of any variable in the context has
order greater than that of the term, where the set of prime sub-types of a type A, written
Pr(A), is given by:

Pr(B) ={B} if B is a base type,
Pr(A— B)={A — B}
Pr(Ax B)=Pr(A)UPr(B) .

We then define the relation > on types as follows:
A>B ¥ vA e Pr(A).ordA >ordB .
Thus for every context I' and type B we have:
I'>B < Vr:A el'VA' € Pr(A).ordA’ > ord B .

We now replace the side-condition in the abstraction and application rules by “I' > B” where
B denotes the type of the term being formed and I' its context.

Definition 6.1.1. The safe lambda calculus with product, or safe A*, for short, over a
typed-alphabet = of constants is given by induction over the rules of Table 6.1. The differences
with the rules of the safe lambda calculus without product are framed.

Example 6.1.1. The terms M; and M given above are both unsafe.

It is easy to see that the basic property of the safe lambda calculus still holds—the free
variables of a term have order greater than the order of the term itself—and therefore all the
basic results showed in Chapter 3 also hold (No-variable-capture lemma, safety is preserved by
safe (8 reduction, ...).

We call typed calculus any applied simply-typed lambda calculus with product with a stock
of constants and function symbols together with an operational semantics for function symbols
given by means of a set of reduction rules. We define the safe fragment of a typed calculus
as the system obtained by replacing the abstraction and application rules by the rules (app),
(appas), (abs) and () from Table 6.1. A language that is the safe fragment of some typed lambda
calculus is called a safe typed calculus.

The long safe fragment of a type-calculus is the subclass of the safe fragment consisting
of terms-in-context that are typable without using the rule (appas). (See Def. 3.1.8.)

Chapter 6. Models of Safe Applied Lambda Calculi 177

I'Hss: A 't M: A
_— = Ky ——"TCA >
V) S ATeeia YA s WO O) T i A
I'kFes: A I't: B I'Fss: Ax B I'kss: Ax B
(x) : (m) —/—— m2) :
Ik (s,t): AX B IF'Fems: A I'ksmes: B
(2)FI—SS:(Al,...,An,B) 'kt : 41 ... Tty A,
PPas MHappsti...ty : B
I'kFes:(Ay,...,A,,B) TF c A ... T'F A
(app) s S (1, s An,) s t1 1 stn n T'>RH

Tresty...tn:B =

Doyt Ay, Ay Heapp 50 B

(abs) Mg Axy...xp.s: (Ag,..., Ay, B)

\rz(Al,...,An,B)\

Table 6.1: The safe lambda calculus with product (safe AX)).

REMARK 6.1.1 (Alternative definition) Our definition of the safe lambda calculus with product
conveys the syntactic notion of safety appropriately but there is still a mismatch between syntax
and semantics: there exist pairs of terms, one safe and the other unsafe, that are denoted by
the same (up to isomorphism) morphism in the categorical model of the simply-typed lambda
calculus. For instance the two simply-typed terms:

z:(0—0)Xokg A2° (mz): (0 — (0 —0) =N

z1:(0—=0),x2:0Fs A% 21 : (0 — (0 — 0)) = Ny

are denoted by isomorphic morphisms in the categorical model, but N; is unsafe whereas Ny
is safe. (This is because in Ni, the variable = has to be introduced first in the derivation tree,
whereas in Na, although x1 needs to be introduced first, x5 can be added to the context at the
end of the derivation using the weakening rule.)

We could define an alternative notion of safe lambda calculus with product in order to solve
this kind of problems. One way is to require that for every context-variable of type A x B the
equality ord A = ord B holds. Another solution is to forbid the use of variables of product type
and only allow product types for terms created with the pairing rule. But these two approaches
are rather restrictive. A better approach consists in changing the system to allow the formation
of terms like No. This can be done by adding a new kind of weakening rule that alters the type
of context-variables rather than adding new variables to the context:

Iax:Abgs: C
I'z:AX Bbgs|(maz)/z]: C

(wk*)

Semantically, this rules is equivalent to the weakening rule because in the categorical model
of the simply-typed lambda calculus, if s is denoted by a morphism [s] : T' x A — C then
Iz : AX Bt s[(mz)/z] : C and I'z : A,y : B kg s[(mix)/z] : C are denoted by the

morphisms (idp x 7{B); [s] and ﬂ%FXA)XB; [s]. These two denotations are the same since idr x

AxB I'x(AxB) . I'x(AXB)., _AxB
™ = (m ;idp, Ty ;)

, which by associativity of the product is isomorphic
7_[_(F><A)><B
1 .

(I'xA)xB, I'kxA (I'xA)xXB)., TI'xA
to (m 3T T sy ")

ExaMPLE 6.1.2. With the addition of this rule to the system, both N; and N» are typable.

Again it is easy to see that the basic property of the safe lambda calculus still holds and
therefore all the basic results showed in Chapter 3 also hold. Moreover, for every term typable
with these rules there exists some term typable in safe AX with an isomorphic denotation (in
the categorical model of the simply-type lambda calculus).

178 Chapter 6. Models of Safe Applied Lambda Calculi

6.1.2 Incremental closed category

We first recall some basic categorical notions and fix some notations.

Basic definitions

A category C is given by a class Obj(C) of objects and a class Hom(C) of morphisms between
objects: for each pair of objects A, B, a set of morphisms C(A, B), written f : A — B, where
A is the domain and B is the codomain. Further for every three objects A, B and C, and
morphisms f: A — B and g : B — C there is a composite morphism written f;g or g o f such
that the composition operation is associative; and for each object A there is a morphism id 4
that is the identity for composition.

Two objects A and B are said to be isomorphic, written A = B, if there exists a pair of
morphism f: A — Band g: B — Asuch that fog=1idg and go f =ida4.

A subcategory of a category C is a category whose objects and morphisms are respectively
objects and morphisms of C. It is a lluf subcategory if it contains all the objects of C.

A object I is terminal if for every object A there is a unique morphism from A to I.

A category has products if for every two objects A and B there is an object A x B and
two morphisms 71, mo mapping A x B to A and B respectively such that for every morphisms
f:C — A, g:C — B, there is a unique morphism (f, g) : C — A x B, called the pairing of f
and g, such that m o (f,g) = ¢ and 7 o (f,g) = f.

A category has exponential if for every two objects B and C' there is an object CP and a
morphism evp ¢ : (CB x B) — C such that for every object A and morphism f: (4 x B) — C
there is a unique morphism A(f) : A — CPB such that the following diagram commutes:

Ax B

CBxB————0C

e’l)B'C

Definition 6.1.2. A cartesian closed category, CCC for short, is a category with a terminal
object, binary products and exponentials.

Definition 6.1.3. A pre-incremental closed category is a triple (C, ord, dro) where C is a
CCC and ord and dro are functions Obj(C) — N U {—1} satisfying the following conditions for
all objects A, B:

(i) A= B implies ord A = ord B and dro A = dro B,

(ii)) ord A= -1 iff droA=—-1iff A=,

(iii) for A,B 2 I, ord(A x B) = max(ord A, ord B) and dro(A x B) = min(ord 4, ord B),
(iv) for B 2 I, dro(B4) = ord(B4) = max(1 + ord A4, ord B).
(Observe that (i) implies ord(A x I) = ord(I x A) = ord(A’) = ord A for every object A.)

We say that a morphism f : A — B is incremental if we have dro(A4) < ord(B). This
property is preserved by composition:

Lemma 6.1.1. For every objects A, B and C of a pre-incremental closed category (C,ord,dro),
if dro(A) > ord(B) and dro(B) > ord(C) then dro(A) > ord(C).

Proof. This follows from the fact that ord > dro. O

Chapter 6. Models of Safe Applied Lambda Calculi 179

Incremental closed category

Definition 6.1.4 (Incremental closed categories). An incremental closed category, ICC for
short, is a 4-tuple (C,I,ord,dro) such that (C,ord,dro) is a pre-incremental closed category
and I is a lluf subcategory of C such that:

1. it contains all the projections: for all objects C; and Cy, 1 : C1xCs — Cy and 73 : C; xCy —
Cy are in Hom(I);

2. it is closed under pairing: if f: C — A and g : C' — B are in Hom(I) then so is (f, g);

3. it contains all the incremental evaluation morphisms: for every objects B and C such that

dro(B) > ord(C), evp ¢ : (CP x B) — C is in Hom(I);

4. it is closed under incremental currying: if f : (A x B) — C € Hom(I) with dro(A4) > ord(C?)
then A(f) : A — OB ¢ Hom(I);

5. all morphisms are incremental modulo weakening: For every morphism f : A — B, either f
is incremental, or A = Ay x As and f = m;; ¢ for some incremental morphism g : A; — B,
i€ {1,2}.

Let (C,ord,dro) be a pre-incremental closed category. Its canonical sub-ICC is defined
as (C,I,ord,dro) where I is the lluf subcategory obtained by keeping only the morphisms that
are incremental modulo weakening. Formally for every objects A and B:

I(A,B) = C(A, B) if dro(A) > ord(B);
I(A,B)={m;; f | f € 1(A;,B),A= Ay x Ay,i € {1,2}} if dro(A) < ord(B).

Proposition 6.1.1. Let (C,ord,dro) be a pre-incremental closed category. Then its canonical
sub-ICC (C,1,0rd,dro) is an ICC.

Proof. We first show that I is a lluf subcategory of C: The identity morphisms are all incremental
therefore they are in Hom(I). Further the class of morphisms is closed under composition. Indeed
take two morphisms f: A — Bandg: B — C:
e If f and g are incremental then by Lemma 6.1.1, f; ¢ is incremental;
o If f = m; f' for some projection m;, i € {1,2}, and f’ and g are incremental then by
associativity we have f;g = (m; f');9 = mi;(f’;9). Since f' and g are incremental, so is
f'; g therefore f;g is incremental modulo weakening;;
e If g = m;; ¢ for some projection m;, i € {1,2}, and f and ¢ are incremental then we have
B = By x By and dro(A) > ord(B) > ord(B;) > dro(C) > ord(C), therefore f;9: A — C
is incremental;
o If f =m;f and g = mj;¢ for i,j € {1,2} where f' and ¢’ are incremental then the
previous two points show that f; g is incremental modulo weakening.
Hence I is a lluf subcategory. Further it clearly contains the projections (A projection m; :
C1 x Cy — (1 that is not incremental can always be written m; = m;;1dc, where idg, is incre-
mental.), and is closed under pairing; by definition it contains all the incremental evaluation
morphisms from C, it is closed under incremental currying, and all morphisms in the category
are incremental modulo weakening. Hence (C,I,ord,dro) is an ICC. U

REMARK 6.1.2 (Homogeneous incremental closed category) It is also possible to interpret type
homogeneity (see Sec. 2.2.2) categorically. A non-terminal object A of a pre-incremental closed
category (C,ord,dro) is said to be homogeneous if

e A is a base object (neither a product nor an exponential);

e or A= B x C where B and C are homogeneous and ord B > ord C}

e or A= B — C where B and C are homogeneous and ord B > ord C' — 1.

The sub-category of an ICC consisting of the homogeneous objects plus the terminal object
I, and the incremental morphisms (but not those that are incremental only modulo weakening)
is then called an homogeneous incremental closed category.

180 Chapter 6. Models of Safe Applied Lambda Calculi

Order-enrichment

In order to model applied lambda calculi with recursion, one needs to impose further requirement
on the category. The condition called rationality [| is sufficient for a CCC to interpret
PCF. We reproduce the definition here: A pointed poset is a partially ordered set with a least
element. A category C is pointed-poset enriched (ppo-enriched) if

e every hom-set has a pointed poset structure (C(A, B),Ca g, LA B);

e composition, pairing and currying are monotone;

e composition is left-strict: for all f: A — B, Lpcof=_lLac.

A category C is rational if it is ppo-enriched and for all f : A x B — B, the chain defined
by fO = 1L p, f*F) = fo(ida, f*)) has a least upper bound denoted by fV such that for all
g:C—>A,h:B—)D,gofvoh:Ukadgof(k)oh‘

We now extend this definition to ICCs as follows:

Definition 6.1.5. An ICC (C,I,ord,dro) is rational if C is rational and I is complete with
respect to (-)V (i.e., if f: A x B — B is a morphism of I then so is fV).

6.1.3 Categorical semantics

Consider a typed lambda calculus extended with a set of constants and function symbols together
with a set of reduction rules giving the operational interpretation of these functions. A model
of a typed lambda calculus in a cartesian closed category is specified by giving:
e For every ground type T an object [T'] of the category. This suffices to interpret any
simple type T as an object [T] using products and exponentials;
o for every constant k of type 7" a morphism [K] of type [T7];
e for every function symbol f of type Ay X -+ x A,, — B, a morphism [f] of type [A;] X

- x [A,] — [B]-
It is then possible to specify the interpretation of any term-in-context I' = M : T by induction
on the structure of the term | |. The model is said to be sound if whenever M reduces to

N with the small-step semantics of the language then M and N have the same denotation in
the model.

Proposition 6.1.2 (Models of safe typed lambda calculi). Let £ be a typed lambda calculus and
(C,I,ord,dro) be an ICC. If C provides a sound model of L then I provides a sound model of
the safe fragment of L.

Proof. The interpretation [-] of the safe lambda calculus with product in I is induced by the
standard interpretation in the CCC: Ground types are interpreted as objects of the category,
this suffices to interpret any simple type 7" as an object [T'] using products and exponentials.
A closed term of type T is interpreted by a morphism I — [T7], and an open term of type T is
interpreted by a morphism from the denotation of the type of its free variables to [T7].

We show that for every safe term M, its denotation [M]s in C is also a morphism of the
subcategory I. Since the model C is sound, M has the same denotation as its eta-long normal
form therefore we can assume w.l.o.g. that M is eta-long normal. We show the result by induction
on the structure of M. We do not have to consider the rule (appas) because it is not required
to type n-long normal terms. The (var) axiom is interpreted by the identity morphisms which
all belong to the ICC. The rules (x), (m1) and (m,) are interpreted by pairing and projections.
The weakening rule (wk) is interpreted by composition with the projection morphisms. For
the rule (app), the term formed is of ground type (since we work with eta-long normal form)
so we have [sty...t, :0] = ([s],[t1],- -, [tn]) § €v(a;x..x4,),0 and Wwe can conclude using the
LH. and the fact that the evaluation map ev(4,x..x4,)0 belongs to the ICC. Rule (abs): Let
f:Tx (A1 x...x A,) — T be the denotation of the premise. The term formed is denoted by
the curried morphism A(f) : I' — T(A1x-x4n) " The side-condition ensures that this morphism
is incremental closed and therefore it belongs to the ICC.

Chapter 6. Models of Safe Applied Lambda Calculi 181

Hence for every safe term M, we can define its interpretation [M]; in I to be its interpretation
in C: [M]; < [M lc- The soundness of the ICC model follows from that of the CCC model. O

Example 6.1.3 (Model of safe PCF). It is a well-known fact that any rational CCC in which
we have fixed an interpretation for base types, PCF constants and function symbols provides

a sound model of PCF [|. Therefore any rational ICC provides a sound model of safe
PCEF. The interpretation of safe PCF in the ICC coincides with its interpretation in the ambient
pre-incremental closed category | |: Each constant and first-order function of PCF of type

T is interpreted by some morphism ¢ : I — [T, and because the category is rational, the Y
combinator Yy for every object A can be interpreted by the morphism ©Y : I — A" where

Ou=[F:(A—A) - AR XA F(Ff): (A— A) — A] .

6.1.4 Quotiented category

Let C be a rational CCC. A precongruence < on C is defined as a family of preorders S4 pC
C(A, B)xC(A, B) such that C4 pC <4 p, composition, pairing, currying are S-monotonous, and
the preorders satisfy some continuity property | |. Given a precongruence, the quotiented
category C/< is defined as follows: the objects are those of C, and a morphism in C/< (A, B) is
an equivalence class [f] of C(A, B) modulo the equivalence relation induced by <4 p. A partial
ordering <4 p on C/< (A, B) can then be defined as follows:

[fl<aplg] <= fZlaBf -

Lemma 6.1.2 (]). If < is a precongruence on a rational CCC C then C/< is a rational
cecc.

The notion of quotient category extends naturally to ICCs: the precongruence < on I for
some ICC (C, I, ord, dro), is defined similarly as CCC precongruences except that monotonicity
is required for incremental currying only. This naturally gives rise to the notion of quotiented
category I/<.

Lemma 6.1.3. Let (C,I,ord,dro) be an ICC, and let < be a precongruence on C. Then:
(i) (C/<,1/S,ord,dro) is an ICC;
(i) If (C,I,ord,dro) is rational then so is (C/<,1/<,ord, dro).

Proof. (i) Since < is a CCC precongruence, it is in particular an ICC precongruence therefore
the quotiented category I/< is well-defined. Since I is a subcategory of C, each equivalent class
of morphisms of I is a subset of some equivalent class of morphisms of C; therefore, up to an
obvious isomorphism, the category I/< is a lluf subcategory of C/<. Finally, the incremental
closure of I immediately implies that of I/<.

(ii) Suppose (C,I,ord,dro) is rational. By definition this means that C is rational and I
is complete with respect to the operation (-)V. By Lemma 6.1.2, C/< is also a rational CCC,
therefore by (i), I/< is a lluf subcategory of a rational CCC.

Let [f] : A x B — B be an equivalence class morphism in I/<. It is also a morphism of the
category C/ <, therefore by CCC rationality the least upper bound of the chain [f] (") is given
by [fV] |]. Since I is (-)V-complete this implies that [fV] is also in I/<. Thus I/< is also
(+)V-complete.

Hence (C/<,I/<,0ord,dro) is a rational ICC. O

182 Chapter 6. Models of Safe Applied Lambda Calculi

6.1.5 The internal language of incremental closed categories

By a well-known result by Lambek, the simply-typed lambda calculus is the language of carte-
sian closed categories []: For every cartesian closed category C one can construct a typed
lambda calculus L(C) called the internal language of the CCC. And for every typed lambda
calculus £ we can construct a CCC CI(L£) that soundly interprets £; this category is called the
CCC generated by L or also the canonical classifying category of L | |. Further-
more these two transformations establish an equivalence of categories which means that their
composites are naturally isomorphic to the identity functors:

C=CIL(C)), L=LCUL)) . (6.1)

Does a similar correspondence hold between ICCs and safe typed lambda calculi?

Following [], it is possible to adapt the notion of internal language to ICCs. Given an
ICC (C,I,0rd,dro), we can define its internal language L(C,I, ord, dro) as the typed lambda
calculus whose types are the objects of I, and terms of type A are freely generated from the basic
constants (given by arrows a : I — A) and variable z : A (given by indeterminate arrows x :
I — A) by the term forming operations induced by the maps of I (pairing, incremental currying,
composition with projection, and composition with incremental evaluation): the formation rules
are the same as those of the internal language of the ambient CCC except that the abstraction
and application rules have a side-condition ensuring that the context variables have order greater
than the order of the term being formed. This does not allow the formation of almost-safe terms,
this language is thus precisely the long-safe fragment of the internal language of C:

Definition 6.1.6. The internal language of an ICC (C,I,ord, dro) is defined as
L(C,1,0rd, dro) & long-safe_— (L(C))
where

e for every typed lambda calculus £ and function f : T — N, long-safe f(E) denotes the long-
safe fragment of £ (Def. 3.1.8) where the side-condition in the application and abstraction
rules is defined using the type-order function f;

e the type-order function ord : T — N is defined as follows: for every type T € T, ordT =
ord [T], where [T7] is the denotation of the type T in the model C of L(C).

Definition 6.1.7. Let £ be a typed lambda calculus over simple types T. For every function
ord : T — N we define the functions ord™ and ord™ on the objects of the category CI(L) as
follows:

ord"(A) = ord T if A= [T] for some type T'€ T
ord"(A) = —1 if AT
ord™(4) =0 otherwise.

The function ord™ is defined similarly, substituting ‘ord’ in the right-hand side of the above
equations by the function dro : T — N defined as follows: dro(T} x T5) = min(ord T3, ord T5) for
every types T1,T» € T and dro(T") = ord(T') for every non-product type 7.

(These two functions are well-defined because in Cl(L), for every type T' € T we have [T] % I
and for every types T1,Ts, T1 # T, implies [T1] # [12].)

A type-order function is a function ord : T — N satisfying ord(T} x T5) = max(ord T3, ord T5)
and ord(T} — Ty) = max(1l 4+ ord Th,ord T3) for every type 11,75 € T. Clearly, for every such
function, the triple (C,ord™, dro™) defines a pre-incremental closed category (Def. 6.1.3).

Chapter 6. Models of Safe Applied Lambda Calculi 183

Definition 6.1.8. The canonical classifying ICC of (or ICC generated by) L with respect
to a type-order function ord, written IClyq(L), is defined as the canonical ICC induced by the
pre-ICC (CI(L),ord™, dro™):

ICloa(£) = (CUL), T 0rd ", ord ")
where I denotes the canonical sub-ICC of (CI(L£),ord™,dro™).

Proposition 6.1.3.

(i) For every typed lambda calculus L and type-order function ord : T — N we have:

L(IClord(ﬁ)) = long'safeord(ﬁ) :

(ii) For every pre-incremental closed category (C,ord,dro) with canonical sub-ICC' I we have:

ICI—(L(C)) = (C,I,0rd,dro) .

Proof. This is an immediate consequence of (6.1) and definitions 6.1.6 and 6.1.8. (i) follows

—

from the fact that ord™ = ord. (ii) follows from the fact that ord =ord and ord =dro. O

Intrinsically safe fragment Let (C,I,ord,dro) be an ICC. We define the intrinsically safe
fragment LI(I) of L(C) as the language consisting of the terms whose denotations in C =
CI(L(C)) are also in I:

LID) = {te L(C) | [t] € Hom(I)} .

This definition implies [LI(I)] = I. This language satisfies the basic property of the safe lambda
calculus:

Lemma 6.1.4. Let (C,I,ord,dro) be an ICC. For every term M of LI(I), the free variables of
M have order greater than ord M.

Proof. Lambek [| defines a functor [-] : £ — C such that every term M of the language £
of type B with free variables of type Ay, ..., A, is denoted by a morphism in C(A; x...x Ay, B).
Take £ to be LI(I), then by definition M is denoted by an incremental morphism therefore
dro(A4; x ... x A,) > ord B. We then have for 1 <i < n:

ordA; > droA; > dro(4; x ... x A,) >ordB . O

The language LI(I), however, is not the safe fragment of the internal language of C. Indeed,
since safety is only preserved by (-reduction but not by (-equality, it is possible to have an
unsafe term U in L(C) with a safe beta-nf Gn¢(U); since [q¢(U) is safe, its denotation is an
incremental morphism and therefore it belongs to LI(I), but by soundness of the model C, the
terms U and (n¢(U) have the same denotation, hence the unsafe term U must also belong to

LI(T).

6.2 The game model

Our aim for the rest of this chapter is to construct a category of games that is incremental closed,
thus giving rise to a game model of the safe lambda calculus. We start by introducing the class
of closed P-incremental justified strategies and then show that it is closed under composition.
This then allows us to construct an ICC category with game as objects and closed P-incremental
justified strategies as morphisms.

We make the following assumptions on games. Let | denote the game whose arena has a
single initial question move and no answers. For every game A # 1:

184 Chapter 6. Models of Safe Applied Lambda Calculi

(A1) Each question move in the game enables at least one answer move;
(A2) Answer moves do not enable any other move.

Clearly, PCF and IA games all satisfy these two assumptions. A game is said to be prime if it
has a single initial move; a type is prime if its game denotation is prime.

6.2.1 Order of a move

We recall the definition of a move-order (Def 2.3.15). Let A = (M, \,F) be a game. We call
F-chain, any sequence of enabling moves mq - mg - ... F my where h € N is called the length
of the chain. The order of a question mowve q in A, written ord, ¢ (or just ord ¢ where there
is no ambiguity) is defined as the length of the longest F-chain of questions starting from ¢
minus 1. The order of an answer-move is defined as —1. (Alternatively, under assumptions (A1)
and (A2), if A # 1, the order of a (question or answer) move m is given by the length of the
longest F-chain starting from m minus 2.) The order of a game is defined as the maximal
order of its (initial) moves: ord A = max,,cpsr ord4 m. The level of a move m, written level 4 m,
is the length of the longest F-chain ending with m. It is easy to see that the following relation
holds for every question move ¢ of a game A # 1:

< .
ogd q+ lexel g<ordA

Thus a move m is a question if and only if ordm > 0, and it is an answer if and only if
ordm = —1.

We recall that for every type T built up from base types, product and function space,
the order of T, written ordT, is defined by induction as follows: A base type has order 0,
ord (A — B) = max(1 + ord 4,ord B), and ord(A x B) = max(ord A, ord B) for every types A
and B. Clearly, this definition coincides with the definition given above: the order of a type is
the order of the arena denoting it (i.e., ord T" = ord [T] for all type T').

Move-order after composition

Consider the game X — Y and let m be a move of X — Y. We write ordx_oy m to denote the
order of m in the game X — Y. If m belongs to X (resp. Y') then we write ord x m (resp. ordy m)
to denote the order of the move m in the game X (resp. Y).

Lemma 6.2.1. Let A, B and C be three games. We have:

VYme A: ordg_opm=ordg_cm ,

Vm e B: ordg_ogm > ordp_cm for m initial,
ordg_ogm = ordg_.cm for m non initial,

VmeC: ordga.om>ordpoom < ordA >ordB for m initial,
ordg_ocm =ordg_.cm for m non initial.

The proof is immediate.

6.2.2 'Well-bracketing

We call pending question of a sequence of moves s € L4 the last unanswered question in s.

Definition 6.2.1. A strategy o is said to be P-well-bracketed if for every play sa € o where
a is a P-answer, a points to the pending question in s.

P-well-bracketing can be restated differently as the following proposition shows:

Proposition 6.2.1. We make assumption (A1) and (A2). Let o be a strategy on a game A.
The following statements are equivalent:

Chapter 6. Models of Safe Applied Lambda Calculi 185

(i) o is P-well-bracketed,
(ii) for sa € o with a a P-answer, a points to the pending question in "s™,
(iii) for sa € o with a a P-answer, a points to the last O-question in "s7,
(iv) for sa € o with a a P-answer, a points to the last O-move in "s™ with order > orda.

Proof. The result holds trivially if A = L (the game with one initial question and no answers).
Othwerise:

(1) <= (u): | , Lemma 2.1] states that if P is to move then the pending question
in s is the same as that of "s™.

(11) <= (4i7): Assumption (A2) implies that the pending question in "s7 is also the last
O-question occurring in "s™.

(7it1) <= (iv): Because of assumption (Al) and (A2), for every move m, we have m is a
question move if and only if ordm > 0 if and only if ordm > orda = —1. O

Lemma 6.2.2. Under assumption (A2), if s is a justified sequence of moves satisfying alter-
nation and visibility then any O-move (resp. P-move) in s points to an unanswered P question
(resp. O-question).

Proof. Suppose that an O-move ¢ points to a P-move d that has already been answered by the
O-move a. The sequence s as the following form:

—_—
s=...d...a...c.

By O-visibility, d must belong to Ls<.1. But since a is an answer, by assumption (A2), it
cannot justify any P-move, therefore Ls.,1 must contain an OP-arc “hoping” over a. We name
the nodes of this arc d' and c':

‘@

s=...d...d"...a...ct...¢c .

By P-visibility, d' must belong to "s_.. 7. Consequently, a does not belong to "s_.1 " (oth-

erwise the PO-arc d @ would cause the P-view to jump over d'). Therefore there must be a
N

PO-arc d> ¢% in "s_. " hoping over a:

This process can be repeated infinitely often by using alternatively O-visibility and P-
visibility. This gives a contradiction since the sequence of moves s.. has finite length. Hence d
cannot point to a question that has already been answered. Since, by assumption (A2), a ques-
tion is enabled by another question, d is necessarily justified by an unanswered question. O

Lemma 6.2.3. Under assumption (A2), if s is a P-well-bracketed justified sequence of moves of
odd length satisfying alternation and wvisibility then all O-questions occurring in "s' are unan-
swered in s.

Proof. We proof the first part by induction on s. The base case (s = g with ¢ initial O-move)
is trivial. Suppose s = s’ - qﬂ We have "s7 = "s'7. ¢-m. Clearly m is unanswered in s.
Let r be an O-question in "s'7 and suppose that r is answered in s by some move a. By the
induction hypothesis, r is unanswered in s’ therefore a necessarily appears in the segment u:

186 Chapter 6. Models of Safe Applied Lambda Calculi

But since m is justified by ¢, by Lemma 6.2.2 ¢ must be unanswered in s.,,. In particular,
the pending question at s¢, cannot be r since the unanswered question ¢ is played after r. This
gives a contradiction since by well-bracketing a should answer the pending question. Hence r is
unanswered in s. O

6.2.3 P-incremental justification
P-incremental justification is a generalization of well-bracketing to question moves:

Definition 6.2.2. A play sm of even length is said to be P-incrementally justified, or P-i.j.
for short, if m points to the last unanswered O-question in "s with order strictly greater than
ordm. A strategy o is said to be P-incrementally justified, if all plays in o ending with a
P-question are P-incrementally justified.

Let o be a strategy. We write P(o) to denote the subset of o consisting of plays whose even-
length prefixes are all P-i.j. Hence P-i.j. strategies are precisely those satisfying the relation
o="P(o).

Proposition 6.2.2. Let o be a P-well-bracketed strategy on a game A. Under assumptions
(A1) and (A2), the following statements are equivalent:

(i) o is P-incrementally justified,
(ii) for sq € o with q a P-question, q points to the last O-question in "s" with order > ord g,
(iii) for sq € o with q a P-question, q points to the last O-move in "s™ with order > ord q.

Proof. The result holds trivially if A = L. Otherwise: (4) iff (7¢): By Lemma 6.2.3, O-questions
occurring in "s7 are all unanswered. (i7) iff (7i7): By (A1), ordq > 0 and by (A2), answer moves
have order 0 therefore answer moves all have order < ord q. O

Putting Proposition 6.2.2 and 6.2.1 together we obtain:

Proposition 6.2.3. Under assumption (A1) and (A2), a strategy o is P-well-bracketed and
P-incrementally justified if and only if for sm € o, m points to the last O-move in "s" with
order > ordm.

6.2.4 Closed P-incremental justification

Definition 6.2.3. An even-length play sm on some game A — B is said to be closed P-
incrementally justified (closed P-i.j. for short) just if

(i) sm is P-incrementally justified;
(ii) and if m is an initial move in A then its justifier n (initial in B) satisfies ord4 m > ordpg n.

A strategy o is closed P-i.j. just if all plays in ¢ ending with a P-questions are closed P-i.j.
Example 6.2.1. For every game A, the identity strategy id4 is closed P-i.j.
Lemma 6.2.4. Let 0: A — B be a P-i.j. strategy.

(i) If for each initial move m of A occurring in some play of o we have ordg m > ord B, then
o is closed P-i.j.

(ii) Suppose that A = A; x ... x A, where each of the A; are prime arenas. If for each initial
move m; of A;, fori € {1..n}, occurring in some play of o we have ord A; > ord B, then
o is closed P-i.j.

Chapter 6. Models of Safe Applied Lambda Calculi 187

Proof. (i) This is a direct consequence of the definition since ord B > ordp b for every move b
initial in B. (ii) Take an initial move m of A. We have ordg m = orda, m for some i. This is
in turn equal to ord A; since A; is prime. By hypothesis it is greater than ord B hence we can
conclude using (i). O

Example 6.2.2. The simply-typed term = : (0! — 0%) x 0% b A\y°.max : 0

denotation. The second part of the previous Lemma cannot be applied because its hypothesis
is not satisfied; and indeed the denotation is not closed P-i.j. since it contains the play ¢°¢® and

4 — 0 has a P-ij.

we have ord (1 _42)x 03 @ =0<1=ordyu_sq.

Observe that the “P-incremental justification” property is preserved across the curry iso-
morphism, but this is not the case for closed P-incremental justification. It is possible to have
two isomorphic strategies o and p such that one is closed P-i.j. but not the other. For instance
any strategy o that is P-i.j. on the game I — A is also closed P-i.j. When seen as a strategy
on the isomorphic game A, however, ¢ is not necessarily closed P-i.j.'; thus the distinction be-
tween the games I — A and A matters. This is because the definition of closed P-i.j. strategy
specifically refers to the moves of the arena in the left-hand side of the function space arrow —o.
A consequence of this is that the category of closed P-i.j. strategies that we will introduce later
on, is neither monoidal closed nor cartesian closed.

6.2.5 Interaction sequences

In this section we recal some basic definitions and results used in game semantics. We fix here
some notations that will be used to analyze interaction sequences.

Let A, B and C be three games. We say that u is an interaction sequence of A, B and C
whenever u [A, B is a valid position of the game A — B (i.e., u | A,B € Py_op) and u | B,C
is a valid position of the game B — C. We write Int(A, B,C) to denote the set of all such
interaction sequences.

Let 0 : A — B and p : B — C be two strategies. We write o || p to denote the set of
interaction sequences that unfold according to the strategy o in the A, B-projection of the game
and to p in the B, C-projection:

ollp={ueInt(A,B,C)|ul A, BeoAul|B,Cecupu}.

The composite of o and p is then defined as o;u ={u | A,C |u € o || 7}

The diagram below shows the structure of an interaction sequence from o || . There are
four states represented by the rectangular boxes. The content of the state shows who is to play
in each of the game A — B, B — (' and A — C'. For instance in state OPP, it is O’s turn to
play in A — B and P’s turn to play in B — C' and A — C. Arrows represent the moves. When
specifying interaction sequence, the following bullet symbols are used to represent moves: o for
P-moves, o for O-moves, o for a move playing the role of P in A — B and O in B — C' and o©
for the symmetric of o. We sometimes add a subscript to the symbols o and e to denote the
component in which the moves is played (A or C).

Note that in state OPP, the alternation condition in each of the three games involved prevents
the players from playing in A. Indeed, the O-moves in component A of A — B are also O-moves
in component A of A — (', but the state name indicates that the next move in A — B must
be an O-move and the next move in A — C' must be a P-move.

Similarly, in the top state OOOQ, the players cannot make a move in B since the O-moves in
component B of the game B —o C' correspond to P-moves in the component B of A — B, but
the state name indicates that the next move in A — B and the next move in B — C must be
played by O.

In particular, every P-i.j. strategy ¢ on the game !4; ® ... ®!A, — B, is isomorphic, up to arena-tagging
of the moves, to the closed P-i.j. strategy A"(c) on the game I —o (A1,...,An, B), where A denotes the curry
isomorphism.

188 Chapter 6. Models of Safe Applied Lambda Calculi

A—-oB B—-oC A—-oC

(0) (0) (0)
o l e C O|/ ! — External move
(0) P P
; T - ---= Internal move
1% E o B o E o
Y ! External O-moves: e
P (0) P
T Generalised P-move: ©, o, ©
oclo A ef|env,
(0) (0) (0)

Figure 6.1: Structure of an interaction sequence.

Let u € Int(A, B,C) and m be a move of u. The component of m is A, B if after playing
m the game is under the control of the strategy o, and B, C otherwise (i.e., if u has control). In
other words, the moves o, o € A and © € B shown on the diagram of Fig. 6.1 have component
A,B and e, 0 € C and o € B have component B, C.

Also we call generalized O-move in component A, B moves that play the role of O in
the game A — B; that is to say moves represented by © and e4. Similarly o-moves and
o4-moves are the generalized P-mowves in component A, B, ec-moves and o-moves are the
generalized O-moves in component B,C and oc-moves and o-moves are the generalized
P-moves in component B, C.

The P-view of an interaction sequence u € Int(A, B,C) (also called core | 1), written
wor "u’, is defined as:

"u-n'=n if m is an external O-move initial in C,
"u-m-v-n'=n if m is an external O-move non initial in C,
"u-m'="u'-m if m is a generalised P-move.

Lemma 6.2.5. Let u be an interaction sequence in Int(A, B,C) then
U A C="ulACT.

Proof. By induction on u. It is trivial for the empty sequence. Let b be a move in B. We
have "u - b [A,C = "u' [A,C. By the I.LH. this equals "u [A,C"="Tu-b] A,C". Let
m be a P-move in A or C then "u-m™ [A,C = ("u” [A,C) - m and by the L.H. it equals
"ul A,CT-m="(ul] A,C)-m?="u-m | A C". Let ¢ be an initial move in C. We have
Tu-c|ACT="(u]AC) - c"=c=clAC="Tu-c"| AC. Letu:ul-m’-/u_g\-nwithnan
O-move in A — C. Then necessarily m € A,Cand"u [A,C"'="uy [A,C-m-us [A,C-n'=
Tuy | A,C7-ni-n. Finally by the LH. this equals (Tuy " [A,C)-ni-n=("u;-m-n) | A,C =
N
Tup-m-ug-n' [A C. O

We will also make use of another result that was used by Harmer to show compositionality
of P-visible strategies [|:

Lemma 6.2.6. | , Lemma 3.3.1] If u € Int(A, B,C) such thatu | A,B € 0 andu | B,C €
T where o, are two (P-visible) strategies, and m is a generalized O-move of u in component X
then "ugy, | X '="ug, [X

Chapter 6. Models of Safe Applied Lambda Calculi 189

NoOTATIONS 6.2.1 We now introduce some notations for moves that will come useful when
representing plays. The symbol e stands for an O-move and o for a P-move. If the game
considered is of the form L — R then the we write o7 and oy, (resp. e and op) to represent
a move that belongs to the component L (resp. R). For interaction sequences in Int(A, B,C)
we use the set of symbols { 4, 04, ec, o¢, ©, 0} as defined in Fig. 6.1. We also identify each
of these symbols with the set of moves of the corresponding kind. Thus we write “m € e4” to
mean that m is an O-move played in A. We use the variable X to denote either the component
A, B or B,C, and the variable Y to denote the opposite component.

For every given component X, we write ox to denote a generalized P-move in X and ox
to denote a generalized O-move in X. Thus ¢4 p = ¢, 04 = 0, egc = o, and opc = o.
We write ey (resp. ox) to denote an external O-move (resp. P-move) in component X. Thus
®A B = ®4, O4B = O, ®pc = ®c, and opc = oc. We write s C ¢ to say that s is a
subsequence (with pointers) of ¢, s < t to say that s is a prefix (with pointers) of ¢t and s > ¢ to
say that s is a suffix of ¢.

6.2.6 Preliminary results

In this section, we prove several preliminary lemmas which will help us to study compositionality
of P-i.j. strategies.
Lemma 6.2.7. Let X be a component (either A, B or B,C). Let u be an interaction sequence
of the formu=...06 ...n...a ...m where:

Ox ®x

- «, B are external moves in component X (necessarily both played in A or in C),
- m is either played in B or an external P-move in X,

-« is visible at m in X (i.e., « € "u | X7) and consequently (3 is also visible.
Thenn & ™u [A,C7.

Proof. Since a is an O-move, « and [are necessarily played in the same arena (A or C'). Take
v = wu if m is a generalized O-move in X and v = uc, otherwise (if m is a generalized P-
move in X). The third assumption implies «, 5 € "v". The last move in v is necessarily a
generalized O-move in component X (see diagram of Fig. 6.1) therefore by Lemma 6.2.6 we
have "o | X7 ="T0 | X' C v Cw. Thus o, € @ and since «, 8 are played in A,C we have
a,feul A C="u|AC" (Lemma 6.2.5). Finally since n lies underneath the S-a PO-arc it
cannot appear in the P-view "u [A, C™. U

Lemma 6.2.8. Let u € Int(A, B,C) and n be a move of u such thatn € "u | A,C™.
(1) If all the moves in us, are played in C thenn € "u [B,C".
(11) If all the moves in us, are played in A thenn € "u [A, B™.

Proof. (i) We show the contrapositive. Suppose that n & "u | B,C™ then either:

- Ty [B,C" contains an initial move ¢y € C' occurring after n in u.

By Lemma 6.2.6 we have "u [B,C"'="Tw | B,C" C "u, thus ¢y also occurs in "u. Since
co belongs to C' we have ¢y € "u [A,C = "u | A,C" (Lemma 6.2.5). Thus the P-view
Tu [A,C7 starts with the initial move ¢y, and since n occurs before ¢g it does not occur in
the P-view.

- or n lies underneath a PO-arc 8-« visible at v [B, C. By assumption, since « occurs after n
in u, it must belong to C'. We can therefore apply Lemma 6.2.7 with X <« B, C which gives
ng ulAC.

190 Chapter 6. Models of Safe Applied Lambda Calculi

(ii) Suppose that n € "u | A, B™ then either:

- Ty | A, B contains an initial move by € B occurring after n in u. But this is impossible since
by assumption all the moves occurring after n in u belong to A;

- or n lies underneath a PO-arc f-a in A, B. By assumption, since a occurs after n it must
belong to A. We can then conclude using Lemma 6.2.7 with X «— A, B. U

Note that we cannot completely relax the assumption which says that moves in u>,, are all

in the same component. For instance take u = omo then we have n € "u [A,C™ but
n

né¢Tul A B

Lemma 6.2.9 (P-visibility decomposition (from C)). Let u =...n"-r-m € Int(A, B,C) where

n' is a e4-move satisfyingn’ € "u | A,C7 and m is in oc U ©U o. Then there is a o-move

v inr-m such that v € "u | B,C7 , n' € Tu<y | A, B" and vy is justified by a move occurring

before n'.

Proof. By induction on |r|. If r = € then necessarily u = ... @4 o where m points before n’
n/

(since n’ belongs to A it cannot justify m which is played in B) so we just need to take v = m.

If |r| = 1 then either u=... @40 0c or u =... @4 @ 0. In both cases we can take v to be the

li /
m
o-move between n’ and m. Suppose |r| > 1. Let m~ denote the move preceding m in u. We
proceed by case analysis:

- Suppose m € o¢ and m~ € ec. Let g be the external P-move that justifies m™. Since
n' € "u | A,C7, ¢ must occur after n’ in u:

A % B L ¢

oq

oM
om

Thus we can use the induction hypothesis with u <« ug,: There is a o-move v in), g
pointing before n’ such that v € Tug, [B,C™, n’ € Tugy [A, B7. Moreover "ug, | B,C™ <
Tugm | B,C7 (since g is visible from m in B, C') thus we have v € "ug,, [B,C™ as required.

- Suppose m € o¢ and m~ € o. Again we can conclude using the induction hypothesis with
U <— U<m— .

- Suppose m € o.

Suppose that all the moves in r are in A. Then r is of the form (o4 @4)* (where (-)* denotes
the Kleenee star operator). We just need to take v = m. Indeed, moves in us,, are all in A
and by assumption n’ € "u | A,C7 therefore Lemma 6.2.8(ii) gives n’ € "u | A, B™. Also,
since m is a o-move, its justifier is a ©-move but r contains only e and o moves hence m’s
justifier must occur before n'.

Chapter 6. Models of Safe Applied Lambda Calculi 191

Suppose that r contains at least one move in B. Let b be the last such move, then u is of the
form...n-...-0- (04 04)* 0. We then haveu | B,C =...n'-...- ©-othusbe"u | B,C".

b m m
We can then conclude by applying the induction hypothesis with u « 1.

- Suppose m € o. If m™ € o then the LH. with u < ug,,~ permits us to conclude. If m™ € ¢
then we conclude by applying the I.H. on u « ug, where ¢ is the external P-move in C
justifying m™. =

We now show the symmetric of the previous lemma:

Lemma 6.2.10 (P-visibility decomposition (from A)). Letu = ...n'-r-m € Int(A, B,C) where
n’ is an O-move non initial in C satisfyingn’ € "u [A,C7 and m is in 04U oU o. Then there
is a ©-move y inr-m such that v € "u | A,B", n' € "u<, | B,C" and vy is justified by a move
occurring before n’.

Proof. The proof is almost symmetrical to the previous one (Lemma 6.2.9). We proceed by

induction on |r|. If r = e then necessarily u = ... ¢ © where m points before n’ (it cannot
n' m
point to n’ since n’ is not initial in C'). Thus we just need to take v = m.
If |r| = 1 then either u = ... ¢c © 04 or u = ... e¢ © o. In both cases we can take v to
!/ nl

be the o-move between n’ and m. Suppose |r| > 1. Let m™~ denote the move preceding m in .
We do a case analysis:

- Suppose m € o4 and m~ € e4. Let ¢ be the external P-move that justifies m™. Since
n' €u | A,C7, ¢ must occur after n’ in u:

A 2 B 4

Thus we can use the induction hypothesis with u « ug,: There is a e-move v in upy g
pointing before n’ such that v € "ugy [A,B7, n' € "Tugy [B,C™. Moreover "ug, | A,B™ <
Tugy | A, B (since g is visible from m in A, B) thus we have v € "ugy, [A, B as required.

- Suppose m € 04 and m~ € o then again we can conclude using the L.H. with u + ug,,~.
- Suppose m € o.

- Suppose that r does not contain any move in B then 7 is of the form (oc e¢)*.
We just need to take v = m. Indeed:

1. By Lemma 6.2.8(1) we have n’ € "u | B,C™.

2. the justifier of m occurs before n’. Indeed, if m is justified by a o-move then since n’ - r
contains only e and o-moves, m’s justifier must occur before n/. If m’s justifier is an
initial ec-move ¢;, then by P-visibility we have ¢; € "u [B,C™; but since the P-view
computation “stops” when reaching an initial moves, and because by (a) n’ also belongs
to the P-view, n must necessarily occur after ¢;.

192

Chapter 6. Models of Safe Applied Lambda Calculi

- Suppose that r contains some move in B. Let b be the last such move. Then u is of the form

/

u=...n"-...-0-(0404)" 0. Sowehaveu | B,C=...n'-...- ©-ohenceb e "u | B,C™.

m
We can now conclude by applying the LH. with u « ug.

b m

- Suppose m € o. If m™ € o then the L.LH. with u + ug,,~ permits us to conclude. If m™ € o4
then we conclude by applying the LH. on u < ug, where ¢ is the external P-move in A
justifying m ™. =

Using the two preceding lemmas we can show:

Lemma 6.2.11 (Increasing order lemma). Let u = ...n' -r-m € Int(A, B,C) where

1.

n' is an external O-move in component X (n' € o4 and X = A, B, orn’ € ec and

X = B, C) non initial in C,
ne€ulACT,

m 1is either played in B (in © or o) or is an external P-move in'Y (in oc ifn' € e4, or
in oqifn' € o¢),

. m’s justifier occurs before n’,

u Y is P-i.j.,

ugy | X is P-i.j. for every B-move b occurring in u such that b is a generalized P-move in
X and is not initial in B.

Then:

ordm > ord n' .
Y A—oC

Proof. If n’ € e¢ (resp. if n’ € e4) then by Lemma 6.2.10 (resp. Lemma 6.2.9) there is an
occurrence in r - m of a non-initial B-move v of type © (resp. o) such that v € "u | Y7,

n €

Tu<, | X7 and + is justified by a move occurring before n'.

There are six possible cases depending on the type of the moves n’ and m: (n/,m) € o4 x
(ocU eUo)U e¢ x (04U oU o). The following diagram illustrates the cases (n/,m) € o4 x o¢
(left) and (n’,m) € e x 04 (right):

A — B — C A — B — (C
° °
©
n' e n' e
Yo o
mo mo
We have:
> . .
oﬁr/dw > o)r(dw (6.2)

Indeed, if n’ € oc then X = B,C and Y = A, B and by Lemma 6.2.1 we have ordg_.g~vy >
ordp_oc 7. If n € e, then ~ is a o-move therefore it is not initial in B and Lemma 6.2.1 gives
orda_opy = ordg_oc 7.

Chapter 6. Models of Safe Applied Lambda Calculi 193

Hence:
f_ro% n' = og(d n' by Lemma 6.2.1 since n’ is non initial in C
< og(dw since ug,y | X is P-i.j. (hyp. 6) and ~’s justifier occurs before n/
< 0}r/d7 by (6.2)
< 0}1r/dm since u | Y is P-i.j., and m’s justifier occurs before v (hyp. 4). O
Lemma 6.2.12. Let u € Int(A,B,C) such that w = ...~v...d...m where m is a generalized

P-move in X, y€"u A C andd € "u [X". Then vy € ugs [A,C.

Proof. First we remark that 6 must occur in "« . Indeed, § € "u [X' = "u<,y, [X '-m therefore
6 € "Uep | X7 and since the move preceding m in wu is necessarily a generalized O-move in X,
we can apply Lemma 6.2.6:

0 € TUaem [X T="TTuey, ' [X by Lemma 6.2.6

Clearly, "ugs [A,C7is a prefix of "u [A,C", indeed:

"ugs [A,C7T="ugs ' [A,C by Lemma 6.2.5
<TullAC since 0 € "u!
=Tu | ACT by Lemma 6.2.5.

Finally since v € "u [A,C" and « occurs before § in u, we necessarily have v € "ugs |

A, C. O

Lemma 6.2.13. Let X be a component and u € Int(A, B,C) such that the projection of u on
the component X has the form:

N
ulX=...n...n" ...m
®x Ox

and
1. m and n’ are external move in X (in Aif X = A,B and in C if X = B,C),
2. ul X is P-i.j.,
3. ugy | A, B is P-i.j. for every o-move b occurring in u,
4. ugy | B,C is P-i.j. for every ©-move b not initial in B occurring in u.
Then either ordg_ocn’ <ordg_ocm orn’ € u | A,C™.

Proof. - Suppose that n’ occurs in the P-view "u | X 7. Then we have

ord ' = ord n' . (6.3)
A—C B—C

Indeed, if X is the component B, C then necessarily n’ is not initial in C' (otherwise it would

be the first move in "u | B, C”, which is not the case since by visibility n occurs before n’ in

the P-view) and if X = A, B then n’ is in A. In both cases, Lemma 6.2.1 gives us the claimed
equality.

194 Chapter 6. Models of Safe Applied Lambda Calculi

Thus,
d n' = ordn’ by (6.3
prg.m' = ogin y 69
< og(dm since u [X is P-i.j.
= /?rdcm by Lemma 6.2.1 since m is not initial in C.

- Suppose that n’ does not occur in the P-view "u | X7, then n’ lies underneath a PO arc
occurring in "u [X. We denote this arc by §-a where 8 and « denote the arc’s nodes. We

have: /\

with ordx a < ordx m (since u [X is P-ij.).

— Suppose « is an external move then so is 8. Indeed, if X = B,C and a € e¢ then o can
only point to another move in C' and if X = A, B and « € e4 then since « is an O-move in
A, B, it is not initial in A and therefore its justifier must also be in A. Instancing Lemma
6.2.7 with n < n/ givesusn' & "u | A,C".

— Suppose « is a B-move then necessarily so is § (Indeed, if X = A, B then a € B can only
point to a move in B; if X = B, C then since « is an O-move in the game B, C it is not initial
in B so its justifier must also be in B). Suppose that n’ € "u | A, C7, then applying Lemma
6.2.12 with 6,7 « a,n’ gives n' € Tug, [A,C7. By the 3" and 4" hypothesis, ug, | X is
P-i.j. and we can use Lemma 6.2.11 on ug,:

ord n’ < orda by Lemma 6.2.11 with u « ug,
A—C' Y
= o)r(da by Lemma 6.2.1 since « is a non initial B-move
< o)r(dm since u [X is P-i.j.
= /?rdcm by Lemma 6.2.1 since m is not initial in C.

Linear composition

Proposition 6.2.4 (Linear composition). Let 0 : A — B and pu: B —o C' be two well-bracketed
(P-visible) strategies then

(i) o closed P-i.j. N\ pu P-i.j. = o;u P-i.j.;
(i) o and p are closed P-i.j. = o;pu closed P-i.j.

Proof. Since well-bracketing is preserved by strategy composition | , Proposition 2.5], o;
is well-bracketed so we can use the definition of P-i.j. from Proposition 6.2.1.

(i) We prove that o; i is P-1.j. Let u be a play of the interaction o || p ending with an external
P-move m justified by n in "u | A,C7. Let n’ be an external O-move occurring between n and
m:

u[A,Cz...n(hn i
e o O

To show that u | A, C is P-incrementally justified, we just need to prove that either n’ & "u |
A,C7 or ordg_ocn’ < ordg_oc m. Note that if n’ € "u [A, C7 then necessarily n’ is not initial
in C because n occurs before n’ in "u [A,C™.

Let E denote one of the two external arenas (A or C'), X be the corresponding component
(i.e., X=A,Bif E=A,and X = B,C if E=C) and Y denote the other component.

1) Suppose m and n are two external moves in E.

Chapter 6. Models of Safe Applied Lambda Calculi 195

1.a) Supposen’ € E. This situation is handled by Lemma 6.2.13: we have either ord4_.cn' <
ordg_ocmorn & u| A C™.

1.b) Suppose n’ ¢ E. If n’ € "u | A,C7, then by Lemma 6.2.11 with X «— Y we have
ordg_.cn’ < ordx m and since m is not initial in C, Lemma 6.2.1 gives ordxy m =
ord4_oc m, thus ords_.cn’ < ordg_.c m.

2) Suppose m € A and n € C. Then m is an initial move in A pointing to a ©-move by initial
in B which in turn points to the ec-move n initial in C.

This situation differs from the previous case because the justifier of m in the game A,C
differs from its justifier in A, B (see Sec. 2.3.2.6 for the definition of projection on the overall
component A, C), thus it is not guaranteed that m’s justifier in A, C' occurs before n’ so we
cannot use Lemma 6.2.11.

Let’s assume that n’ € "u | A, C7 and prove that ords_ocn' < ords_.c m.

- Suppose n’ occurs before by. (Thus we cannot use Lemma 6.2.11). Up to now we have only
used the fact that ¢ and p are P-i.j. The assumption that o is closed P-i.j. now becomes
crucial.

Since n’ € "u | A,C" and by € "u | B,C", applying Lemma 6.2.12 with X « B,C and
8,7 < bo,n’ gives n’ € Tugy, [A,C7. This allows us to apply Lemma 6.2.11 on ugp,:

f?rdcm = oadm > ogd b since u [A, B is closed P-i.j. and m is initial in A

> ord n’/ by Lemma 6.2.11 on ug,, with X «— A, B.

- Suppose n’ occurs after by (and necessarily before m).

a. Suppose n’ € C. m’s justifier occurs before n’ in u thus by Lemma 6.2.11 we have
ordg_ocn' <ordy_ogm = ordg_oc m.

b. Suppose n’ € A. Since n’ € "u | A,C7, by Lemma 6.2.13 with X «— A, B and
(n,n';m) < (bg,n’,m) we have ord4_ocn’ < ordg_c m.
(Note that here we cannotuse Lemma 6.2.11 on u because m and n’ are both played
in A. Also, if A has a single initial move then n’ is necessarily hereditarily enabled by
the initial move m, thus we can immediately conclude that ord4_.cn’ < ords_.cm;
however this argument does not work in the general case.)

(ii) We now show that o; u is closed P-i.j. provided that both o and p are. Take a play sm € o; p
such that m is initial in A and let n be the initial move of C' justifying m. Let v € o || u be the
uncovering of sm (sm =u | A,C) and by be the initial B-move justifying m in u. We have:

ogdm > o}gd b since u | A, B € o is closed P-i.j.
> ogdn since ugp, | B,C € p is closed P-i.j..

Observe that the second part of the proposition gives only a sufficient condition for o; u to
be closed P-i.j.: we can have o; i closed P-i.j. although g is not.

Tensor product

Given two strategies 0 : A — Band 7: C —o D, their tensor product is denoted c®7: AQB —o
C ® D where A ® B denotes the tensor product of the games A and B (see Sec. 2.3.3.1).

Proposition 6.2.5. Ifc: A — B and 7: C — D are P-i.j. (resp closed P-i.j.) then so is
oRT.

196 Chapter 6. Models of Safe Applied Lambda Calculi

Proof. By establishing the state diagram of the game A ® C' — B ® D one can show easily that
only player O can switch between the subgames A — B and C' — D. Consequently, in the
P-view of a play of the game A ® C — B ® D, all the moves are played in the same subgame
(i.e., all in A — B or all in C — D). Hence if the last move of a play m is played in A — B
then "s | A,B7 =Ts7 | A, B = "s" (and conversely if m is played in C' — D). The result
follows immediately. O

Pairing and projection

Given two strategies 0 : C — A and 7: C — B, let (0,7) : C — A x B denote the pairing
strategy as defined in Sec. 2.3.3.3 where A x B denotes the product of the games A and B.

Proposition 6.2.6 (Pairing).
(i) Ifo: C — A andT: C — B are P-i.j. (resp. closed P-i.j.) then so is (o, T);

(ii) For every objects A and B, the projections 1 : Ax B — A and w3 : AX B — B are closed
P-i.j.

The proof is immediate.

Promotion

Let s be a play. We call thread a maximal subsequence of s consisting of moves that are
hereditarily justified by the same occurrence of an initial move. For every move m occurring in
s, there is only one thread in s containing it; this thread is called the thread of m.

Recall that the promotion o' : |A —!B of a strategy o : !4 — B, for two well-opened games
A and B, is given by:

ol ={s € Liy_qp | for all inital min B, s [m € o} .

Since B is well-opened, plays of o consist of a single thread initiated by some initial B-
move. Plays of of, however, are interleaves of potentially infinitely many single-threaded plays
of 0. The visibility condition implies that the thread of a P-move is always the same as the
thread of the preceding O-move. Consequently, the P-view of a play is equal to the P-view of
the current thread: if the current thread of a play s is opened by an initial move b € B then
CsT=rsb1="s7 b

The state of the game is given by an infinite sequence of symbols in {O, P}, each element
of the sequence indicating who is to play in the corresponding thread. The diagram on Fig. 6.2
illustrates how the state changes as a play of o unfolds. The initial state of the game is O“—an
infinite sequence of O’s—indicating that O is to play in all the threads. When O plays an initial
move in B, it “opens” a new thread so the state of the game becomes OF¥ PO where k is the
index of the thread being opened. By alternation, P now has to play; his move must be played
in a thread already opened by O and in which P is to play. Only one thread is in such state:
the k™ one; thus when P makes his move the game is set back to state O%.

Proposition 6.2.7 (Promotion). If A and B are two well-opened games and o : |A — B is a
well-bracketed P-i.j. strategy then o' is also well-bracketed and P-i.j. Furthermore if o is closed
P-i.j. then so is o'.

Proof. of is well-bracketed | , Proposition 2.10.]. For P-incremental justification, the
result is a direct consequence of the fact that the P-view of a play in o' is equal to the P-view
of the current thread. For closed P-incremental justification, the result is immediate. O

Chapter 6. Models of Safe Applied Lambda Calculi 197

Foxs

PO¥ OPO¥ . OkPOw

Figure 6.2: State diagram for plays of o'.

Composition

We recall that the composite of o : !A — B, and pu : !B — C in the co-Kleisli category of games
C (Def. 2.3.12), written o § u, is defined as:

ospu=olip .

From propositions 6.2.4 and 6.2.7 we obtain:

Proposition 6.2.8. Let A and B be two well-opened games. Let 0 : |A — B and u: !B — C
be two well-bracketed strategies then:

(i) If o is closed P-i.j. and p is P-i.j. then o §pu: 1A — C is also P-i.j.;

(ii) If o and p are closed P-i.j. then so iso§u: 1A — C.

6.2.7 Categories of closed P-i.j. strategies

We define the category of closed P-incrementally justified strategies as follows:

e Objects: games (as defined in Sec. 2.3.2.2),

e Morphisms A — B: closed P-i.j. strategies for the game A — B,

e Composition: the linear strategy composition (Def. 2.3.9).

The results of the previous section show that this is indeed a monoidal category. It is not
monoidal closed, however. Indeed, recall that a P-ij. strategy ¢ : A — B is closed P-i.j. if
some condition on the initial A-moves occurring in the plays is met. In particular if A has no
initial move, o is necessarily closed P-i.j. Consequently the isomorphic strategy on the game
I — (A — B) obtained by currying is closed P-i.j. although o itself is not necessarily closed
P-i.j. Take for instance the two simply-typed terms k¢ Az®y°.y and y : 0 Fg Ax®.y. These two
terms have isomorphic denotations in C. But the denotation of the first term is closed P-i.j.
while the second is only P-i.j.

We define the intentional category I as the co-Kleisli category of the category defined
above.

Intentional category
Let C denote the co-Kleisli category of games defined in Sec. 2.3.3.6.

Lemma 6.2.14. Let ord be the order function from Def. 2.5.15: for every game A with under-
lying set of moves M 4:

d
ord A ¥ max ordm
meM

with the convention max() = —1. We define the function dro on objects of C as follows. For
every game A with underlying set of initial moves I4:

d .
dro A ¥ min ordm .
mel 4

198 Chapter 6. Models of Safe Applied Lambda Calculi

Then the triple (C,ord,dro) defines a pre-incremental closed category.
Proof. The functions ord and dro trivially satisfy the conditions of Def. 6.1.3. U
Proposition 6.2.9. (C,Z,ord,dro) is an ICC.

Proof. The objects of Z are exactly those of C. The morphisms of Z are a subclass of morphisms
of C. For every object A, the identity strategy id4 is closed P-i.j. For every pair of morphisms
in Z the composite is also in Z by Prop. 6.2.8. Thus Z is a lluf subcategory of C. By Prop. 6.2.6,
projections are closed P-i.j., and closed P-i.j. strategies are closed under pairing. Because of
Lemma 6.2.4(i), the incremental evaluation maps are closed P-i.j., and the closed P-i.j. strategies
are closed under incremental currying. Hence (C,Z,ord, dro) is an ICC. U

The category Z will be used to give the intentional game model of safe PCF and safe TA.
We write Z;, Zp, and Z; to denote its lluf subcategories of innocent, well-bracketed and innocent
and well-bracketed strategies respectively.

Extensional category

Let < denote the usual intrinsic preorder of the category C (see Sec. 2.3.3.6). The preorder <z
on morphisms of the category C is defined similarly to < except that the test strategy « ranges
over the morphisms of the subcategory Z only: for o, u € C(I, A),

c<r17 <— VYaeZI(AY).osr=T = 175a=T .

The intrinsic preorder in Z, also written <z, is defined as the restriction of <z to the
morphisms of the category Z. Abramsky et al. | | proved that < is a CCC precongruence
for C. The same proof shows that <7 is also a CCC precongruence for C. Consequently by
Lemma 6.1.3, the extensional category Z/<7 is a rational ICC.

Interpretation

By Prop. 6.1.2, we have that the ICCs Z and Z/ <7 both provide a model of the safe lambda
calculus, and the rational ICCs Z;;, and Z;,/ Sz, of innocent well-bracketed closed P-i.j. strategies
both provide a model of safe PCF.

6.3 Interpretation in the standard game model

In Chapter 5 we have shown by a syntactic argument, based on the theory of traversals, that
safe lambda-terms are denoted in the standard game model by P-i.j. strategies. We now reprove
this result by a semantic argument based on the results of the previous section.

6.3.1 Safe lambda calculus with product

Proposition 6.3.1. In the standard game model of the simply-typed lambda calculus with prod-
uct, safe terms are denoted by closed P-i.j. strategies.

Proof. We show by induction on the formation rules that (1) almost safe terms are denoted by
P-i.j. strategies; (2) safe terms are denoted by closed P-i.j. strategies.
e (var) [z : Abgx: A] is the identity strategy id4 which is closed P-i.j.
e (wk) Take I' C A and suppose [I" ks s : A] is closed P-i.j. Up to a retagging of the moves,
the two strategies [A ¢ s: A] and [I" ks s : A] are isomorphic. Hence [A t s : A] is P-i.j.
It is also closed P-i.j. since none of the new initial moves introduced by A occurs in any
play of the strategy.
e (x), (m) and (m2): The result follows from the I.LH. and Proposition 6.2.6.

Chapter 6. Models of Safe Applied Lambda Calculi 199

e (0): It follows from the I.H.

e (appas) Suppose that I' Happ tot1 ...t : B with I' ¢ ¢g : (A1,..., Ay, B) and I' kg t; 1 A;
for i € {1..n}. By the I.H., for i € {0..n} the strategy [t;] is closed P-i.j. We then have
[toti...tn] = ([to], [t1],- - -, [tn])sev™ where ev™ is the n-parameter evaluation strategy. By
Proposition 6.2.6 the strategy ([to], [t1],-- -, [tn]) is closed P-i.j. Since the evaluation map
ev™ is P-i.j. (but not necessarily closed P-i.j.), by Proposition 6.2.4(i) [I" ks tot1 ... t, : B]
is P-i.j.

e (app) Terms formed with this rule can also be formed with the rule (app,s), therefore by
the previous case the denotation of the term formed is P-i.j. By the side-condition of the
rule, all the prime sub-types of I' have order greater than the order of the term, therefore
by Lemma 6.2.4(ii), [I" ks toty ... t, : B] is closed P-i.].

e (abs): By the I.H., the premise of the rule has a P-i.j. denotation. The denotation of the
term in the conclusion of the rule is isomorphic, up to currying, to the denotation of the
premise. Therefore it is also P.i.j. And by the side-condition and Lemma 6.2.4(ii) this
implies that it is closed P-i.j. U

6.3.2 Safe PCF

Proposition 6.3.2. In the standard game model of PCF, safe terms are denoted by closed
P-incrementally justified strategies.

Proof. We first prove the result for PCF;—the fragment of PCF containing terms of the form
Q4 = Y(\z?.2) but where no other use of Y is allowed |]. The proof is by structural
induction over the structure of the term:

e The strategy [Q24] = L is clearly closed P-i.j.;

e The functional rules are treated the same way as in the corresponding proof for the safe
lambda calculus;

e For the arithmetic rules, we observe that the strategies succ, pred and cond are all closed
P-i.j. The fact that pairing and strategy composition preserve closed P-incremental justification
permits us to conclude.

We now lift the result to full PCF using the technique of syntactic approximant |].
We have | , lemma 16]:

new
where M, is the PCF; term obtained from M by replacing each subterm of the form YN with
Y™N,, and Y"F denotes the n® approximant of YF. Since the M,s are PCF; terms, by the
previous result each [M,] is closed P-i.j. and since closed P-incremental justification is clearly
a continuous property, [M] is also closed P-i.j. O

6.3.3 Safe Idealized Algol

We now extend the game-semantic interpretation to safe IA. The constants of TA are all denoted
by closed P-incrementally justified strategies:

Lemma 6.3.1.

(i) The strategy denotations of the IA constants skip, assign, deref, mkvar, S€Qayp; and
seq.,, are all closed P-i.j.

(ii) The memory-cell strategy cell : I — lvar is closed P-i.j.

Proof. (i) Inspecting the view functions of these denotations (as defined in Sec. 2.3.5) reveals
that they are indeed all closed P-i.j. (ii) Since the game var does not contain any P-question,
any strategy on the game I —o lvar is P-i.j. (and therefore also closed P-i.j.). O

200 Chapter 6. Models of Safe Applied Lambda Calculi

Our game-semantic analysis of safe PCF immediately extends to strongly safe TA:

Proposition 6.3.3. Strongly safe IA terms are denoted by closed P-i.j. strategies.

Proof. The proof is an adaptation of the proof for safe PCF. We first show that the result holds
for the fragment of strongly safe IA in which the only allowed uses of Y are in terms of the form
Q). By induction on the term’s structure: For the functional and arithmetic rules, the proof
is the same as for safe PCF. For the imperative rules, the result follows from the fact that IA
constants are denoted by closed P-i.j. strategies (Lemma 6.3.1(i)) and because tensor product and
composition both preserve closed P-incremental justification. For the block-allocation construct,
the result follows from the fact that cell is closed P-i.j. (Lemma 6.3.1(ii)) and that pairing and
strategy composition both preserve closed P-incremental justification.

The result is then lifted to the whole of strongly safe IA using the technique of syntactic
approximants as in the PCF case.]

We now want to extend this result to safe IA. This turns out to be slightly more difficult than
for the strongly-safe fragment. Indeed, in safe IA the safety restriction only constrains variables
from the I'-context (i.e., those that are bound by a A-abstraction). The fact that =-variables are
not constrained is reflected in the semantics. For instance the denotation of the safe split-term
0|z : var kg Afe*P7%*P deref x is not closed P-i.j.

We show, however, that safe split-terms are denoted by strategies in which all the plays are
closed P-i.j. except those containing moves from the Z-context. Consequently, by “abstracting”
=-variables using the constructs mkvar or the block-declaration new, we eliminate the plays that
are not closed P-i.j. Hence since safe TA terms are the semi-closed split-terms (i.e., with an
empty Z-component), this implies that their denotation is closed P-i.j.

Definition 6.3.1 (P-i.j. modulo 9t). Let o be a strategy on some game A and 9 be a set of
moves. We say that o is P-incrementally justified modulo 90 iff every even-length play in o
ending with a question that is not in 9 is P-i.j. Similarly we say that ¢ is closed P-i.j. modulo
I iff every such play is closed P-i.j.

A strategy is thus P-i.j. if and only if it is P-i.j. modulo 0.

The common operations on strategies preserve the property of being P-incremental justifi-
cation modulo a set of moves:
Lemma 6.3.2 (Composition). Let 0 : A — B and pu : B — C. Let 9 be any set of moves

initial in A. If o is closed P-i.j. modulo 9 and p is P-i.j. (resp. closed P-i.j.) then o §p is
P-i.j. (resp. closed P-i.j.) modulo 9.

Proof. We observe that in the proof of compositionality for closed P-i.j. strategies, to show that
a play u [A,C of o;p is P-i.j. we did not use the fact that every play of o is P-i.j., but only
that u [A, B (resp. u | B,C) is P-i.j. and all the prefixes of u [A, B and u | B,C ending with
a non-initial B-move are P-i.j. Thus the same proof can be used to show that a play u [A,C
ending with a move not in 91 is P-i.j. O

Lemma 6.3.3 (Tensor product). Let 0 : A — B and 7: C —o D. Let M4 and Mc be two
sets of moves initial in A and C respectively.

1. If o and T are P-i.j. modulo M4 and modulo Mc respectively then o @ T is P-i.j. modulo
MaUMe;

2. If o and T are closed P-i.j. modulo M 4 and modulo Me respectively then o @ T is closed
P-i.5. modulo 94 U Mc.

Lemma 6.3.4 (Pairing). Leto: C — A, 7: C — B, and M be a sets of moves initial in C.

(i) If o and T are P-i.j. modulo Mc then so is (o, T);

Chapter 6. Models of Safe Applied Lambda Calculi 201

(ii) If o and T are closed P-i.j. modulo M then so is (o, T).

The proof of the two previous lemmas is an easy adaptation of the proofs of their counterpart
for P-i.j. strategies.

Lemma 6.3.5. Let7: 1 — Cy, 0 : C1 ® Cy — B and M be any set of moves initial in C; ® Co.
If 7 is P-i.j. and o is P-i.j. (resp. closed P-i.j.) modulo M then (idcy @ T)§ 0 is P-i.j. (resp.
closed P-i.j.) modulo M N CY.

Proof. Let D = C; ® Cy. Let u € Int(Cy,D,B) be a non-empty interaction play of u =
(ido, ® 7)1||o, and m denote the last play of u. We need to show that if m does not belong to
M then u [C1, B is P-incrementally justified.

Suppose m € C1\9M. Let d be the initial D-move hereditarily justifying m, then by definition
of u we have u [C1, D, d € idc, which implies that u [C1, B =u [D, B. But u is an interaction
sequence therefore v [D, B € o, and since ¢ is P-i.j. modulo 9t this implies that v [C, B is
P-incrementally justified.

Suppose m € B then necessarily its justifier also occurs in B. By definition of u, the play
u [D, B belongs to ¢ which is P-i.j. modulo 9. Since m belongs to B it cannot be in 9
therefore u is P-i.j. Furthermore, since 7 is P-i.j., so is (idc, ® 7)T therefore the play u | Cy, D
and all its prefixes are P-i.j. Hence we can apply Lemma 6.2.13 with X «— D, Band Y « Cy,D
which shows that u [Cq, B is P-i.j. U

Lemma 6.3.6. Let mkvar : B — C be the denotation of the mkvar construct where B =
(exp! — com) x exp and C =var. Ifo: A — B is a closed P-i.j. strategy modulo M4 U [exp']
for some set M4 of initial A-mowves then o;mkvar is closed P-i.j. modulo 9 4.

Proof. Let u be an interaction sequence such that u [A, C ends with a P-question that is not
in M 4. Then u [A, B and u [B,C are both P-i.j. Let m denote the last move in u and n be
its justifier in u [A, C. Suppose that an O-move n’ occurs in the P-view between n and m. We
show that its order is necessarily smaller than that of m. We necessarily have m € o4 because
there is no P-question in C.

(a) Suppose that m € o4, n € e4 and n’ € e4. In general, n’ does not necessarily appear
in the P-view "u [A, B™ (see proof of compositionality). In the present case, however, this case
never happens. Indeed, as noted in the proof of Lemma 6.2.13, this would imply that n’ lies
underneath a o- o-arc. But this is not possible since the only ©-move in B is an initial move.
Thus n/ occurs in "u | A, B™ and since u | A, B is P-i.j. this implies that n’ has order smaller
than m.

(b) Suppose that m € 04, n € o4 and n’ € o¢. Take Y = A, B and X = B,C. We have
that w [Y is P-i.j. and since mkvar is a P-i.j. strategy, for all B-move b occurring in u, ug, [X
is P-i.j. Thus we can apply Lemma 6.2.11 which shows that ord4_,cn’ < orda_.cm.

(c) Suppose m € o4, n € ec. Then in A, B, the move m is justified by a e-move by itself
justified by n in B,C. By definition of the strategy mkvar, n and by are in fact consecutive
moves in u, thus n’ necessarily occurs after by. If n’ € e then we conclude with Lemma 6.2.11
as in (b) that ordg—cn’ < orda_.cm. Otherwise n’ € o4, and we conclude as in (a).

Hence u [A, C is P-i.j. It is further closed P-i.j. because both v [A, B and u | B,C are. [

Example 6.3.1. The unsafe term

f: (exp — exp) — comF A\z.f(A\y.z) = M : exp’ — com
is denoted by a strategy [M] that is closed P-i.j. modulo [exp!]. But the term mkvar M 0 : var
is denoted by the strategy ([M],0); mkvar which is closed P-i.j.

Given a safe split-term I'|Z g M : A, we write [['|= s M : A] to refer to [I',E+ M : A],
the game denotation of the corresponding IA split-term. For every game A we write In(A) for
the set of initial moves in A.

202 Chapter 6. Models of Safe Applied Lambda Calculi

Proposition 6.3.4. Let T'|E 4 M : A be a safe IA split-terms. Its denotation [I'|ZFs M : A]
is closed P-i.j. modulo In([Z]).

REMARK 6.3.1 In([Z]) contains only order-0 questions because the context = contains variables
of type var and exp only.

Proof. We only need to prove the result for terms where the only allowed uses of the Y com-
binator is in subterms of the form 2; the result then follows immediately using the syntactic
approximants technique and continuity of the “closed P-i.j.” property.

We proceed by induction on the safe IA term. The cases (var), (wk), (const), (succ), (pred),
(cond) are the same as for safe PCF.

- (var®¥), (wk™") are similar to (var) and (wk).

- (seq), (assign), (deref) These constants all have closed P-i.j. denotations so the result follows
from the I.LH., Lemma 6.3.2, Proposition 6.3.4 and 6.3.3.

- (app) The premise of the rule is an almost safe split-term: it is a consecutive applications of
safe terms. By the I.H. each of these terms has a denotation that is closed P-i.j. modulo In([=]).
Since the evaluation strategy ev is P-i.j., by Lemma 6.3.2, the denotation of the split-term being
formed is P-i.j. modulo In([Z]). Finally, the side-condition of the rule ensures that it is closed
P-i.j. modulo In([Z]).

- (abs) It follows from the I.LH. and because the side-condition of the abstraction rules con-
strains only free variables from the I'-context.

- (new) Let 0 = [I'|Z, z : var k5 M : B]. We have [I'|= F; new « in M : B] = (idr g®cell)so
where cell denotes the memory cell strategy on the game I —!var. By the I.LH. o is closed P-i.j.
modulo In([E®!var]). Instancing Lemma 6.3.5 with 7 « cell, C; < I'® E and C «!var gives
us the desired result.

- (mkvar) Let ¢ = [I'|E s mkvar (Ax.M;)Ms]. We have ¢ = (A(01),02); mkvar where
o1 = [I'|Z,2: exp ks M : com] and o9 = [['|E ;5 My : exp]. By the L.H., o} is closed P-ij.
modulo In([Z, x : exp]) and o9 is closed P-i.j. modulo In([Z]) therefore the strategy (A(oq), 02) :
[l x = — (exp! — com) x exp] is closed P-i.j. modulo In([Z] U [exp']). Hence by Lemma 6.3.6,
o is closed P-i.j. modulo In([Z]). O

By definition, safe IA terms are the semi-closed safe split-terms, hence:

Corollary 6.3.1. In the standard game model of IA, safe terms are denoted by closed P-i.j.
strategies.

6.4 O-incremental justification

We define O-incremental justification as the dual of P-incremental justification:

Definition 6.4.1.
(i) A play sm of odd length is said to be O-incrementally justified, or O-i.j. for short, if
m points to the last unanswered P-question in "s' with order strictly greater than ord m.
(ii) A strategy o is said to be O-incrementally justified, if all plays in o ending with an
O-question are O-incrementally justified.

Think of O-incremental justification as the constraint that one needs to impose to reflect the
fact that the environment is incarnated by a safe term. The duality between O-i.j. and P-i.j. is
similar to that of O-visibility versus P-visibility | , Sec. 3.6].

For every strategy o, we write O(o) to denote the largest subset of plays of o whose odd-
length prefixes are all O-i.j. The set O(o) is obtained by removing all the plays containing
O-moves that are not incrementally justified. It defines a strategy that mimics the strategy o
as long as the Opponent plays incrementally and does not answer otherwise.

Chapter 6. Models of Safe Applied Lambda Calculi 203

Lemma 6.4.1. Let o : A and o : A — 0 be two strategies. Then in the composition o;«, the
P-i.j. plays of o interact only with O-i.j. plays of a, and the O-i.j. plays of o interact only with
P-i.5. plays of a.

Proof. Let 0 : A and o : A — o be two strategies, and ¢ be the initial move of the game
[A — o]. For every s € L4 we have gs € La_.,. P-moves and O-moves in [A] become O-moves
and P-moves in [A — o] respectively. Hence P-views of plays in A correspond to O-views in
A — o; thus ¢"s7 = Lgsu4_,. Now take an interaction sequence v = quv € o|ja. We have
ul(A—o0)=(qu) | (A—0)=¢q(v] A). Henceif u | A =v [A is P-i,j. then by the previous
remark, u [(A — o) is O-i.j. The proof of the second part is symmetrical. O

Lemma 6.4.2. In an order-3 well-opened game all the legal positions are O-i.j.

Proof. Let A be an order-3 well-opened game. Take a play s in o ending with a question move q.
We prove by induction on s that if ¢ is a non-initial O-move then there is a single P-move in Ls_
with order > ord ¢ (and thus s is necessarily O-i.j.). We do a case analysis on the level of q. We
recall that ord g+1level ¢ < ord A. Since ¢ is a non-initial O-move, we necessarily have level ¢ = 2.
Let ¢’ denote the P-move preceding ¢ in s. Suppose that level ¢ = 1 then ¢ is justified by an
occurrence of the initial A-move gg. Since A is well-opened, s contains only one occurrence of ¢q
and therefore we have Ls. = qp - ¢’ - ¢. Thus by O-visibility, ¢ necessarily points to ¢’ therefore
ord ¢’ > ord ¢; thus since ¢ is the only P-move occurring in the O-view, it is also the only P-move
with order greater than ord q. Otherwise we have level ¢ = 3. Thus ord ¢’ < ord A —level ¢ =0
and ¢’ is justified by some O-move ¢” of level 2. We have Ls = Ls¢g71-¢ - ¢ so we can conclude
using the I.H. on s¢,» and the fact that ord¢’ =0 < ordg. O

This lemma does not hold anymore at order 4. For instance the identity strategy id4 : A — A

on the order-3 game A = [((0®> — 0?) — o!) — 0°] contains the following play which is not O-i.j.:

9 dp 41 91 G2 95 91 41 42 @5 95
where primed moves correspond to moves from the left copy of A.

Corollary 6.4.1. Let o, be two strategies from C(I, A) where A is an order-3 game. Then
CS K= oS-

Proof. Let o : A — o0 be a test strategy. By Lemma 6.4.2, ¢ and p are necessarily O-i.].
Thus by Lemma 6.4.1, the plays of o,u can only interact with P-i.j. plays from «. Hence
o;a = 0;P(a) and p;a = p;P(a). Therefore by definition of the intrinsic preorders we have
oS piff o <z p. O

6.5 Full abstraction

Question: What is a fully abstract model of safe PCF and safe IA?

We already know from the fully-abstract game model of PCF that when the observational
preorder is defined with respect to unrestricted (i.e., possibly unsafe) PCF contexts, observa-
tional equivalence is captured by equality of the quotiented game denotations. We show here
that a similar correspondence holds when observational equivalence is defined with respect to
safe contexts only. This further implies a full abstraction result for the fragments of PCF and
IA consisting of safe closed terms.

204 Chapter 6. Models of Safe Applied Lambda Calculi

Observational equivalence with respect to safe contexts

We first recall some basic definitions. A context is a PCF term containing exactly one free
occurrence of a distinguished variable ‘—’ called the “hole”. A context is usually denoted by
C[—] so that

—:AFC[-]:B
is a valid PCF term-in-context for some type A and B. For every term M of type A we write

C[M] to denote the term obtained by substituting M for the hole using capture-permitting
substitution. Due to the possibility of variable capture, this term is not necessarily a valid PCF

term. Also it is possible to have Ci[—] =g C3[—]| and C1[M] #3 C3[M]. (For instance take
Ci[—] = (Az®*®?.—)0 and Ca[—] = (Az**P.—)Q. Then Ci[—| =g — = C2[—]; but Ci[z] =5 0 and
Cale) = 2.

We write Trm(I', A) for the set of terms M such that I' = M : A is derivable in PCF. Terms in
Trm((), exp) (i.e., closed PCF terms of base type) are called PCF program. For every typing-
context I' and type A € T the program contexts Ctxt(I', A) are the PCF contexts C[—] such
that for all M € Trm(T', A), the term C[M] is a PCF program.

We write Trmg(I", A) for the set of terms M such that I' = M : A is derivable in safe PCF.
We say that a PCF context C[—] is a safe context if the judgment

—: A, C[-]: B,

is a valid safe PCF term-in-context. The safe program contexts Cixts(I', A) are the program
contexts from Ctxt(I', A) that are safe contexts.

We now define two notions of observational preorder for PCF:

Definition 6.5.1 (Observational preorders). Let I" be a typing-context and T" be a simple type.
Let M and N range over Trm(I', T"). We write L to denote the standard observational preorder
for PCF terms. This relation on Trm(I",T") is defined as:

MEN ¥ vo[-] e Ctxt(, A). C[M] } = C[N] |

The relation ES on Trm(T", T') is defined similarly to L except that contexts range over safe terms
only:
ML, N = VYO[-] € Ctxts(T, A). C[M] |} = C[N]{

We write = and = to denote the reflexive closures of T and L.
Lemma 6.5.1.

(i) The relations 5 and 5 are preorders (reflexive and transitive);
(i) Consequently = and =5 are equivalence relations;
(iii) G C ,.
Proof. Trivial. O

Note that in the definition of T, the program context C'[—] ranges in Ctxts(I', A) but it is
not required that C[M] and C[N] are themselves safe. When restricted to safe terms, however,
C[M] and C[N] are necessarily safe:

Lemma 6.5.2. M € Trm(I',T) A C[—] € Cixts(I', T) = C[M] € Trmg(0, exp).

Proof. Suppose that M € Trms(I', T") and C[—] € Cixts(I',T") then in particular, M € Trm(I",T")
and C[—] € Ctxt(T', T), therefore by definition of a program context we have C[M] € Trm((), exp).

Plugging a term in the context is done via capture-permitting substitution: C[M] is given
by (C[-]){M/—}. But since both C[—] and M are safe and C[M] is a valid term, by the No-
variable-capture lemma (Corollary 3.5.2(ii)) it is syntactically equivalent to perform the standard
substitution: C[M]| = (C[-]) [M/—]. Hence by the Substitution Lemma 3.1.6, C[M] is safe. O

Chapter 6. Models of Safe Applied Lambda Calculi 205

Lemma 6.5.3. M € Trms(I',T) A C[—] € Ctxts(I', T) = [C[M]] = [C[-]]; [M].

Proof. By the previous lemma, plugging M in C[—| can be done using the capture-permitting
substitution therefore [C[M]] = [C[-]]; [M]. O

Note that this lemma does not hold for unsafe context. For instance with C[—] = (Az®*?.—)Q

we have [C[~]]; [M] = ida; [M] = [M] but [C[a]] = L.

REMARK 6.5.1 It is possible to define a third notion of observational preorder where the contexts
are unrestricted but where we require instead that C[M] and C[N] are safe. This notion of
observational preorder differs from 5 because the safety of C[M] does not necessarily implies
that of C[—] (e.g., the context — : A = Az?.— : B is unsafe although C[z] is safe).

REMARK 6.5.2 Compared to L, the observational preorder T is a relatively coarse approxi-
mation relation for open terms. If we fix a type T" then all the open terms of type T containing
variables of order at least 7" will be equated by 5. The is because for every such term M, there
is no safe context C'[—] such that C[M] is closed. Indeed, if C[M] is closed then all the free vari-
ables in M must be abstracted in C[M]. Take a variable z € FV (M) satisfying ord z > ord T,
then the hole in C[—] must appear in a subterm of the form Az.---—- - containing the hole ‘.
But then this implies that the context is unsafe because the hole, which has order smaller than
z, is not abstracted with z. For example, the terms x : exp - condO0x ¢ = M; : exp for ¢ € N are

all =-equivalent, but their closures N; = Az®*®.M; are not: N; £ Nj for every i # j.
Proposition 6.5.1 (Computational Adequacy). Let P be a PCF program. Then
Pl [Pl;#1 < [P]o#z L .

Proof. The first equivalence is the Computational Adequacy result for PCF |]. Second
equivalence: The Sz, -equivalence class of L contains only the strategy L itself. Indeed, suppose
that o Sz, L then for all P-i.j. strategy a: A — ¥ we have o §aa =T = L§a = T. But the
condition 1 $a = T never holds therefore we necessarily have oc§a = L for all P-i.j. strategy a. In
particular, since the identity strategy ¢d4 is P-i.j. we can take a = id4 givingus o = o%idg = L.

Hence we have [P], # L iff [P], #z,, L. O

Proposition 6.5.2 (Inequational soundness). Let M, N € Trm(I',T). Then:
[M]e € [N]e = ME,N .
Proof. 1t follows from Inequational soundness in C |] since L is a subset of L. O

Theorem 6.5.1 (Inequational soundness in C;/Sz,,). Let M, N € Trm(I',T). Then:
[M]e Sz, [N]e = MESN .

Proof. We first show the result for closed terms. We follow the same argument as the proof of
Inequational soundness for PCF | . Let M,N € Trm(,T) and suppose that [M], <z,
[N]; and that C[M] |} for some safe context C[—]. Then the denotation of C[—] is a P-
i.j. strategy a € Z(T,X). For every closed term P, the context-substitution C[P] causes no
variable capture therefore we have [C[P]] = [P]$«a. Thus by Computational Adequacy we have
[M] s # L. But since [M], Sz [N], this implies that [N] s« # L which by Computational
Adequacy implies C[N] | as required.

We now generalize the result to open terms. We first make an observation: For all C[—] €
Ctxts([',T) and M € Trm([',T) where I' =7 : A we have:

C[M] |} &= CT . M7] || = C'P\z*.M] |

206 Chapter 6. Models of Safe Applied Lambda Calculi

where C'[—] is the program context defined as C'[—] = C[—T|. It is easy to see that this context
is necessarily safe: C'[—] € Ctxts(T, (A, T)).

Now consider two open terms M, N € Trm(I',T). W.l.o.g. we can assume that I' =7 : A
where the list T contains exactly the variables from FV (M) U FV(N). We then have

[M]e Sz, [Nl <= APH([EAM]e) Sz AP .N])
= Pzt M), <z [DatN]e
— PzAM], <z [MFALN],
e VC'[-] € Cixts(T, (A, T)).C'N\FAM] | = C'[*.N] ||
= VC[-] € Ctxts(T, T).CA\TA.M] |} = C'[\T2.N] | by (6.5)
= ML N .]

a>|t\1

The star fragment of PCF written PCF*, consists of all the judgements ' - M : T
satisfying the condition:
Vz:AeTl.ordA <ordT (6.4)

abbreviated as “ordI’ < ord 717 .

Theorem 6.5.2 (Full abstraction of PC'F™* with respect to safe contexts). Let M, N € Trm(I',T')
be two PCF terms with ordI’ < ordT'. Then

MG N < [M]. <z, [N (i)
= O([M].) <z, O([N]e) - (ii)

Proof. (i) (<) This is the Inequational Soundness result (Theorem 6.5.1). (=) We follow the
same argument as the proof of Full Abstraction of PCF |]. Suppose that [M], <z, [V]e-
Then by definition of the preorder <z,,, there exists a P-ij. strategy o : (I' — [T]) — exp
such that [M]sa = T and [N] ¢« = L. « can be chosen to be compact. Moreover since
ord(T") > ord(exp) = 0, the strategy « is closed P-i.j. By the definability result for safe PCF
(Prop. 5.7.1), there exists a closed safe term-in-context s Az'~7.Q : (I — T) — exp such
that [A\2' ~7.Q] = a. Using the application rule and the abstraction we can then form the safe
program context: — : T ¢ (A2F=T.Q)(\yt.—) = C[~] : exp. In particular, the subterm A\y".—
is safe because we have ord — = ord T > ord ' by assumption. Clearly, [C[-]] = [A\z1.Q] = a
therefore by Computational Adequacy it follows that C[M] | and C[M] J}.

(ii) In the definition of the preorder <z,,, the test strategy « ranges over P-i.j. strategies
therefore by Lemma 6.4.1 « can only interact with O-i.j. plays. Hence for every strategy o in
C, O(o) and o are in the same Sz, -equivalence class. O

Full abstraction of safe PCF

Although the small-step operational semantics of PCF and safe PCF differ—the former contracts
(B-redexes one at a time whereas the latter contracts “consecutive” (-redexes in a single step—
they have the same big-step operational semantics: a safe term evaluates to a value in safe PCF
if and only if it evaluates to the same value in PCF. Hence the operational semantics of safe
PCF is given by the same relation |} as PCF.

We now consider the restrictions of the relations T and 5 on Trm(I',T) x Trm(I',T) to
Trmg(T', T) x Trmg(I', T). Clearly these restrictions define preorders on Trmg(T', T').

Theorem 6.5.3 (Full abstraction for closed safe PCF terms). Let M, N be two closed safe PCF
terms of the same type. Then

ME N = [M]; <z, [Nz
<~ O([M];) <z, O([N]7) -

Chapter 6. Models of Safe Applied Lambda Calculi 207

Proof. Safe closed PCF terms are all in PCF* therefore the result follows immediately from
Theorem 6.5.2 since for every safe term M we have [M]; = [M],. O

REMARK 6.5.3 Observe that the condition (6.4) used in Theorem 6.5.2 expresses precisely the
negation of the basic property of the safe lambda calculus. Therefore the star fragment of safe
PCF is precisely given by the set of closed safe terms. That is why our full abstraction result
holds only for the fragment of PCF consisting of closed terms.

Full abstraction fails for open terms. For instance the family of opened safe terms cond 0 x ¢
for i € N are all in the same Es—equivalence class although their denotations are not in the same
<z,,-equivalence class.

In fact the observational relation ES trivially equates all open safe terms of a given type!
This is due to the fact that for every open safe term M, there is no safe context C[—] such that

the term C[M] is closed. (See remark 6.5.2.)

Full abstraction of Safe Idealized Algol

The proof of full abstraction of Idealized Algol is based on the Innocent Factorization theorem:

Theorem 6.5.4 (Innocent Factorization [). For every strategy o on an a IA game A,
there exists an innocent strategy T :lvar — A such that o = cell; T.

A version of this theorem also holds for safe IA:

Lemma 6.5.4. For every closed P-i.j. strateqy o on an a IA game A, there is an innocent
strategy p lvar — A which is closed P-i.j. modulo In([lvar]) and such that o = cell; u.

Proof. By the Factorization Theorem we have that ¢ = cell; T for some innocent strategy 7 :
lvar — A. Observe that 7 is not necessarily P-i.j. modulo In([lvar]), although o is P-ij.
(see the following remark). However all the plays of 7 interacting with cell are P-i.j. modulo
In(['var]). Indeed, take an interaction play u € Int(l,lvar, A) ending with an A-move. It is
easy to see that P-view of the play u [I, A is obtained from the P-view of the play u [lvar, A
by removing the moves played in [!var]. Thus because the question moves of the game [lvar]
are of order 0, since u [I, A is P-i.j. so must be u [lvar, A.

Take p to be the strategy obtained by truncating all the plays in 7 that are not P-i.j. Then
clearly p is P-i.j. modulo In([lvar]) and satisfies o = cell; . O

REMARK 6.5.4 In the previous proof, we mentioned that it is possible for cell; 7 to be P-i.j even
when 7 is not P-i.j. modulo In([lvar]). Here is an example illustrating this fact. The IA term

x :var - Af%y°* seq (assignz0) (cond (deref x) 0 (f(\2**P.y))) = M

:var’ — ((exp! — exp?) — exp?) — exp’ — exp®

is unsafe because it contains the unsafe occurrence y, and its denotation is not P-i.j. modulo
In([lvar]) because it contains the play:

PR P —
g5 writeg done read 1 g3 g2 g4 -

The term new x in M, however, is observationally equivalent to 0 and therefore its denotation
is P-i.j.

As in the TA case, the factorization result can be used to show that all the compact closed
P-i.j. strategies on TA types are definable in safe TA. Inequational Soundness of the game model
follows from that of IA. We then obtain:

208 Chapter 6. Models of Safe Applied Lambda Calculi

Theorem 6.5.5 (Full abstraction for closed safe TA terms). Let s M : T and s N : T be two
safe closed 1A terms. Then:

ME N < [M]; <z, [Nz
— O([M]7) 3z, O([N]7) -

where the preorder 5 is defined similarly as for safe PCF.

Proof. This result follows from the definability result as in the case of safe PCF. O

6.6 Algorithmic game semantics

The game model of safe TA is greatly simplified since justification pointers are unnecessary. By
the Characterization Theorem (Sec. 2.3.7), observational equivalence of IA terms is characterized
by equality of the set of complete plays. Thus for safe terms, observational equivalence is
characterized by equality of the set of underlying move-sequences without justification pointers.
This simplification suggests applications in algorithmic game semantics.

We show here that up to order 3, IA is a conservative extension of safe IA in the sense that
the observational equivalence relations =, and = coincide. Therefore, all the upper-bounds on
the complexity of observational equivalence that are known for the order-3 fragments of IA also
hold for safe IA. We then show that the Characterization Theorem also holds for observational
equivalence of safe IA with respect to safe contexts: two terms are = -equivalent if the sets of
complete plays of their denotation are the same. Consequently, we can show that up to order
3, the complexity lower-bounds that are already known for TA also hold in safe TA.

Observational equivalence

Proposition 6.6.1.

(i) Up to order 3, it is conservative, with respect to observational equivalence, to add unsafe
context to safe ones. Formally for every closed IA terms M, N we have:

ME N < MLCN .

(i) Adding unsafe context is not conservative at order 4 for Idealized Algol.

Proof. (i) Let A be an order-3 type and M, N be two IA terms of type A.

MEN < [M] S[N] by full abstraction of IA.
<~ [M] <z [N] Corollary 6.4.1
— MLC N by full abstraction of IA w.r.t. safe contexts.

(ii) The idea is to start from some term E and construct a term D that behaves like E except
that it has a “hidden” behaviour which can only by triggered when the Opponent plays in some
particular way that is not incrementally justified. Take the following order-4 IA terms:

E = Xp29 (Mg uy skip)(Mu.ug skip) : ((2,2,0),0)
D=)\Lp(Q’Q’O) new LAST :=0 in
¢ (Auy.new PREV :=ILAST in LAST := 1;u;([\LAST =1]); LAST := PREV)
(Aug.new PREV :=ILAST in LAST := 2;us([\LAST = 2]); LAST := PREV)
:((2,2,0),0)

Chapter 6. Models of Safe Applied Lambda Calculi 209

where we use the type abbreviations 0 for com and £ 4+ 1 = k — com for k£ > 0, and for every
term T : exp, the assertion operator [T] is syntactic sugar for cond T' €2 skip (i.e., the term
that does nothing if 7" evaluates to a positive number and goes into an infinite loop otherwise).

The two terms M and N are not observationally equivalent in PCF because the unsafe
context

Cl—] = —(Awiw3.wi (A’ wa(\y°.z)))

can separate them: we have C[D] Jf and C[E] ||. In safe PCF, however, these two terms are
observationally equivalent: Let C[—] be a safe context. We claim that when evaluating C[D],
the variable LAST always contains the index of the last called ¢’s parameter and therefore
the assertion tests in D always succeed. This can be shown by induction on the length of the
interaction play between [C[—]] and [D]. We give here an informal argument. Assume that the
context makes a single call to D. (The argument can be easily adapted to the general case.)
During the evaluation, whenever a parameter of ¢ is called, D first sets the variable LAST to
the parameter index ¢ and then calls the Opponent’s parameter u;. At that point, O can either
make another call to one of ¢’s parameter, or it can call the parameter of some previous call
to some u; for j € {1,2}. Suppose it does the latter, because it is playing incrementally (since
the context is safe) such u; must necessarily be the u; that was last called by P. The next step
executed by P is then the assertion test which necessarily succeeds because LAST was just set
to i. When the call to u; returns, P restores LAST to the value it originally contained when ¢’s
parameter was called, thus ensuring that it holds the index of the ¢’s parameter that was last
called by the context.

Similarly, whenever a call to one of ¢’s parameter returns, the Opponent can call the param-
eter of the last (because O plays incrementally) called u;. Since LAST contains the last called
©’s parameter’s index, this again ensures that the assertion test succeeds. U

Characterization Theorem
We now show that a version of the Characterization Theorem (Sec. 2.3.7) also holds for safe IA:
Theorem 6.6.1 (Characterization Theorem in Z). Let o and T be two closed P-i.j. strategies
on a simple game A in L. Then

oS T = comp(O(0)) C comp(O(T)) .

Proof. By Theorem 6.5.5, 0 Sz 7 iff O(¢0) <z O(7). The rest of the proof then follows the
same argument used to prove the original Characterization Theorem in the category Cp | ,
Theorem 25|, with one subtlety: in the first part of the proof, the fact that O(o) is O-i.j.
guarantees that the strategy o : A — ¥ which “follows the script of s” is P-incrementally
justified. O

Consequently, observational equivalence of safe IA terms with respect to safe IA contexts is
characterized by equality of the sets of complete plays.

Classification

Upper bounds By Proposition 6.6.1, all the known upper-bound for A are also valid for safe
IA up to order 3: safe IAs + while is decidable in PSPACE | |, IA3 + while is decidable
in EXPTIME for terms in S-nf |], and TA3 + Y is decidable with a complexity that is at
most doubly exponentially larger than that of the DPDA equivalence problem |]

Lower bounds

Theorem 6.6.2 (Ong |). Observational equivalence of TAy + Y7 is undecidable.

210 Chapter 6. Models of Safe Applied Lambda Calculi

The proof of this theorem proceeds by reduction of the QUEUE-HALTING problem to the
observational equivalence of two IAs 4+ Y] programs: Given a QUEUE program P, a term - Mp :
com of IAy + Y7 is defined such that Mp simulates P in the sense that P terminates if and only
if Mp is equivalent to skip. It turns out that the encoding term Mp [| is safe therefore:

Corollary 6.6.3. Observational equivalence of safe IAs + Y1 is undecidable.

For TA3 4 while, it was shown that the Containment Problem for DPDA can be reduced
to observational approximation in IA; + Yj | , Proposition 1]. Therefore observational

approximation is undecidable for IA; + Yy terms, and observational equivalence is at least as
hard as DPDA Equivalence.

Corollary 6.6.4. For safe IAs + Yy, observational approximation is undecidable and observa-
tional equivalence is at least as hard as DPDA Equivalence.

Proof. The original encoding | | is not safe because it contains an occurrence of a variable
x : exp occurring in the body of a p-abstraction pz with ord z = ordx. An equivalent safe
encoding can be obtained by replacing the free variable x : exp by a variable of type exp — exp,
thus giving an encoding in safe A5 + Y.

Let B be a DPDA over an alphabet . We write N (B) to denote the language accepted by B.
We identify values of type exp with XU{0} and we consider the game G' = (exp? — exp!) — com
whose set of moves is given by Mg = {¢',¢*} UX U {run, done}. Following | |, for every
language L C ¥*, we define L C MY as L= {run ¢'¢*0z1---¢'¢*0z,, done |21 ...7, € L}. We
have El = EQ iff L1 = LQ.

Claim: There exists a safe term z : exp? — exp' s @5 : com such that the set of underlying
sequence of moves of the complete plays of [z : exp? — exp! s Qg : com] is equal to]/\\T(B)
This term Qg is obtained from the term Mp used in the original encoding, by replacing the
free variable x : exp in Mp by a variable z of type exp — exp and by replacing the subterm
“CH := 2" by “CH := z0”. We can then conclude as in the proof for IA; + Yy | . O

For TA3 + while, Murawski et al. showed that observational equivalence is EXPTIME-hard
by a reduction from the equivalence problem of nondeterministic automata on binary trees
[, Corollary 2]. The encoding used in the paper is unsafe but it can be easily changed into
an equivalent safe term of the same order using the same trick as in the previous proof. (The
variable y : exp is replaced by y : exp — exp and “Z :=y” is replaced by “Z := y0”). Hence:

Proposition 6.6.2. Observational equivalence in safe IAs + while is EXPTIME-hard.

At order 4, since adding unsafe context is not conservative (Prop. 6.6.1) we need to dis-
tinguish two problems: deciding ~-equivalence and deciding ~s-equivalence (i.e., observational
equivalence defined with respect to safe contexts only).

Murawski showed that =-observational equivalence is undecidable at order 4 []. He
considered I'-machines, a Turing complete class of devices, and showed that for every such
machine, there is an IA4-term M such that the machine accept the empty string if and only if
the set of complete plays of [M] is not empty. This shows that =-observational equivalence is
undecidable. It turns out that Murawski’s encoding is safe, therefore:

Corollary 6.6.5. =-observational equivalence for safe 1A, is undecidable.

The fact that contexts are not restricted to be safe is crucial in this simulation. The ADD
operation of I'-machines is for instance simulated using plays that are not O-i.j.? Thus the same
argument can be used to show undecidability of =s-observational equivalence. We make the
following conjecture:

~Y

Conjecture 6.6.6. = -observational equivalence for safe 1A, is decidable.

2In the paper, the plays ending with the move r4 are not O-i.j.

Chapter 6. Models of Safe Applied Lambda Calculi 211

The idea is that by the Characterization Theorem for safe IA (Theorem 6.6.1), two terms are
equivalent iff the sets of complete O-incrementally justified plays of their denotation are equal.
But for such plays, all the pointers can be uniquely recovered from the underlying sequence
of moves. Therefore observational equivalence is characterized by equality of the sequences of
moves underlying the sequence of complete O-i.j. plays. I suspect that at order 4, such sequences
can be represented by a DPDA. This would imply the above conjecture.

All the previous results are recapitulated in Table 6.6.

Finitary fragments
order 2 order 2 order 3 order 3
L Obs. eq. + while Ly + while Y, order 4
=} u®
IA EXPTIME-hard®)
o~ _ (4) 2(6)
s PSPACED) EXPTIME D ‘
~ DFA Ul complete for <exp DPDA
= A fB-nf = DPDA U
Safe TA < VPA
=3 ?
U = Undecidable < P = “reducible to problem P”
D = Decidable with unknown complexity »= P = “at least as hard as problem P”
(1) 1(2) [133) [1 (4) [15) [] (6) The Characterization Theorem

does not hold in that case.

Table 6.2: Complexity of observational equivalence for finitary fragments of safe TA.

Expressivity of safe TA

Murawski introduced a notion of representability of languages by TA terms | | where a
language is represented by (some erasure homomorphism of) the set of complete plays of the
term. He showed that the class of languages representable by second-order terms is precisely the
regular languages; for third-order terms it is the class of context-free languages; and for terms
of order 4 and above, it is the full class of recursively enumerable languages. These results are
recapitulated in Table 6.6.

What are the representable languages in the safe fragments of IA? It turns out that up to
order 3, the safety constraint does not alter expressivity:

Proposition 6.6.3. For 0 < k < 3, safe IA) and IAy, are equi-expressive (in terms of Murawski-
representable language).

Proof. Unsafety only appears at order 3 therefore the same languages are representable in IA;

and safe IA; for ¢ < 3. The order-3 term used by Murawski’s encoding [] to represent
Fragment ‘ Representable languages ‘ Machine equivalent
1A singleton sets 4+ empty set -
1A finite languages with the prefix property -
1A, regular languages Finite State Automata
IA3 context free languages Pushdown Automata
TA4 recursively enumerable Turing Machines

Table 6.3: Murawski representability.

212 Chapter 6. Models of Safe Applied Lambda Calculi

context-free languages is unsafe, but it can made be easily turned into a safe term by replacing the
variable ¢ : exp by a variable of type (com — com) — exp and changing the code “INPUT := ¢’
into “INPUT = c(Az.2)". O

It is not known which languages are expressible in higher-order fragments of safe TA. Recall
that regular languages are the languages definable by 0-DPDAs, and context-free languages are
those definable by DPDAs, so a possible conjecture is: “Murawski-representable in safe 1A,
for n > 2 are the (n — 2)-DPDA definable word languages”. It is not clear, however, how to
interpret the higher-order “push” DPDA instructions in terms of game-semantic moves. If such
result were to be proved then the question of decidability of higher-order DPDA would become
relevant to the observational equivalence problem: the undecidability of the former would imply
that of the latter.

Chapter 7

Conclusion

7.1 Summary of contribution

Safety is a syntactic constraint for higher-order grammars. A grammar is safe if the right-hand
side of each rule is such that no subterm occurring in operand position contains parameters of
order smaller than the order of the subterm. Motivated by the appealing algorithmic properties
of safety, we derived a new typing system, the safe lambda calculus, by imposing this syntactic
constraint on the simply-typed lambda calculus. The salient property of this calculus is that
it is not necessary to rename variables when performing substitution. Thus in some sense, safe
terms are “easier” to compute than unsafe ones. Computation in our calculus is standardly
done via the concept of G-reduction. Safety is not preserved by beta-reduction in general, but
it is preserved when sufficiently many consecutive redexes are contracted simultaneously. This
is formalized by the notion of safe beta-reduction: If a safe term contains a f-redex then this
redex can always be “enlarged” into a group of consecutive beta-redexes, called a safe redex,
such that contracting all of them produces a safe term. The notion of normal form thus remains
unchanged. Further, safety is an extensional property: a term is safe if and only if its eta-long
normal form is.

The typing system of the safe lambda calculus has desirable properties: the type-checking
(Can a given type be assigned to a given term?) and typability (Given a term, is there a type
that can be assigned to it?) problems are both decidable. On the other-hand, we only know
that the type-inhabitation problem (Given a type, is there a safe term of that type?) is at least
semi-decidable (there is an algorithm that tells if a type is inhabited by a safe term in a finite
amount of time if it is the case, but may not terminate otherwise).

The loss of expressivity incurred by safety can be characterized in terms of expressible nu-
meric functions: they are precisely the multivariate polynomials; the conditional operator, which
is definable in the lambda calculus, is not expressible by any safe term. In terms of representable
word functions, these are given by the set containing the projections, constant functions, con-
catenation and substitution and closed by composition.

We then looked at the complexity of the calculus by considering the beta-equivalence prob-
lem: we hinted that it probably lies in the complexity class ELEMENTARY by showing how
both Statman and Mairson’s encoding of finite type theory in the simply-typed lambda calculus
fail in the safe fragment. We further showed that the problem is PSPACE-hard.

Seeking a semantic explanation of the safety constraint, we focused on the analysis of the
game semantics of safe terms. This led us to the other main contribution of this thesis: the de-
velopment of a new presentation of game semantics based on the theory of traversals |].
Essentially, traversals implement a version of f-reduction in which beta-redex are computed
locally as opposed to a global approach based on substitution. The soundness of the traver-
sal theory as a model of computation is ensured by the correspondence with game semantics:
traversals are just uncovering of plays from game semantics.

214 Chapter 7. Conclusion

Armed with the Correspondence Theorem, we were able to give a precise account of the game
semantics of the safe lambda calculus. A notable property of safe terms is that its variables are
incrementally-bound: the binder of a variable node x in the computation tree is precisely the
last lambda-node in the path from z to the root with order strictly greater than ordz. By
the Correspondence Theorem, this implies that the strategy denotation of a safe term is P-
incrementally justified. In such strategy, a P-question’s justifier is given by the last O-move in
the P-view with greater order.

In the last chapter we finally investigated the categorical model of the safe lambda calculus.
We proposed the notion of Incremental Closed Category (ICC) that soundly interprets the safe
lambda calculus in the same way Cartesian Closed Categories model the simply-typed lambda
calculus. We then exhibited such an ICC by constructing a game model of P-incrementally
justified strategies. We showed in particular that P-incremental justified strategies compose.

To conclude, we looked at safety from the point of view of algorithmic game semantics. We
considered the problem of observational equivalence of IA term with respect to safe contexts.
By suitably constraining O-moves by the dual notion of O-incremental justification, we obtain a
model of safe PCF and safe IA that is fully abstract with respect to this notion of observational
equivalence. Furthermore, the model is effectively presentable: two safe terms are observationally
equivalent (with respect to safe contexts) if and only if their denotations have the same set of
complete O-incrementally justified plays.

Up to order 3, the addition of unsafe contexts to safe ones is conservative with respect to
observational equivalence. Furthermore, all the complexity results—lower and upper bounds—
known about observational equivalence of the (unrestricted) lower-order fragments of IA also
hold in the safe sub-fragments. At order-4, however, the notion of observational equivalence
with respect to unrestricted contexts differs from the one defined with respect to safe contexts
only. Concerning the latter, we conjecture that the restriction of the problem to safe terms (i.e.,
safe observational equivalence of safe IA4 terms) is reducible to the DPDA-equivalence problem
(which is decidable).

7.2 Further works

The nature of the safe lambda calculus is still not entirely understood. Some questions remain
about the safe lambda calculus pertaining for instance to its computational power, the complex-
ity classes that it characterizes and its interpretation under the Curry-Howard isomorphism. We
now propose possible directions for further works and highlight some open questions.

Type theory

One of the most pressing open problems concerns the complexity of the safe lambda calculus.
We have shown that the beta-equivalence problem is PSPACE-hard, but this lower-bound may
be very coarse. Further investigations need to be done to determine an upper-bound.

Another open problem is the question of decidability of type inhabitation. At the moment
we already know that it is semi-decidable: there is an algorithm that, given a simple type, can
exhibit a safe inhabitant if it exists but may not terminate otherwise.

Extensions

We have defined a notion of safety for simply-typed terms (and also for untyped terms by means
of a Curry-like version of the typing system). Is there any generalization to more complicated
typing system such as the second-order lambda calculus?

Chapter 7. Conclusion 215

Logic

What kind of reasoning principles does the safe lambda calculus support via the Curry-Howard
Isomorphism? How expressive is the safe fragment of intuitionistic implication logic? Is the
logic decidable?—or equivalently is type inhabitation decidable in the safe lambda calculus?

Computational complexity

Can the safe lambda calculus help to characterize complexity classes? There are already many
such results in the unrestricted case: Leivant and Marion | | considered for instance an
“impure” variation of the simply-typed lambda calculus extended with constructors, destruc-
tors and conditionals, and obtain several characterization of the polytime-computable numeric
functions in that language.

Hillebrand, Kanellakis and Mairson | | considered the problem from a database point
of view. Instead of encoding numeric functions, they looked at the database queries that are
encodable in the simply-typed lambda calculus and gave a precise characterization of PTIME:
The polynomial time queries are those expressible in the 4" order fragment of the simply-typed
lambda calculus. This result was later extended to give characterizations of the standard com-
plexity classes PSPACE, k-EXPTIME, k-EXPSPACE (k > 1) and ELEMENTARY at higher-
orders |]

More research needs to be done to see if similar characterizations can be obtained in the safe
lambda calculus.

Expressibility
Functions over free algebras

What are the function over free-algebras definable in the safe simply-typed lambda calculus?

There is an isomorphism between binary trees and closed simply-typed terms of type 7 =
(0 - 0 — 0) — 0 — o. Thus any closed term of type 7 — 7 — ... — 7T represents an n-ary
function over trees. Zaionc | | and Leivant [| gave a characterization of the set of
tree functions representable in the simply-typed lambda calculus: it is precisely the minimal set
containing constant functions, projections and closed under composition and limited primitive
recursion. Zaionc showed that the same characterization holds for the general case of functions
expressed over free algebras | |: they are given by the minimal set containing constant
functions, projections and closed under composition and limited primitive recursion. This result
subsumes Schwichtenberg’s result on definable numeric functions as well as Zaionc’s own results
on definable word and tree functions.

All these basic operations are safe except limited primitive recursion. This suggests that
one needs to restrict further the primitive recursion in order to obtain a characterization of
free-algebra functions representable in the safe lambda calculus. Such result would generalize
our expressivity result for numeric and word functions from Sec. 3.3.

Murawski-expressibility

Murawski introduced a notion of language expressibility by game semantics | |. He showed
that the 4" order finitary fragment of IA is expressive enough to give the full class of recursively
enumerable languages. Does the safe fragment have the same expressive power? Another line of
research would be to investigate whether the class of word languages recognizable by higher-order
pushdown automata can be characterized in Murawski’s sense by some higher-order fragment
of safe TA.

216 Chapter 7. Conclusion

Trees and word languages

The impact of safety on the expressivity of higher-order recursion schemes was studied in de
Miranda’s thesis | |. At order 2 and for word languages, safety is not a genuine constraint if
we allow non-determinism [|; de Miranda and Urzyczyn conjectured that for determin-
istic higher-order grammars, safety is a proper restriction. Urzyczyn even proposed an unsafe
deterministic higher-order recursion scheme generating a word language that he conjectured to
be inherently unsafe (i.e., that cannot be generated by any deterministic safe grammar). At
the time of this writing, though, this remains a conjecture. The traversal theory seems to be a
promising tool to investigate the problem.

Game semantics

Is the game model of safe PCF universal? (i.e., is every recursive incremental strategy denoted
by some safe PCF term?) Is there a category of O-incrementally justified strategies?

Compilation of safe recursion schemes to pushdown automata

We have mentioned before the equi-expressivity result about safe homogeneously-typed higher-
order recursion schemes and higher-order pushdown automata: these two devices generate the
same class of infinite trees. Hague et al. generalized this result to unrestricted recursion scheme;
one direction relies on the traversal theory: an order n recursion scheme can be compiled into
an equivalent order n collapsible pushdown automaton which proceeds by computing the set of
traversals of the recursion scheme’s computation graph |]. We conjecture that when
the safety constraint is imposed, this encoding can be specialized into a higher-order pushdown
automaton (without the collapse operation). Such result would give an alternative proof of
Knapik et al.’s equi-expressivity result |].

Algorithmic game semantics

Is observational equivalence for safe IA, decidable? We have seen that up to order 3, the
problem of observational equivalence has the same complexity in the safe finitary fragments
as in the unrestricted finitary fragments. At order 4 the picture remains unclear. Murawski
[| showed the undecidability of program equivalence in IA; for ¢ > 4 by encoding Turing
machine computations using finitary A4 terms. Because his encoding relies on unsafe terms, the
argument cannot be transposed to the safe fragment of IA. The question of whether observational
equivalence of safe IA,4 is decidable thus remains open.

PUR languages

In this thesis, we have shown that the safety constraint produces languages whose game semantics
enjoy the property that some justification pointers are uniquely recoverable from the underlying
sequence of moves. Safe [Ag is an example of language in which all pointers are recoverable. We
name this class PUR for “Pointer Uniquely Recoverable”. Finitary IAy (finite base types and
no recursion) is the paradigmatic example of a PUR-language (The fact that it is a sublanguage
of Safe TAj3 is another proof of this fact). But safe fragments are clearly not the only PUR-
languages: singleton languages (i.e., containing only one term) are trivial examples of PUR
languages. Also the language consisting of all IAs terms whose beta-reduction is safe is also a
PUR language.

A more interesting example is Serially Re-entrant Idealized Algol | |, a version of TA
where multiple uses of arguments are allowed only if they do not “overlap in time”. In the game
semantics denotation of a SRIA term there is at most one pending occurrence of a question at
any time. Each move has therefore a unique justifier and consequently justification pointers may
be ignored. Safe TA is not a sublanguage of SRIA. One reason for this is that none of the two

Chapter 7. Conclusion 217

Kierstead terms A f.f(Az.f(Ay.y)) and Af.f(Az.f(Ay.z)) are Serially Re-entrant whereas the first
one is safe. Conversely, SRIA is not a sublanguage of safe IA since the term Afg.f(Az.g(Ay.x))
where f,g: ((0,0),0) belongs to SRIA but not to safe IA.

Another way to generate PUR-languages may consist in constraining types. Joly introduced
a notion of “complexity” for lambda-terms and proved that there is a constant bounding the
complexity of every closed normal lambda-term of a given type T if and only if T' can be
generated from a finite set of combinators. Consequently, the only inhabited finitely generated
types are the types of order < 2 and the types (A4;, Ag,..., A,,0) such that for all ¢ = 1..n:
Ai=0,A; =0—oor A; = (F — 0) — o]. We already know that imposing the first
type restriction to Finitary TA leads to a PUR language. Does the second restriction also give
rise to a PUR language?

With a view to algorithmic game semantics and its applications, the PUR class is of particular
interest. Indeed, PUR-languages are good candidates of languages with decidable observational
equivalence. This is because the simplification of the game-semantic model resulting from the
nonnecessity of pointers makes the observational equivalence problem more manageable: in TA,
for instance one just need to compare the set of complete plays underlying the denotation of
a term, forgetting the justification pointers altogether. For lower-order fragments, a machine
characterization of this set is sometimes possible (e.g., finite-state automaton at order-2, and
deterministic pushdown automata for the order-3 fragment with Y recursion), subsequently
leading to decidability and complexity results for the observational equivalence problem.

218 Chapter 7. Conclusion

Bibliography

[Abr01]

[ADLR94]

[AdMO04]

[AdMO05a]

[AAMOO5b]

[AGOMO3]

[AHMO8]

[Aho68]

[AJ92]

[AJO5]

[AM97]

[AMO98a]

[AMOSb]

S. ABRAMSKY — Semantics via game theory. In Marktoberdorf International Sum-
mer School, 2001, Lecture slides.

A. AspeErTI, V. DANOS, C. LANEVE and L. REGNIER — Paths in the lambda-
calculus. In LICS, IEEE Computer Society, 1994, p. 426—436.

K. AEHLIG, J. G. DE MIRANDA and C.-H. L. ONG — Safety is not a restriction
at level 2 for string languages. Tech. report, University of Oxford, 2004.

— , The monadic second order theory of trees given by arbitrary level-two recursion
schemes is decidable. In TLCA (P. Urzyczyn, ed.), Lecture Notes in Computer
Science, vol. 3461, Springer, 2005, p. 39-54.

— , Safety is not a restriction at level 2 for string languages. In FoSSaCS | ,
p- 490-504.

S. ABRAMSKY, D. R. GHica, C.-H. L. ONG and A. MURAWSKI — Algorithmic
Game Semantics and Component-Based Verification. In Proceedings of SAVBCS
2003: Specification and Verification of Component-Based Systems, Workshop at
ESEC/FASE 2003, 2003, published as Technical Report 03-11, Department of Com-
puter Science, lowa State University, p. 66—74.

S. ABRAaMSKY, K. HONDA and G. McCUSKER — A fully abstract game semantics
for general references. In LICS, 1998, p. 334-344.

A. V. AHO — Indexed grammars — an extension of context-free grammars. J. ACM
15 (1968), no. 4, p. 647-671.

S. ABRAMSKY and R. JAGADEESAN — Games and full completeness for multiplica-
tive linear logic. In Foundations of Software Technology and Theoretical Computer
Science (FST-TCS’92) (New Delhi, India) (R. Shyamasundar, ed.), 1992, p. 291—
301.

— , A game semantics for generic polymorphism. Ann. Pure Appl. Logic 133 (2005),
no. 1-3, p. 3-37.

S. ABRAMSKY and G. MCCUSKER — Linearity, sharing and state: a fully abstract
game semantics for Idealized Algol with active expressions. In Algol-like languages
(P. W. O’Hearn and R. D. Tennent, ed.), Birkhatiser, 1997.

— , Call-by-value games. In Computer Science Logic: 11th International Workshop
Proceedings (M. Nielsen and W. Thomas, ed.), Springer-Verlag, 1998.

— , Game semantics. In Logic and Computation: Proceedings of the 1997 Markto-
berdorf Summer School (H. Schwichtenberg and U. Berger, ed.), Springer-Verlag,
1998, Lecture notes, p. 1-56.

220

Bibliography

[AM99]

[AMJ94]

[Asp]

[Bar84]

[Bar92]

[BC82]

[Ber78)]

[Ber79]

[Bla92)

[Blu0g]

[BOO7]

[Cau02]

[CHO6]

[CM64]

[Cro93]

[Dam82]

[DGS6]

[DGLO5]

— , Full abstraction for Idealized Algol with passive expressions. Theoretical Com-
puter Science 227 (1999), no. 1-2, p. 3-42.

S. ABRAMSKY, P. MALACARIA and R. JAGADEESAN — Full abstraction for PCF.
In Theoretical Aspects of Computer Software, 1994, p. 1-15.

A. AspERTI — P = NP, up to sharing.

H. P. BARENDREGT — The Lambda Calculus — Its Syntax and Semantics. Studies
in Logic and the Foundations of Mathematics, vol. 103, North-Holland, 1984.

H. BARENDREGT — Lambda calculi with types. In Handbook of Logic in Computer
Science (S. Abramsky, D. M. Gabbay and T. Maibaum, ed.), vol. 2, Clarendon
Press, 1992, p. 117-309.

G. BERRY and P.-L. CURIEN — Sequential algorithms on concrete data structures.
Theoretical Computure Science 20 (1982), p. 265-321.

G. BERRY — Stable models of typed lambda-calculi. In Proceedings of the Fifth
Colloquium on Automata, Languages and Programming (London, UK), Springer-
Verlag, 1978, p. 72-89.

— , Modeles complément adéquats et stable des lambda-calculs typés. Phd thesis,
Université Paris VII, 1979.

A. BLASss — A game semantics for linear logic. Annals of Pure and Applied Logic
56 (1992), no. 1-3, p. 183-220.

W. BLUM — A tool for constructing structures generated by higher-order recursion
schemes and collapsible pushdown automata. http://william.famille-blum.
org/research/tools.html, 2008.

W. Brum and C.-H. L. ONG — The safe lambda calculus. In TLCA (S. R. D.
Rocca, ed.), Lecture Notes in Computer Science, vol. 4583, Springer, 2007, p. 39—
53.

D. CaucAL — On infinite terms having a decidable monadic theory. Lecture Notes
in Computer Science 2420 (2002), p. 165-176.

F. CARDONE and J. R. HINDLEY — History of lambda-calculus and combinatory
logic. Handbook of the History of Logic 5 (2006).

J. CocKE and M. MINSKY — Universality of tag systems with p = 2. J. ACM 11
(1964), no. 1, p. 15-20.

R. CROLE — Categories for types. Cambridge Mathematical Textbooks, Cambridge
University Press, 1993.

W. DAMM — The IO- and Ol-hierarchy. TCS 20 (1982), p. 95-207.

W. DAMM and A. GOERDT — An automata-theoretical characterization of the
OI-hierarchy. Information and Control 71 (1986), no. 1-2, p. 1-32.

A. Dimovski, D. R. GHicA and R. LAzic — Data-abstraction refinement: A
game semantic approach. In SAS (C. Hankin and I. Siveroni, ed.), Lecture Notes
in Computer Science, vol. 3672, Springer, 2005, p. 102-117.

http://william.famille-blum.org/research/tools.html
http://william.famille-blum.org/research/tools.html

Bibliography 221

[DHR6]

[AMO6]

[DRY3]

[DR04]
[FLOS3]

[GMOO]

[GMO3]

[Gre04]

[Har05]

[Hin97]

[HK96]

[HKMO6]

[HMOS08]

[HO93]

[HOO0]

[Hoa83]

[HSS6]

[Hue75]

V. DANoOS, H. HERBELIN and L. REGNIER — Game semantics and abstract ma-
chines. In Logic in Computer Science, 1996. LICS ’96. Proceedings., Eleventh An-
nual IEEE Symposium on, 27-30 July 1996, p. 394-405.

J. G. DE MIRANDA — Structures generated by higher-order grammars and the
safety constraint. D.Phil thesis, University of Oxford, 2006.

V. DANOs and L. REGNIER — Local and asynchronous beta-reduction (an analysis
of girard’s execution formula). In Proceedings of the Eighth Annual IEEE Symp. on
Logic in Computer Science, LICS 1993 (M. Vardi, ed.), IEEE Computer Society
Press, June 1993, p. 296-306.

— , Head linear reduction. submitted for publication, 2004.

S. FORTUNE, D. LEIVANT and M. O’DONNELL — The expressiveness of simple and
second-order type structures. J. ACM 30 (1983), no. 1, p. 151-185.

D. R. GHicA and G. McCUSKER — Reasoning about idealized ALGOL using regu-

lar languages. In Proceedings of 27th International Colloquium on Automata, Lan-
guages and Programming ICALP 2000, LNCS, vol. 1853, Springer-Verlag, 2000,
p. 103-116.

D. R. GHicA and G. MCCUSKER — The regular-language semantics of second-order
Idealized Algol. Theoretical Computer Science 309 (2003), no. 1-3, p. 469-502.

W. GREENLAND — Game semantics for region analysis. Ph.D. thesis, University of
Oxford, 2004.

R. HARMER — Innocent game semantics. November 2005, Course notes.

J. R. HINDLEY — Basic simple type theory. Cambridge University Press, New York,
NY, USA, 1997.

G. G. HILLEBRAND and P. C. KANELLAKIS — On the expressive power of simply
typed and let-polymorphic lambda calculi. In LICS, 1996, p. 253-263.

G. G. HILLEBRAND, P. C. KANELLAKIS and H. G. MAIRSON — Database query
languages embedded in the typed lambda calculus. Inf. Comput. 127 (1996), no. 2,
p. 117-144.

M. HAGUE, A. S. Murawski, C.-H. L. ONG and O. SERRE — Collapsible push-
down automata and recursive schemes. LICS (2008), p. 452-461.

J. M. E. HyLaND and C.-H. L. ONG — Fair games and full completeness for
Multiplicative Linear Logic without the MIX-rule. preprint, 1993.

— , On full abstraction for PCF: I, II, and III. Information and Computation 163
(2000), no. 2, p. 285-408.

C. A. R. HOARE — Communicating sequential processes. Commun. ACM 26
(1983), no. 1, p. 100-106.

J. R. HINDLEY and J. P. SELDIN — Introduction to combinators and lambda-
calculus. Cambridge University Press, 1986.

G. P. HUET — A unification algorithm for typed lambda-calculus. Theor. Comput.
Seci. 1 (1975), no. 1, p. 27-57.

222

Bibliography

[Hue76]

[HY99]

[Jol01]

[Joy77]

[JP76]

[Knu00]

[KNUO2]

[Kob09]

[Lam86]

[Lam90]

[Lei93]

[LIBAO1]

[LM93]

[Loa98a|

[Loa98b]

[Loa01]

[Lor61]

[Mai92]

— , Résolution d’équations dans des langages d’ordre 1,2,...,.w. These de doctorat
es sciences mathématiques, Université Paris VII, Septembre 1976.

K. HONDA and N. YOSHIDA — Game-theoretic analysis of call-by-value computa-
tion. Theoretical Computer Science 221 (1999), no. 1-2, p. 393-456.

T. Jory — The finitely generated types of the lambda-calculus. In TLCA, 2001,
p. 240-252.

A. JoYAL — Remarques sur la théorie des jeux a deux personnes. Gazette des
Sciences Mathéematiques du Quebec 1 (1977), p. 4.

D. C. JENSEN and T. PIETRZYKOWSKI — Mechanizing mega-order type theory
through unification. Theor. Comput. Sci. 3 (1976), no. 2, p. 123-171.

D. E. KNUTH — Fundamental algorithms. Third ed., The Art of Computer Pro-
gramming, vol. 1, Addison-Wesley, 2000.

T. KNAPIK, D. NIWINSKI and P. URzZYCzYN — Higher-order pushdown trees are
easy. In FOSSACS’02, Springer, 2002, LNCS Vol. 2303, p. 205-222.

N. KoBavasHI — Types and higher-order recursion schemes for verification of
higher-order programs. Submitted to the Symposium on Principles of Program-
ming Languages, 2009.

J. LAMBEK — Cartesian closed categories and typed lambda-calculi. Proc. of the
thirteenth spring school of the LITP on Combinators and functional programming
languages table of contents (1986), p. 136-175.

J. LAMPING — An algorithm for optimal lambda calculus reduction. In POPL ’90:
Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (New York, NY, USA), ACM Press, 1990, p. 16-30.

D. LEIVANT — Functions over free algebras definable in the simply typed lambda
calculus. Theor. Comput. Sci. 121 (1993), no. 1&2, p. 309-322.

C. S. LEg, N. D. JonNiEs and A. M. BEN-AMRAM — The size-change principle
for program termination. In POPL, Proceedings ACM Symposium on Principles of
Programming Languages, 2001.

D. LEIVANT and J.-Y. MARION — Lambda calculus characterizations of poly-time.
In TLCA (M. Bezem and J. F. Groote, ed.), Lecture Notes in Computer Science,
vol. 664, Springer, 1993, p. 274-288.

R. LOADER — Notes on simply typed lambda calculus. February 1998.

— , Unary PCF is decidable. Theoretical Computer Science 206 (1998), no. 1-2,
p. 317-329.

— , Finitary PCF is not decidable. Theoretical Computer Science 266 (2001),
no. 1-2, p. 341-364.

P. LORENZEN — Ein dialogisches konstruktivitatskriterium. In Infinitistic Methods.
(W. PWN, ed.), 1961, p. 193-200.

H. G. MAIRSON — A Simple Proof of a Theorem of Statman. TCS 103 (1992),
no. 2, p. 387-394.

Bibliography 223

[Mas74]

[Mas76]

[McC96a]

[McC96b)]

[McC03]

[Mey74]

[Min67]

[MOWO5]

[Mur03]

[Mur05]

[MWO5]

[Nic94]

[Ong02]

[Ong04]

[Ong06a]

[Ong06b]

A. N. MAsSLOV — The hierarchy of indexed languages of an arbitrary level. Soviet
Math. Dokl. 15 (1974), p. 1170-1174.

— , Multilevel stack automata. Problems of Information Transmission 12 (1976),
p. 38-43.

G. McCUSKER — Games and full abstraction for a functional metalanguage with
recursive types. Ph.D. thesis, Imperial College, 1996.

— , Games and full abstraction for FPC. In Proceedings of the Eleventh Annual
IEEE Symp. on Logic in Computer Science, LICS 1996 (E. M. Clarke, ed.), IEEE
Computer Society Press, July 1996, p. 174-183.

— , On the semantics of Idealized Algol without the bad-variable constructor. In
Nineteenth Conference on the Mathematical Foundations of Programming Seman-
tics (ENTCS, ed.), vol. 83, Elsevier, 2003.

A. R. MEYER — The inherent computational complexity of theories of ordered sets.
In Proc. Int’l. Cong. of Mathematicians, vol. 2, August 1974, p. 477-482.

M. L. MiNskY — Computation: finite and infinite machines. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1967.

A. S. Murawski, C.-H. L. ONG and 1. WALUKIEWICZ — Idealized algol with
ground recursion, and DPDA equivalence. In ICALP (L. Caires, G. F. Italiano,
L. Monteiro, C. Palamidessi and M. Yung, ed.), Lecture Notes in Computer Science,
vol. 3580, Springer, 2005, p. 917-929.

A. S. MURAWSKI — On program equivalence in languages with ground-type refer-
ences. In Logic in Computer Science, 2003. Proceedings. 18th Annual IEEE Sym-
posium on, 22-25 June 2003, p. 108-117.

— , Games for complexity second-order call-by-name programs. Theoretical Com-
puter Science 343 (2005), p. 207-236, special issue: Game Theory meets Computer
Science, accepted for publication.

A. S. MURAWSKI and I. WALUKIEWICZ — Third-order idealized algol with iteration
is decidable. In FoSSaCS | |, p. 202-218.

H. NickAU — Hereditarily sequential functionals. In Proc. Symp. Logical Founda-
tions of Computer Science: Logic at St. Petersburg (A. Nerode and Y. V. Matiya-
sevich, ed.), Lecture Notes in Computer Science, vol. 813, Springer-Verlag, 1994,
p- 253-264.

C.-H. L. ONG — Observational equivalence of third-order Idealized Algol is decid-
able. In Proceedings of IEEE Symposium on Logic in Computer Science, 22-25 July
2002, Copenhagen Denmark, Computer Society Press, 2002, p. 245-256.

— , An approach to deciding observational equivalence of algol-like languages. Ann.
Pure Appl. Logic 130 (2004), no. 1-3, p. 125-171.

— , On model-checking trees generated by higher-order recursion schemes. In Pro-
ceedings of IEEE Symposium on Logic in Computer Science., Computer Society
Press, 2006, Extended abstract, p. 81-90.

— , On model-checking trees generated by higher-order recursion schemes (technical
report). Preprint, 42 pp, 2006.

224

Bibliography

[OT]
[Plo75]

[Plo77]

[Rey81]

[Sas05]

[Sch76]

[Sch01]

[Sco69]

[Sco93]

[Sén01]

[Ser05]

[Sta79a]

[StaT79b]

[Sti02]

[Sti06]

[Tai67]

[Z2i87)

[Z2i88]

C.-H. L. ONG and N. TZEVELEKOS — Functional reachability. work in progress.

G. D. PLOTKIN — Call-by-name, call-by-value and the lambda-calculus. Theoretical
Computer Science 1 (1975), no. 2, p. 125-159.

— , LCF considered as a programming language. Theor. Comput. Sci. 5 (1977),
no. 3, p. 225-255.

J. C. REYNOLDS — The essence of algol. In Algorithmic Languages (J. W. de Bakker
and J. C. van Vliet, ed.), IFIP, North-Holland, Amsterdam, 1981, p. 345-372.

V. SASSONE (ed.) — Foundations of Software Science and Computational Structures,
8th international conference, FOSSACS 2005, held as part of the joint European
Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK,
April 4-8, proceedings. Lecture Notes in Computer Science, vol. 3441, Springer,
2005.

H. SCHWICHTENBERG — Definierbare funktionen im lambda-kalkul mit typen.
Archiv Logik Grundlagenforsch 17 (1976), p. 113-114.

A. SCHUBERT — The complexity of beta-reduction in low orders. Proceedings TLCA
2001 (2001), p. 400-414.

D. S. ScorT — A theory of computable function of higher type. Unpublished sem-
inar notes, University of Oxford, 1969.

— , A type-theoretical alternative to iswim, cuch, owhy. Theor. Comput. Sci. 121
(1993), no. 1-2, p. 411-440.

G. SENIZERGUES — L(A)=L(B)? decidability results from complete formal systems.
Theor. Comput. Sci. 251 (2001), no. 1-2, p. 1-166.

D. SERENI — Simply typed A-calculus and SCT. Unpublished notes, 2005.

R. STATMAN — Intuitionistic propositional logic is polynomial-space complete. The-
oretical Computer Science 9 (1979), no. 1, p. 67-72.

— , The typed lambda-calculus is not elementary recursive. Theoretical Computer
Science 9 (1979), no. 1, p. 73-81.

C. STIRLING — Deciding dpda equivalence is primitive recursive. In ICALP ’02:
Proceedings of the 29th International Colloguium on Automata, Languages and Pro-
gramming (London, UK), Springer-Verlag, 2002, p. 821-832.

— , A game-theoretic approach to deciding higher-order matching. In ICALP (2)
(M. Bugliesi, B. Preneel, V. Sassone and I. Wegener, ed.), Lecture Notes in Com-
puter Science, vol. 4052, Springer, 2006, p. 348-359.

W. TAIT — Intensional interpretations of functionals of finite type I. J. Symb. Log.
32 (1967), no. 2, p. 198-212.

M. Za1oNC — Word operation definable in the typed lambda-calculus. Theor. Com-
put. Sci. 52 (1987), p. 1-14.

— , On the lambda-definable tree operations. In Algebraic Logic and Universal
Algebra in Computer Science (C. Bergman, R. D. Maddux and D. Pigozzi, ed.),
Lecture Notes in Computer Science, vol. 425, Springer, 1988, p. 279-292.

Bibliography 225

[Zai91] — , Lambda-definability on free algebras. Ann. Pure Appl. Logic 51 (1991), no. 3,
p. 279-300.
[Zai95] — , Lambda representation of operations between different term algebras. Lecture

Notes in Computer Science (1995), p. 91-105.

226 Bibliography

Index to notations

Symbolism Meaning Page
FV (M) Set of free variables of the term M 10
M=N Syntactic equality of terms (modulo a-conversion) 10
M {N/x} Capture-permitting substitution of N for z in M 10
M [N/x] Substitution of N for x in M 10
—3 Beta-reduction 11
s-s Concatenation of the (justified) sequences s and s 29
€ The empty (justified) sequence 29
S<m Prefix of the (justified) sequence s ending with the occur- 29
rence m
Mgt Proponent view of a justified sequence of move 29
LS. Opponent view of a justified sequence of move 29
o;T Linear strategy composition 33
osT Strategy composition 35
7] Game denotation of a type T’ 36
[M] Strategy denotation of a term M 37
C[-] Context with a hole denoted by — 38
— 3, Safe beta-reduction 57
[M] Eta-long normal form of the term M 58
(M) Computation tree of the term M 94
® Root of the computation tree 96
SHE Subset of S consisting of the nodes hereditarily enabled by 97

some node in H

s< s Prefix ordering for (justified) sequences 98

228 Bibliography
Symbolism Meaning Page
tn Hereditary projection of justified sequence ¢t with respect to 99

occurrence n
tln Subterm projection of a traversal ¢ with respect to occur- 108

rence n
ext(t) Extension of a justified sequence of nodes 112
Pref(.S) Prefix-closure of the set S. 120
(M) Revealed strategy denotation of a term M 121
tCct Approximation ordering for trees 147
(11, n2] Path in a tree from node n; to node no 164
sC s Subsequence relation for (justified) sequences 189
s>¢ Suffix relation for (justified) sequences 189
osST Intrinsic preorder in the category of games C 198
o<1T Intrinsic preorder in the category of games 7 198
MCN Observational preorder 204
ML N Observational preorder with respect to safe contexts 204

Index

Symbols
a-convertible, 10
O-reduction 11
n-long normal form 58
A
active expressions 17
almost safe 61, 81, 165
application 61, 165
almost safe application 51
Alternation 99
alternation 30
answered 98
applicative terms 20
approximation ordering 147
ATENA .« v v v o e e e e e e e 28
arity 12
atomic types 12
B
bad variable construct 17
beta-equality 11
beta-normal form 11
beta-redex 11
binder 96
bound 96
node 164
C
canonical classifying category 182
canonical form 16
canonical forms 18
canonical sub-ICC 179
cartesian closed category
definition 178
generated by a typed calculus 182
internal language 182
category 178
incremental closed 179
pre-incremental closed 178
ccc see cartesian closed category
chain
length 184
Church-Rosser 12
closed term 10

co-Kleisli category 35
compact o i 172
typing deduction 78
compact morphisms 39
compatible 11
complete model 41
complete play 46
component 188
composite L L 33
composition of strategy 33
computable term 39
computation tree 94, 147
computationally adequate 39
consistent L. 13
consistent typing assumptions 13
constant traversal 104
contraction 11
copy-cat strategy 32
core of a traversal 106
CUITYING . . v oot e e et e e e 34
D
deadcode 162
dead occurrences 163
dead variable elimination 163
definability 39
domain 147
dummy lambda 94
E
elementary recursive 66
enabling relation 28, 97
eta-conversion 11
eta-long normal form 58
eta-reduction 11
evaluation contexts 20
evaluation strategy 34
exponential 178
GAINE . vttt 35
extension of a justified sequence of nodes 112
extensional category 198
extensional game model 41
external moves 123
F
Finitary Idealized Algol 18

230
free variables 10
fresh variable 10

fully abstract
fully-revealed game denotation

G

generalized lambdar-node 153
generalized O-move in component A, B 188
generalized O-moves in component B,C' 188
generalized P-moves in component A, B 188
generalized P-moves in component B,C' 188
H

hereditarily enabled 97
hereditarily justified 98
higher-order grammar 20
higher-order recursion scheme 21
homogeneous 22,179

safe lambda calculus 50

homogeneous incremental closed category 179

1

1CC see incremental closed category
identity strategy 32
incremental

closed category 179

justification see strategy P-incrementally

justified

morphism 178

node binding 164

tree binding 164
incremental closed category 179

canonical classifying 183

generated by a typed calculus 183

internal language 182
induced 122
inequationally complete 41
inequationally fully abstract 41
inequationally sound 39
inhabitant 13
initial moves, 28
initial occurrence of the thread of n 99
initial occurrences 99
innocence 33, see strategy innocent
input-variables nodes 97
instance

ofatype 12
intentional category 197
intentional game model 38
intentionally fully-abstract 172
interaction 33
interaction game 121
interaction sequence 33, 187

interaction type trees 121
interaction types 121
internal language 182
internal move 122
intrinsic preorder 36, 198
isomorphic 178
J
justified interaction sequence 123
justified sequence of nodes 97
justifies 98
K
Kierstead terms 37
knowing strategies 42
L
large subterms 53
left-strict 180
level 162, 184
long O-view 113
long safe fragment 176
long-safe 59
M
memory-cell strategy 42
model 180
sound 180
move
profound 122
superficial 122
N
node
pending 98
unanswered 98
normal inhabitants 80
normalizable 11
O
O-incrementally justified 202
O-view 29
observational equivalence 38
observational preorder 38
one-step f-reduction 11
Opponent 28
order 175
BAINE © v o 184
MOVE .« v v veee e e 44, 162, 184
node 96
type ... 12
order-i finitary fragment of TA 18
order-consistent 54

Index 231
P lambda calculus d@ la Curry 50
P-incrementally justified 162 pair ... 76
P-view L. 29, 99 redex 56
interaction sequence 188 typed calculus 176
pairing 34, 178 universally 51
path 164 safe context 204
pendingnode, 98 safe program contexts 204
pending question 33, 184 safe variable typing convention 54
play semi-capture-permitting substitution ... 90
closed P-incrementally justified 186 semi-closed split-term 88
P-incrementally justified 186 set of possible moves 122
pointed poset 180 Sierpinski game 36
pointed-poset 180 simplegame 46
pre-computation 94 simpletype 12
pre-incremental closed category 178 simply-typed lambda calculus 13
PreCONGTUENCE . « v v v v e oo v e 181 simultaneous substitution 11
prime sound 39, 180
ATETIA « v v v ot e e e e 184 sound for evaluation 38
node 95 SpaAWD 95
sub-types 176 split terms-in-context 87
principal deduction 14 star fragment 206
principal type 14 store 18
products 178 strategy 31
Program 19, 204 closed P-incrementally justified 174, 186
program contexts 204 history-free 33
projection 33 history-sensitive 33
promotion 35 innocent 33
Proponent 28 P-incrementally justified 186
pushdown automaton 23 P-incrementally justified modulo 200
P-well-bracketed 184
Q well-bracketed 33
quotiented category 36 strategy composition 33
R stratified context 63
rational 180 strongly normal}ngle """"""" 1
reachability problem 162 strongly normalizing 12
strongly safe TA 85
reachable 163
. sub-terms 10
reflexive 11)
sub-traversal of the computation tree .. 109
represented 74
represents the pair of functions 76 subcafteg(')ry """""""""" 178
substitution
revealed strategy 121 L
capture-permitting 10
S definition 10
safe ... 51 simultaneous ... 11
B-reduction 57 simultaneous capture-permitting ... 11
IA]] subterm projection 108
PCFE . .. {1 Symmetric L. 11
deduction 79 syntactic approximants 147
definition o oot 99 syntactical uncovering function 127
fragment 91, 176 syntactically-revealed game denotation . 125
lambda calculus 50 T
lambda calculus with product 176 torm 9
lambda calculus a la Church 50 ~T T o

Index

232
closed 10
term-in-context 13
terminal L oL 178
thread
inaplay 196
inatraversal 99
ofamove 196
transitive oL 11
traversals 100
tree 147
domain 147
type ... 96
arity ... 12
binary word 74
type substitution 12
type-order function 182
type-ranking function 62
typed calculus 176
typing assumptions 13
typing context 13
typing deduction 13
U
uncovered positions 123
underlying type 121
universality 172
universally safe 51
universally unsafe 51
unsafe 51
unsafe type L 80
untyped lambda calculus 9
A%
value term L 20
value-leaf 94
variable
bound 10
free ... 10
fresh 10
view
O-view 29
P-view 29, 99
view function 34
visibility L 30, 100
A%
weakly normalizing 12
well-behaved 104
well-bracketing . see strategy well-bracketed,
98
well-opened L L L. 35

word function 74

	Introduction
	Background
	Overview
	Organization of the thesis

	Background
	Lambda Calculus
	Terms
	Substitution
	Conversion
	Properties
	Simple types
	Simply-typed lambda calculus à la Curry
	Simply-typed lambda calculus à la Church
	Extensions
	PCF
	Idealized Algol

	Higher-Order Grammars and the Safety Restriction
	Higher-order grammars
	The safety restriction
	Automata-theoretic Characterization
	Expressivity
	Is safety a genuine restriction?
	Higher-order grammars and the simply-typed lambda calculus

	Game Semantics
	Historical remarks
	Definitions
	Categorical interpretation
	The fully abstract game model of PCF
	The fully abstract game model of Idealized Algol
	On the necessity of justification pointers
	Algorithmic game semantics

	The Safe Lambda Calculus
	Definition and properties
	Safety adapted to the lambda calculus
	Safe beta reduction
	Eta-long normal form
	Almost safety
	Safety with respect to other type-ranking functions
	Homogeneous safe lambda calculus

	Complexity
	Statman's result
	Mairson's encoding
	PSPACE-hardness
	Other complexity results

	Expressivity
	Numeric functions representable in the safe lambda calculus
	Word functions definable in the safe lambda calculus.

	Typing problems
	Relating derivations from the lambda calculus and its safe fragment
	Type checking and typability
	The type inhabitation problem

	Extensions
	PCF
	Idealized Algol
	Generalization to other applied lambda calculi

	Related work

	A Concrete Presentation of Game Semantics
	Computation tree
	Definition
	Pointers and justified sequence of nodes
	Traversal of the computation tree

	Game semantics correspondence
	Revealed game semantics
	Relating computation trees and games
	Mapping traversals to interaction plays
	The correspondence theorem for the pure simply-typed lambda calculus

	Extension to PCF and IA
	PCF fragment
	Idealized algol

	Conclusion and related works

	Syntactic Analysis of the Game Denotation of Safe Terms
	P-incrementally justified strategies
	Dead code elimination
	Incremental binding
	Safe lambda calculus
	Safe PCF
	Safe Idealized Algol
	Towards a game model of safe PCF
	Definability
	Compositionality
	Full abstraction

	Models of Safe Applied Lambda Calculi
	Categorical model
	Safe lambda calculus with product
	Incremental closed category
	Categorical semantics
	Quotiented category
	The internal language of incremental closed categories

	The game model
	Order of a move
	Well-bracketing
	P-incremental justification
	Closed P-incremental justification
	Interaction sequences
	Preliminary results
	Categories of closed P-i.j. strategies

	Interpretation in the standard game model
	Safe lambda calculus with product
	Safe PCF
	Safe Idealized Algol

	O-incremental justification
	Full abstraction
	Algorithmic game semantics

	Conclusion
	Summary of contribution
	Further works

	Bibliography
	Index to Notations
	Index

