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Abstract

We consider a syntactic restriction for higher-order grammars called safety that
constrains occurrences of variables in the production rules according to their type-
theoretic order. We transpose and generalize this restriction to the setting of the
simply-typed lambda calculus, giving us what we call the safe lambda calculus. We
study the expressivity of the calculus and show a result in the same vein as Schwicht-
enberg’s 1976 characterization of the simply-typed lambda calculus: we show that
the numeric functions representable in the safe lambda calculus are exactly the multi-
variate polynomials; thus conditional is not definable. We also give a characterization
of representable word functions. We then study the complexity of deciding beta-eta
equality of two safe simply-typed terms and show that this problem is PSPACE-hard.
The safety restriction is then extended to other applied lambda calculi featuring re-
cursion and references such as PCF and Idealized Algol (IA for short).

In order to study the game semantics of safe languages, we introduce a new concrete
presentation of game semantics based on the theory of traversals: we show that the
revealed game denotation of a term can be computed by traversing some souped-up
version of the abstract syntax tree of the term using adequately defined traversal
rules. This result was presented at the Galop workshop at ETAPS 2008. This allows
us to give a game-semantic analysis of safety via syntactic reasoning: we show that
safe lambda-terms are denoted by what we call P-incrementally justified strategies.
This result was presented at TLCA 2007.

Next we study models of the safe lambda calculus and show that these are captured
by Incremental Closed Categories. We build a categorical game model of the safe
lambda calculus which gives rise to a fully abstract game model of safe IA. The model
obtained for safe IA is effectively presentable: two terms are equivalent just if they
have the same set of complete O-incrementally justified plays, where O-incremental
justification is defined as the dual of P-incremental justification.

Finally in the last chapter we study safety from the point of view of algorithmic
game semantics. We observe that up to the 3rd order, the addition of unsafe context
is conservative for observational equivalence (for both IA and safe IA). This implies
that all the upper complexity bounds known for the lower-order fragments of IA also
hold for the safe fragment; we show that it is also the case for the known lower-
bounds. At order 4, observational equivalence was shown to be undecidable for IA.
We conjecture that for the order-4 safe fragment of IA, the problem is reducible to
the DPDA-equivalence problem (which is decidable).
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Chapter 1

Introduction

1.1 Background

The safety condition was introduced by Knapik, Niwiński and Urzyczyn at FoSSaCS 2002
[KNU02] in a seminal study of the algorithmics of infinite trees generated by higher-order gram-
mars. The idea, however, goes back some twenty years to Damm [Dam82] who introduced an
essentially equivalent1 syntactic restriction (for generators of word languages) in the form of
derived types. A higher-order grammar (that is assumed to be homogeneously typed) is said to
be safe if it obeys certain syntactic conditions that constrain the occurrences of variables in the
production (or rewrite) rules according to their type-theoretic order. Though the formal defini-
tion of safety is somewhat intricate, the condition itself is manifestly important. As we survey in
the following, higher-order safe grammars capture fundamental structures in computation, offer
clear algorithmic advantages, and lend themselves to a number of compelling characterizations:

• Word languages. Damm and Goerdt [DG86] have shown that the word languages generated
by order-n safe grammars form an infinite hierarchy as n varies over the natural numbers.
The hierarchy gives an attractive classification of the semi-decidable languages: levels 0,
1 and 2 of the hierarchy are respectively the regular, context-free, and indexed languages
(in the sense of Aho [Aho68]), although little is known about higher orders.

Remarkably, for generating word languages, order-n safe grammars are equivalent to order-
n pushdown automata [DG86], which are in turn equivalent to order-n indexed grammars
[Mas74, Mas76].

• Trees. Knapik et al. have shown that the Monadic Second Order (MSO) theories of trees
generated by safe (deterministic) grammars of every finite order are decidable2.

They have also generalized the equi-expressivity result due to Damm and Goerdt [DG86]
to an equivalence result with respect to generating trees: A ranked tree is generated by an
order-n safe grammar if and only if it is generated by an order-n pushdown automaton.

• Graphs. Caucal [Cau02] has shown that the MSO theories of graphs generated3 by safe
grammars of every finite order are decidable. In a recent paper [HMOS08], however, Hague
et al. have shown that the MSO theories of graphs generated by order-n unsafe grammars
are undecidable, but deciding their modal mu-calculus theories is n-EXPTIME complete.

1See de Miranda’s thesis [dM06] for a proof.
2It has recently been shown [Ong06a] that trees generated by unsafe deterministic grammars (of every finite

order) also have decidable MSO theories. More precisely, the MSO theory of trees generated by order-n recursion
schemes is n-EXPTIME complete.

3These are precisely the configuration graphs of higher-order pushdown systems.



2 Chapter 1. Introduction

1.2 Overview

The aim of this thesis is to understand the safety condition in the setting of the typed lambda
calculus. Our first task is to transpose it to the lambda calculus and pin it down as an appropriate
sub-system of the simply-typed theory. A first version of the safe lambda calculus has appeared
in an unpublished technical report [AdMO04]. Here we propose a more general and cleaner
version where terms are no longer required to be homogeneously typed. The formation rules
of the calculus are designed to maintain a simple invariant: Variables that occur free in a safe
lambda-term have orders no smaller than that of the term itself. We can now explain the sense
in which the safe lambda calculus is safe by establishing its salient property: No variable capture
can ever occur when substituting a safe term into another. In other words, in the safe lambda
calculus, it is safe to use capture-permitting substitution when performing β-reduction.

There is no need for new names when computing β-reductions of safe lambda-terms, because
one can safely “reuse” variable names in the input term. Safe lambda calculus is thus cheaper
to compute in this näıve sense. Intuitively one would expect the safety constraint to lower
the expressivity of the simply-typed lambda calculus. Our next contribution is to give a precise
measure of the “expressivity deficit” of the safe lambda calculus. An old result of Schwichtenberg
[Sch76] says that the numeric functions representable in the simply-typed lambda calculus are
exactly the multivariate polynomials extended with the conditional function. In the same vein,
we show that the numeric functions representable in the safe lambda calculus are exactly the
multivariate polynomials.

Theorem 3.3.2 The numeric functions (Church-)representable in the safe lambda
calculus are exactly the multivariate polynomials.

We further obtain a similar characterization concerning representable word-functions.

Theorem 3.3.5 The word-functions definable in the safe lambda calculus is given by
the minimal set containing (a) concatenation, (b) substitution, (c) the projections, (d)
the constant functions; and closed by composition.

In order to get a better understanding of our calculus, it is interesting to recast common
problems studied in the literature on the simply-typed lambda calculus in the setting of the safe
lambda calculus. We show for instance that the type-checking and typability problems remain
decidable. We also consider the type-inhabitation problem: “Is there a term inhabiting a given
type?”. This problem is already relatively complex in the simply-typed lambda calculus—
Statman showed that it is PSPACE-complete. Because of the somewhat intricate way in which
safety constrains the occurrences of the variables, the inhabitation problem becomes even more
complex in the safe lambda calculus. We do not know whether the problem is decidable.

Another famous result by Statman is that deciding beta-equality of two simply-typed terms
is non-elementary. There are several proofs of this result in the literature. All of them proceed by
reduction of a non-elementary problem—such as quantifier elimination in finite type theory—
into the simply-typed lambda calculus. Interestingly, all these encodings make use of unsafe
terms in some place. This suggests that such encoding is impossible in the safe lambda calculus
and that the beta-equivalence problem may be simpler when restricted to safe terms. The
author has not been able to establish an upper-bound on the complexity of this problem but a
lower-bound is provided: the True Quantifier Boolean Formula (TQBF) problem (i.e., deciding
whether a quantified boolean formula is true) can be encoded in the safe lambda calculus. Since
the latter problem is PSPACE-complete, this implies:

Theorem 3.2.1 The beta-equivalence problem for safe lambda-terms is PSPACE-hard.
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A particularity of this encoding is that it relies on the entire type hierarchy and thus we
only have PSPACE-hardness for the safe lambda calculus in its entirety. This contrasts with
another result by Statman which says that there exists a finite set of types such that the beta-eta
equivalence problem restricted to simply-typed terms of these types is PSPACE-hard.

Extensions

PCF is the simply-typed lambda calculus augmented with basic arithmetic operators, if-then-
else branching and a family of recursion combinator YA of type (A→ A)→ A for every type A.
We define safe PCF to be the fragment of PCF obtained by constraining the application and
abstraction rules in the same way as the safe lambda calculus. This language inherits the good
properties of the safe lambda calculus: No variable capture occurs when performing substitution
and safety is preserved by the reduction rules of the small-step semantics of PCF. Similarly, we
define safe IA as safe PCF augmented with the imperative features of Idealized Algol (IA for
short) [Rey81]. A version of the no variable capture lemma also holds in safe IA.

A concrete game semantics

Game semantics has emerged as a powerful paradigm for the study of higher-order functional
programming languages in general, and in particular for the mother of all functional languages:
the lambda calculus. The game approach was for instance the first to give rise to a fully abstract
model of PCF [AMJ94, HO00].

A question inevitably arising is: Does the safety constraint noticeably impact on the game
denotation of a term? Answering this question can help us gain a better understanding of the
fundamental nature of the safety restriction.

In the traditional presentation of game semantics, attention is taken to abstract away entirely
the syntax of the language from the definition of the semantics. This syntax-independent aspect
of game models constitutes their salient feature. But when it comes to analyzing the game
semantics of the safety restriction, this turns out to be a complication rather than a benefit
because safety is precisely a syntactic constraint.

A substantial part of the thesis is therefore devoted to giving a presentation of game semantics
that is more concrete than the traditional one in the sense that the semantic denotation of a
term carries some information about its syntax. This presentation is based on ideas recently
introduced by Ong [Ong06a]: A term is canonically represented by a certain abstract syntax
tree of its η-long normal form referred as the computation tree. A computation is then described
by a justified sequence of nodes of the computation tree respecting some formation rules and
called a traversal. Essentially, traversals allow us to model β-reductions without altering the
structure of the computation tree via substitution. A notable property is that P-views (in the
game-semantic sense) of traversals corresponds to paths in the computation tree. We show that
traversals are just representations of the revealed game semantic denotation (i.e., the set of
uncoverings of plays of the game-semantic denotation with respect to the syntax of the eta-long
normal form). The standard game denotation can then be recovered by extracting the cores of
the traversals, an operation that eliminates nodes that are “internal” to the computation—the
counterpart of the hiding operation of game semantics. This leads to an isomorphism between
the standard strategy denotation of a term and the set of traversal cores of its computation tree:

Theorem 4.2.2 (The Correspondence Theorem) The set of traversals of the compu-
tation tree of a simply-typed term-in-context Γ ` M : T is isomorphic to its revealed
denotation 〈〈Γ `M : T 〉〉s; the set of traversal cores is isomorphic to the standard game
denotation [[Γ `M : T ]].

We then extend our presentation of game semantics to PCF and Idealized Algol (PCF ex-
tended with block-allocated variables). We extend the notion of computation tree to recursively
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defined terms as follows: The computation tree of a PCF term is defined as the least upper-
bound of the chain of computation trees of its syntactic approximants [AM98b]. Think of it
as the tree obtained by expanding Y combinators ad infinitum. For instance the computation
tree of Y (λfx.fx) is given by the abstract syntax tree of the η-long normal form of the infinite
lambda-term (λfx.fx)((λfx.fx)((λfx.fx)(. . .. It is possible to define traversal rules modeling
the arithmetic constants of PCF so that a version of the Correspondence Theorem holds for
PCF.

The extension to IA is complicated by the presence of the base type var used for reference
variables. Indeed, the game denotation of var has infinitely many initial moves, therefore there
is a mismatch between the tree representation of a term of type var and the arena underlying
the game induced by the type var. It is possible, however, to adapt the game-semantic cor-
respondence to IA by generalizing the notion of computation tree to computation hypertrees.
These are trees in which sibling nodes can be grouped together into a single hypernode.

On a more applied side, I have implemented a tool to illustrate the theory of traversals and
its correspondence with game semantics [Blu08].

This contribution in game semantics is a significant detour from the main topic of this thesis,
but it provides the key to a simple analysis of the game semantics of the safety constraint.

Game semantics of safety

Based on the correspondence between the game semantics of a lambda-term M and the set
of traversals over its computation tree, we are able to give a game-semantic characterization
of safety. We show that the safety syntactic restriction is semantically captured by the P-
incrementally justified strategies:

Theorem 5.4.1 Let `st M : A be a closed simply-typed term. Then

M has a safe β-normal form ⇐⇒ [[`M : A]] is P-incrementally justified strategies.

In a P-incrementally justified strategy, pointers emanating from the P-moves of a play are
uniquely reconstructible from the underlying sequence of moves and the pointers associated
to the O-moves therein. More precisely, a strategy is P-incrementally justified just if each P-
question in a play points to the last pending O-question of greater order in the P-view at that
point. Thus up to order 3, pointers are superfluous in the game semantics of safe lambda-terms;
from order 4 onwards, they are only necessary for O-questions.

A model of safe lambda calculi

Our last contribution is to establish a game model of the safe lambda calculus. A fundamental
result in theoretical computer science is the connection between Cartesian Closed Categories
(CCC) and models of typed lambda calculi: it was observed by Lambek [Lam86] that any
extensional model of the simply-typed lambda calculus is a CCC, and conversely, any typed
lambda calculus induces a CCC.

A similar categorical connection can be made for models of the safe lambda calculus. The
categorical counterparts of safe lambda calculi are the Incremental Closed Categories (ICC).
These categories are subcategories of CCC in which currying is restrained. By showing that
P-incrementally justified strategies compose, we can construct an ICC of games with morphisms
given by P-incrementally justified strategies. This gives rise to a categorical game model of the
safe lambda calculus:

Proposition 6.2.9 There is a Incremental Closed Category with games as objects and
(closed) P-incrementally justified strategies as morphisms that soundly models the safe
lambda calculus.
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Full abstraction

A common concept in game semantics is that the pure functional core of a programming language
can be modeled by strategies satisfying the properties of visibility, innocence and well-bracketing.
Adding features to the language corresponds to relaxing one of these properties in the game
model. For instance adding imperative features breaks innocence, adding exceptions-handling
breaks well-bracketing and adding general references breaks visibility. Furthermore in each of
these cases, the game model gives rise to a fully abstract model of the considered language. For
instance the well-bracketed and visible strategies give rise to a fully abstract game model of the
language Idealized Algol (IA).

Conversely, restricting the language corresponds to imposing more constraints on the strat-
egy. As mentioned before, the strategy counterpart of the safety restriction is P-incremental
justification (P-i.j. for short). As expected, this restriction gives rise to a fully-abstract model
for the safe fragment of PCF and IA:

Theorem 6.5.5 (Full abstraction) Two safe (PCF or IA) terms are observationally
equivalent with respect to safe contexts if and only if their denotations are equivalent
with respect to the intrinsic preorder of the ICC games model.

These results are summarized in the following table:

Language Strategy constraints

Safe IA deterministic + visible + w.b. + P-i.j.
Safe PCF deterministic + visible + w.b. + innocent + P-i.j.
PCF deterministic + visible + w.b. + innocent
IA deterministic + visible + w.b.
IA + exceptions deterministic + visible
IA + exceptions + general references deterministic

Algorithmic game semantics

The game-semantic approach has become a very successful paradigm after the resolution of the
long-standing full abstraction problem of PCF. For instance, researchers have been able to use
game semantics to derive decision procedures for the observational equivalence problem (Given
two terms, can they be used interchangeably?)—a research activity known as Algorithmic game
semantics. A major breakthrough was the Characterization Theorem [AM97]: observational
equivalence of two Idealized Algol terms is characterized by equality of the set of complete plays
of their denotation. (Consequently, the game model of Idealized Algol is effectively presentable—
a property that is not enjoyed by any model of PCF [Loa01].) This result paved the way
to interesting characterizations of the game denotation of lower-order IA terms. Ghica and
McCusker observed [GM00] that pointers are unnecessary for representing plays in the game
semantics of the second-order finitary fragment of Idealized Algol (IA2 for short). Consequently
observational equivalence for this fragment can be reduced to the problem of equivalence of
regular expressions. Similar characterizations were later obtain for other finitary fragments. For
instance at order 3, although pointers are necessary, deciding observational equivalence of IA3 is
EXPTIME-complete [Ong04, MW05]. These results are all based on the same observation: At
lower orders, the justification pointers present in the game denotation are either not required
(e.g., at order 2) or can be encoded succinctly (e.g., at order 3). The possibility of representing
plays without some or all of their pointers under the safety assumption strongly suggests that
similar result can be obtained for the safe fragment of IA.

Our last contribution consists in studying the safety from the point of view of algorithmic
game semantics. We introduce a new notion of observational equivalence for IA: A safe context
is a safe IA term-in-context with a hole (a distinguished variable occurring exactly once in the
term); two terms are considered equivalent if no safe context can distinguish them. We show that
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up to order 3 this notion of observational equivalence coincides with the usual one. A basic result
in algorithmic game semantics is the Characterization Theorem: Observational equivalence of
two IA terms is characterized by the equality of their set of complete plays. We show a version
of this theorem for our notion of observational equivalence:

Theorem 6.6.1 (Characterization Theorem) Two terms are observationally equivalent
with respect to safe contexts if and only if they have the same set of P-incremental
justified complete plays.

Finally, based on these results, we show that all the known results [GM00, Ong02, MW05,
MOW05, Mur03] about the complexity of observational equivalence up to order 3 are also valid
for our new notion of observational equivalence:

Theorem (Sec. 6.6) The observational equivalence problem (with respect to safe con-
texts) for the safe finitary fragment of

(a) order-2 IA + iteration is in PSPACE;

(b) order-2 IA + order-1 recursion is undecidable;

(c) order-3 + iteration is EXPTIME-complete;

(d) order-3 + ground type recursion is reducible to the equivalence problem for deter-
ministic pushdown automata (DPDA), and is thus decidable.

This suggests that the restriction imposed on contexts kicks in at order-4. Murawksi has
shown that the problem for (not necessarily safe) terms is undecidable at order-4 [Mur03]. His
proof can be reused to show that the observational equivalence problem for safe order-4 terms
and unrestricted (i.e., not necessarily safe) contexts remains undecidable. We further make the
following conjecture:

Conjecture 6.6.6 The observational equivalence problem for safe terms with respect
to safe contexts reduces to the DPDA-equivalence problem and is thus decidable.

1.3 Organization of the thesis

The next chapter lays down the background for the rest of the thesis. It introduces briefly the
simply-typed lambda calculus and two of its extensions that will be studied throughout the
thesis, namely PCF and Idealized Algol. It then presents higher-order grammars, the original
setting in which the safety restriction firstly appeared, and presents the safety restriction with
some related results. Finally, the last section is devoted to the presentation of the basics and
main results of game semantics. It also fixes notations that will be used in other chapters.

Chapter 3 introduces the definition of the safe lambda calculus. It establishes basic prop-
erties of the calculus and gives an account of its expressivity and complexity. The chapter
concludes with a generalization of the safety restriction to other applied lambda calculi such as
PCF and Idealized Algol.

Chapter 4 takes a detour from the safety restriction. It presents and extends the theory of
traversals originally introduced by Ong [Ong06a]. It defines the notions of computation tree of
a simply-typed term and traversals over this tree. The ultimate goal is to prove the Correspon-
dence Theorem, an important result that establishes a correspondence between traversals of the
computation tree and the game-semantic denotation of a term.

This correspondence theorem allows us to give in Chapter 5 an account of the game se-
mantics of safety using a very simple syntactic argument.
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In Chapter 6 we look at categorical models for the safe lambda calculus, safe PCF and safe
Idealized Algol. A complete fully abstract game model is established. The chapter concludes
with application to algorithmic game semantics.
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Chapter 2

Background

This chapter introduces in three sections the basic concepts that will be used throughout the
thesis. The first section presents the lambda calculus; the second gives a brief introduction
to higher-order grammars and presents the original definition of the safety restriction; the last
section is a condensed account of game semantics.

2.1 Lambda Calculus

We assume that the reader is familiar with the simply-typed lambda calculus, but for precision
and to fix notations we give here a brief overview of the basic definitions. For a detailed account
the reader is referred to the standard textbooks on the subject [Hin97, HS86, Bar92].

2.1.1 Terms

We fix a countable set of variables V.

Definition 2.1.1. The set Λ of terms of the untyped lambda calculus is given by the set of
derivations of the following grammar:

Λ = V | ΛΛ | λV.Λ .

These three basic formation rules are used to construct terms that are respectively variables,
applications and lambda-abstractions.

A term is represented by an expression representing its derivation tree. It is computed as
follows: The leaves of the derivation tree are concatenated from left to right and additional
parentheses are added to indicate the order of the derivation. Parentheses ensure that the repre-
sentation is unique. For instance they allow us to distinguish the five different derivations whose
underlying concatenation of leaves is given by “λx.MNQ”; these derivations are λx.((MN)Q),
λx.(M(NQ)), (λx.M)(NQ), (λx.(MN))Q, and ((λx.M)N)Q. We further use the following
conventions:

(i) We use symbols x, y, . . . to denote variables in V and M,N, . . . to denote other terms;

(ii) Application associate to the left: MNQ stands for the term ((MN)Q);

(iii) Nested lambda abstractions are combined into a single one: λxyz.x stands for λx.λy.λz.x.
Also if x denotes a sequence of variables x1 . . . xn then we write λx.M as a short-hand for
λx1 . . . xn.M .

Example 2.1.1. λx.x, λx.xy, (λx.xx)(λx.xx) are all valid terms.
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Definition 2.1.2. The set of free variables FV (M) of a term M is given inductively by:

FV (x) = {x}

FV (MN) = FV (M) ∪ FV (N)

FV (λx.M) = FV (M) \ {x} .

An occurrence of a variable x in M is said to be free if it belongs to FV (M). Otherwise it is
said to be bound. A term M is closed if it has no free variable (i.e., FV (M) = ∅).

We write closure(M) to denote the closed term obtained from M by abstracting all its free
variables by order of appearance in the term.

A variable is fresh if it does not occur anywhere in the terms that we are considering. Two
terms M and N are α-convertible if one can be obtained from the other by renaming bound
variables to fresh names. We consider syntactic equality of terms modulo α-conversion and we
write M ≡ N to denote this equality.

The set sub(M) of sub-terms of M is given by induction as:

sub(x) = {x}

sub(MN) = {MN} ∪ sub(M) ∪ sub(N)

sub(λx.M) = {λx.M} ∪ sub(M) .

2.1.2 Substitution

Substitution refers to the transformation that replaces a free variable in a term by another term.
The naive way to implement substitution consists in textually replacing all free occurrences of
x in M by N . This is called capture-permitting substitution:

Definition 2.1.3. The capture-permitting substitution of N for x in M , written M {N/x},
is defined by induction as follows:

xi {N/x} ≡ Ni

y {N/x} ≡ y if x 6≡ y,

(M1M2) {N/x} ≡ (M1 {N/x})(M2 {N/x})

(λx.M) {N/x} ≡ λx.M

(λy.M) {N/x} ≡ λy.M {N/x} if y 6≡ x .

Although this definition is valid, it is not adequate in the sense that is not sound with
respect to syntactical equality: take the terms M1 ≡ λy.x, M2 ≡ λz.x and N ≡ y. We have
M1 {N/x} ≡ λy.y and M2 {N/x} ≡ λz. Thus although M1 and M2 are syntactically equivalent,
performing the same substitution on both terms gives terms that are not syntactically equivalent.

The source of the problem lies the last equation: in the abstraction case, when pushing the
substitution under the lambda, some care needs to be taken so that the free-variables in M do
not get “captured” by the abstraction. This is traditionally achieved by renaming all the free
variables in M afresh before continuing with the substitution:

Definition 2.1.4. The substitution of N for x in M written M [N/x] is defined by induction
as follows:

x [t/x] ≡ t

y [t/x] ≡ y if x 6≡ y,

(M1M2) [t/x] ≡ (M1 [t/x])(M2 [t/x])

(λx.M) [t/x] ≡ λx.M

(λy.M) [t/x] ≡ λz.M [z/y] [t/x] if x 6≡ y and where z is a fresh variable.
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Observe that only the last equation differs from the previous definition.
The generalization of the above defined transformations to multiple variables is called simul-

taneous substitution:

Definition 2.1.5. The simultaneous capture-permitting substitution of N1, . . . , Nn for
the (distinct) variables x1,. . .xn in M , written M {N1/x1, . . . , Nn/xn} and abbreviated here as
M

{
N/x

}
is defined by induction as follows:

xi
{
N/x

}
≡ Ni

y
{
N/x

}
≡ y if x 66= yi for all i,

(M1M2)
{
N/x

}
≡ (M1

{
N/x

}
)(M2

{
N/x

}
)

(λxi.M)
{
N/x

}
≡ λxi.M {N1 . . . Ni−1Ni+1 . . . Nn/x1 . . . xi−1xi+1 . . . xn}

(λy.M)
{
N/x

}
≡ λy.M

{
N/x

}
if y 6≡ xi for all i.

Definition 2.1.6. The simultaneous substitution of N1, . . . , Nn for the (distinct) variables
x1,. . . xn in M , written M [N1/x1, . . . , Nn/xn] and abbreviated here as M

[
N/x

]
is defined by

induction as follows:

xi
[
N/x

]
≡ Ni

y
[
N/x

]
≡ y if y 6≡ xi for all i,

(MN)
[
N/x

]
≡ (M

[
N/x

]
)(N

[
N/x

]
)

(λxi.M)
[
N/x

]
≡ λxi.M [N1 . . . Ni−1Ni+1 . . . Nn/x1 . . . xi−1xi+1 . . . xn]

(λy.M)
[
N/x

]
≡ λz.M [z/y]

[
N/x

]

if y 6≡ xi for all i and where z is a fresh variable.

2.1.3 Conversion

A binary relation R over Λ is compatible if M R M ′ implies MN →β M
′N , NM →β NM

′

and λx.M →β λx.M
′ for all M,M ′, N ∈ Λ. It is transitive if M →β N and N →β Q implies

M →β Q; reflexive if M →β M ; and symmetric if M →β N implies N →β M , for all
M,N,Q ∈ Λ.

The concept of computation in the lambda calculus is incarnated by a term-rewriting rule
called β-reduction:

Definition 2.1.7. We call β-redex any term of the form (λx.M)N . It contraction is defined
as M [N/x]. We define β as the relation mapping a redex to its contraction:

β = {((λx.M)N, M [N/x]) |M,N ∈ ∆, x ∈ V} .

The one-step β-reduction relation →β is defined as the compatible closure of the relation
β. The relation �β denotes the reflexive transitive closure of →β, and the relation =β, called
β-equality or also β-conversion, denotes the reflexive symmetric transitive closure of →β.

In addition to the β-reduction rule the η-reduction→η is defined as the smallest compatible
relation satisfying:

λz.Mz →η M if z 6∈ FV (M) .

We define η-conversion =η as the reflexive symmetric transitive closure of →η.

Definition 2.1.8 (Normal form). A term

(i) is a β-normal form, β-nf for short, if it does not contain any β-redex;

(ii) has a β-normal form, or is normalizable, if it is β-equal to a β-normal form;

(iii) is strongly normalizable if every sequence of reduction starting from it is finite (and
therefore ends with a normal form).

The notions of η and βη-normal form are defined similarly.
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2.1.4 Properties

A reduction is weakly normalizing if every term is normalizable and strongly normalizing

if every term is strongly normalizable. The (untyped) lambda calculus is not even weakly
normalizing with respect to β-reduction since for instance the term Ω ≡ (λx.x x)(λx.x x) β-
reduces to itself.

The lambda calculus satisfies the so-called Church-Rosser theorem:

Theorem 2.1.1 (Church-Rosser Theorem). If M �β N1 and M �β N2 then for some N we
have N1 �β N and N2 �β N .

This is sometimes summarized as “�β satisfies the diamond property”. A consequence of
this theorem is that a term has at most one β-normal form. Furthermore:

Theorem 2.1.2 (Normalization Theorem [Bar84]). The leftmost reduction strategy is normal-
izing (i.e., if M has a normal form then the reduction strategy consisting in contracting the
leftmost redex leads to that normal form).

2.1.5 Simple types

Simple types are objects that are constructed from atomic types using the function space arrow
operator →. Formally, we fix a set A of atomic types and we define the set TA of simple

types over A as the set generated from the following grammar:

TA ::= A | TA → TA .

We will use the Greek letter symbols α, β, . . . to refer to atomic types and capital letters
A, B, . . . to refer to other types. We further assume that A has a distinguished atomic type
denoted by the symbol o.

By convention, → associates to the right. Thus every type can be written as A1 → · · · →
An → α for some atomic type α, which we shall abbreviate to (A1, · · · , An, α) (in case n = 0,
we identify (α) with α). The number n is called the arity of the type, it is written arity(T ) for
every type T .

Convention 2.1.1 We use the following abbreviations for types:

(i) For every atom a and natural number n ∈ N, we define the types na as follows: 0a = a
and (n+ 1)a = na → a;

(ii) For every types A,B and positive natural number n > 0, the type An → B is defined by
induction as: A1 → B = A → B and An+1 → B = A → (An → B). In other words:

An → B =

n times︷ ︸︸ ︷
A→ . . .→ A→ B;

The order of a type is given by ordα = 0 for every atomic type α and ord (A→ B) =
max(1 + ordA, ordB). We assume an infinite set of typed variables. The order of a typed term
or symbol is defined to be the order of its type.

Definition 2.1.9 (Type substitution). A type substitution is an expression [T1/a1, . . . , Tn/an]
where a1, . . . , an are distinct atomic types in A and T1, . . . , Tn ∈ T.

For every type T ∈ T and type substitution [T1/a1, . . . , Tn/an] we define T [T1/a1, . . . , Tn/an]
to be the type obtained from T by substituting T1 for a1, . . . , Tn for an. The resulting type is
called an instance of the type T .
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2.1.6 Simply-typed lambda calculus à la Curry

There exist two styles of presentation of the simply-typed lambda calculus. In the Curry style,
typing is implicit. This means that each untyped term is assigned either no type or infinitely
many types. The other presentation, called Church style, makes the typing information explicit
in the structure of the term by introducing type annotations in it. Thus terms of this system
have a unique type. We present here the Curry version of the simply-typed lambda calculus.

We write M : A to denote that the term M can be assigned the type A ∈ T in the typing-
system. A set Γ of typing assumptions is a set of typing-assignments of the form x : T where x
is a variable in V and T ∈ T. It is consistent if all the variables names are distinct (i.e., each
variable name is assigned a unique type). The underlying set of variable names is called the
domain Γ and is written dom(Γ). We will write Γ, x : A to denote the set of typing assumptions
Γ ∪ {x : A}. We consider judgments of the form Γ `Cu M : A called terms-in-context where
Γ is a consistent set of typing assumptions called the typing context, A is a simple type and
M is a term.

Definition 2.1.10. The simply-typed lambda calculus à la Curry, denoted by ΛCu
→ , is defined

as the set of terms-in-context of the form Γ `Cu M : A that are derivable from the variable,
application and abstraction rules defined as follows:

Γ `Cu x : A
x : A ∈ Γ

Γ `Cu M : A→ B Γ `Cu N : A

Γ `Cu M N : B

Γ, x : A `Cu M : B

Γ `Cu λx.M : A→ B

Whenever the context is empty we just write `Cu M : A instead of ∅ `Cu M : A.

In the literature, the second and third rules are sometimes called the →-elimination and
→-introduction rules respectively.

The notion of “derivability” used in the above definition can be made more precise: A typing
derivation or typing deduction ∆ of ΛCu

→ is a tree labelled by terms-in-context of the form
Γ `Cu M : A where the leaves are axioms and the internal nodes are deduced from their children
nodes using the rules of ΛCu

→ . The edges of the tree also have labels indicating the rule used to
make the deductions. The root of the tree is called the conclusion of the derivation. Such tree
is usually represented with leaves at the top and root at the bottom [Hin97]. Terms-in-context
of the simply-typed lambda calculus are then defined as the set of conclusions of derivations in
ΛCu
→ .

An inhabitant of a type T ∈ T is a term M ∈ Λ such that for some typing-context Γ we
have Γ `Ch M : T .

The operation of type substitution from Def. 2.1.9 naturally extends to finite sequences of
types, contexts, terms-in-context and deductions. For instance for every context Γ, type B and
atomic type α we write Γ [B/α] to denote the context obtained by performing the substitution
[B/α] on each type occurring in Γ.

We now recall some standard results:

Proposition 2.1.1 (Weakening). Suppose Γ `Cu M : A and Γ′ is a typing-context with Γ ⊆ Γ′

then Γ′ `Cu M : A.

Proposition 2.1.2 (Typability of subterms). Let M ′ be a subterm of M . Then if Γ `Cu M : A
then Γ′ `Cu M

′ : A′ for some context Γ′ and type A′.

Lemma 2.1.1 (Substitution Lemma).

(i) If Γ, x : A `Cu M : B and Γ `Cu N : A then Γ `Cu M [N/x] : B;

(ii) If Γ `Cu M : A then Γ [B/α] `Cu N : A [B/α].

Theorem 2.1.3 (Subject Reduction). Suppose that M �β N . Then

Γ `Cu M : A =⇒ Γ `Cu M
′ : A .
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2.1.6.1 Typing problems

The three following problems are often considered in type theory:

• Type checking: Given a term M , context Γ and type A, do we have Γ `Cu M : A?

• Typability: Given a term M and context Γ, is there a type A such that Γ `Cu M : A?

• Inhabitation: Given a type A, is there a term M such that `Cu M : A?

Definition 2.1.11 (Principality). A term M has principal type A if for every possible deriva-
tion `Cu M : A′, A′ is an instance of A. A principal deduction for a term M is a deduction ∆
of the term-in-context Γ `Cu M : T such that every other deduction with the same conclusion
is an instance of ∆, so in particular T is a principal type of M .

Theorem 2.1.4 (PT Theorem, Curry, Hindley, Milner). It is decidable whether a term is typable
in Λ→. Moreover if M is typable then it has a principal deduction that is computable from
M .

This implies that both Type checking and Typability are decidable.

Theorem 2.1.5 (Strong normalization, Tait [Tai67]). Every term that is typable in Λ→ is
strongly normalizable (i.e., every reduction sequence leads to its (unique) normal form).

Theorem 2.1.6 (Statman [Sta79a]). The problem Inhabitation for types defined over an
infinite number of atoms is PSPACE-complete (and thus decidable).

2.1.7 Simply-typed lambda calculus à la Church

The simply-typed lambda calculus that we have introduced corresponds to the Curry-style ver-
sion. There is another approach called the Church-style presentation in which variable binders
are annotated with types1. The set of annotated-types ΛT is formally given by the following
grammar:

ΛT = V | ΛT ΛT | λTV : T.ΛT .

Observe that in the abstraction case, the binder is annotated with a type. This is the only
difference with untyped terms from Λ. For every annotated term M ∈ ΛT, the untyped term
underlying M , written |M |, is obtained by erasing all the type annotations from M .

We can now introduce new judgments of the form

Γ `Ch M : A ∈ Γ

where M ranges over annotated terms ΛT. The simply-typed lambda calculus à la Church,
written ΛCh

→ , is then given by the following typing system:

Γ `Ch x : A
x : A ∈ Γ

Γ `Ch M : A→ B Γ `Ch N : A

Γ `Ch M N : B

Γ, x : A `Ch M : B

Γ `Ch λx
A.M : A→ B

In contrast with the Curry version, terms of the Church typed lambda calculus have a unique
type at most:

Proposition 2.1.3 (Uniqueness of types in ΛCh
→ ). If Γ `Ch M : T and Γ `Ch M : T ′ then

T = T ′. Further if Γ `Ch M : T , Γ `Ch M
′ : T ′ and M =β M

′ then T = T ′.

The Curry-style and Church-style systems are related by the following result:

1In fact in the original Church presentation, variable occurrences are also annotated. The version that we
present here is sometimes called the Bruijn-style simply-typed lambda calculus. These two presentations are
essentially equivalent.
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Proposition 2.1.4. (i) Let M ∈ ΛT. Then Γ `Ch M : A =⇒ Γ `Cu |M | : A.

(ii) Let M ∈ Λ. Then Γ `Cu M : A =⇒ ∃M ′ ∈ ΛT s.t. Γ `Ch M
′ : A ∧ |M ′| = M .

In particular this implies

Corollary 2.1.7. Let T ∈ T. Then T is inhabited in ΛCh
→ iff it is inhabited in ΛCu

→ .

Convention 2.1.2 In the rest of this thesis we will use judgments of the form Γ `st M : A to
denote both à la Curry and à la Church terms-in-context: if M is an annotated term in ΛT then
the judgment stands to Γ `Ch M : A whereas if M is an untyped term in Λ then it stands for
Γ `Cu M : A.

2.1.8 Extensions

The simply-typed lambda calculus can be extended with a set of typed constants Ξ. To allow
the use of constants, the syntax of Λ is modified with a new grammar rule: Λ = . . . | Ξ. The
typing system is also augmented with the rule

(const)
`Cu f : A

f ∈ Ξ .

A new notion of reduction is defined to allow contraction of terms whose head occurrence is
a Ξ-constant: Every constant c in Ξ comes with a rewriting function fc : Λk → Λ for some k ∈ N

determining the interpretation of the constant. The following rule is then added to those of the
lambda calculus: cM1 . . .Mk → fc(M1, . . . ,Mk) for every closed normal forms M1, . . .Mk.

2.1.9 PCF

The Programming language for Computable Functions, PCF for short, is a simple programming
language based on the Logic of Computable Functions (LCF) devised by Dana Scott [Sco69]. It
was introduced in a classical paper by Plotkin “LCF considered as a programming language”
[Plo77]. PCF can be viewed as the Church-like simply-typed lambda calculus extended with
arithmetic operators, conditional and recursion.

Syntax

The set of types is Texp, the simple types generated from the atomic type exp of natural numbers.
PCF terms are given by the grammar:

M ::= x | λxA.M | MM |

| n | succ M | pred M

| cond MMM | YA M

where x ranges over a set of countably many variables, n represents an integer constant ranging
over the set of natural numbers, succ represents the successor function on integer, pred is the
predecessor function, cond the conditional (i.e., if-then-else branching) and YA : (A→ A)→ A
for every type A is the recursion combinator.

The language is formally given by terms-in-context of the form Γ ` M : A defined by
induction over the rules of Table 2.1.

Example 2.1.2. The integer addition function is definable in PCF by:

plus ≡ Y (λp x y.cond x y (p (pred x) (succ y)))

so that for terms M and N , if M ⇓ m and N ⇓ n, m,n ∈ N then plusM N ⇓ m+ n.
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(var)
x1 : A1, x2 : A2, . . . xn : An ` xi : Ai

i ∈ 1..n

(app)
Γ `M : A→ B Γ ` N : A

Γ `M N : B
(abs)

Γ, x : A `M : B

Γ ` λxA.M : A→ B

(const)
Γ ` n : exp

(succ)
Γ `M : exp

Γ ` succ M : exp
(pred)

Γ `M : exp

Γ ` pred M : exp

(cond)
Γ `M : exp Γ ` N1 : exp Γ ` N2 : exp

Γ ` cond M N1 N2 : exp
(rec)

Γ `M : A→ A

Γ ` YAM : A

Table 2.1: Formation rules for PCF terms.

Equality on integer is also definable by:

Eq = Y (λfexp→exp→exp xexp yexp. cond a

(cond b 1 0)

(cond b 0 (f (pred a) (pred b))))

so that EqM N ⇓ 1 if M and N evaluate to the same value, and EqM N ⇓ 0 otherwise.

Operational semantics

The operational semantics of the language is given using a big-step style semantics. We call
canonical form a term that is either a number or a function:

V ::= n | λxA.M .

The notation M ⇓ V means that the closed term M evaluates to the canonical form V . We
write M ⇓ if the judgment M ⇓ V is valid for some canonical form V . The full operational
semantics is given in Table 2.2. Since the evaluation rules are defined for closed terms only, the
context Γ is omitted in the rules.

V ⇓ V
provided that V is in canonical form.

M ⇓ λx.M ′ M ′ [x/N ] ⇓ V

MN ⇓ V

M ⇓ n

succ M ⇓ n+ 1

M ⇓ n+ 1

pred M ⇓ n

M ⇓ 0

pred M ⇓ 0

M ⇓ 0 N1 ⇓ V

cond MN1N2 ⇓ V

M ⇓ n+ 1 N2 ⇓ V

cond MN1N2 ⇓ V

M(YM) ⇓ V

YM ⇓ V

Table 2.2: Big-step operational semantics of PCF.

Case constructs

PCF is sometimes extended with a family of k-ary conditionals formed with the rule:

(case)
Γ `M : exp Γ ` N1 : exp . . . Γ ` Nk : exp

Γ ` casekM N1N2 . . . Nk : exp
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The resulting language is referred as PCFc. Its operational semantics is given by that of PCF
together with the rule:

M ⇓ i Ni+1 ⇓ V

casek N N1 N2 . . . Nk ⇓ V
i ∈ {0, . . . , k − 1}.

Syntactic sugar

For every integer k ∈ N and term M : exp we write “M + k” as syntactic sugar for “PlusM k”.
For every terms M , N1 and N2 of type exp we write “N1 = N2” for “Eq N1 N2”, “N1 6= N2”
for “cond (Eq N2 N2) 1 0”, and “ifM thenN1 elseN2” for “condM N2N1”. We will also use
the construct

matchM with

a1 → N1

| . . .

| aq → Nq

| → R

for distinct integers a1, . . . aq, q ≥ 1, as syntactic sugar for “casem M N ′
1 . . . N

′
m” where m =

1+ max1≤i≤q ai and for 1 ≤ j ≤ m, N ′
j ≡ Ni if j = ai for some 1 ≤ i ≤ q and N ′

j ≡ R otherwise.

2.1.10 Idealized Algol

Idealized Algol, IA for short, is an extension of PCF with imperative features that was introduced
by J.C. Reynold [Rey81]. It adds imperative features such as local variables and sequential
composition. Its types is given by the simple types over the basis {com, exp, var} where com

denotes the type of commands and var the type of local variables.
The most basic command is given by the constant skip of type com which performs no

computation. Commands can be composed using the sequential composition operator seqA for
every base type A. The sequential composition of two terms N0 : com and N1 : A is given by
the term M = seqAN0N1 : com which is interpreted operationally as follows: N0 is evaluated
first and if it terminates then the term N1 is evaluated. In the case where A = exp, the result
of the evaluation of N1 is returned; otherwise A = com and the command N1 is just evaluated
after N0 and the expression yields no result. Terms formed with the operator seqexp are called
active expressions.

Local variables are declared using the new operator, their content is modified using assign

and retrieved using deref. Operationally, these variables behave like memory cells.
In addition to these local variables, IA features the so called “bad variable construct” mkvar.

This operator can be used to construct a special variable by specifying custom assignment
and dereferencing functions. (This addition to the language may seem a little bit artificial
but its presence has semantic importance.2) It takes two arguments: The first one, called the
acceptor, is the function that is responsible of affecting a value to the variable. The second
one is an expression that returns the value hold by the variable. This mechanism is similar to
the “set/get” object programming paradigm used by C++ programmers. An example of such
variable is the term mkvar (λv.skip) 0. Variables created that way are called “bad variables”
because they do not necessarily behave like a memory cell: reading the content of the variable
does not necessarily gives you the last value that was written. For instance the variable defined
above always yield 0 whichever value was written to it previously.

2McCusker showed that the standard game model of IA is only equationally fully abstract for the language
without bad variables, whereas for full IA, it is also inequationally fully abstract [McC03].
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The syntax

The typing system for IA is an extension of that of PCF. The additional rules are given in Table
2.3.

Γ `M : com Γ ` N : A

Γ ` seqAM N : A
A ∈ {com, exp}

Γ `M : var Γ ` N : exp

Γ ` assignM N : com

Γ `M : var

Γ ` derefM : exp

Γ, x : var `M : A

Γ ` new x in M
A ∈ {com, exp}

Γ `M1 : exp→ com Γ `M2 : exp

Γ ` mkvarM1M2 : var

Table 2.3: Formation rules for IA.

We will sometimes use the ML-like syntactic sugar: “X := v” for “assignX v”, “!X” for
“derefX”, and “M ;N” for “seqM N”.

Finitary fragments of Idealized algol

We call Finitary Idealized Algol the recursion-free sub-fragment of IA defined over finite
ground types (i.e., the atomic type exp inhabits the set {0..M} for some fixed natural number
M ∈ N).

Definition 2.1.12 (ith order IA term). A term Γ ` M : T of finitary Idealized algol is an
ith-order term if any sequent Γ′ ` N : A appearing in the typing derivation of M is such that
ordA ≤ i and all the variables in Γ′ are of order strictly less than i.

The fragment of finitary Idealized Algol consisting of the collection of ith-order terms is
denoted IAi and is called the order-i finitary fragment of IA. If we add the iteration
construct defined as

Γ `M : bool Γ ` N : com

Γ ` while M do N : com
where ∀x ∈ Γ : ordx < i

we obtain the fragments IAi + while for i ∈ N. Finally IAi + Yj for j < i denotes the fragment
IAi augmented with a set of fixed-point iterators YA : (A → A) → A for every type A of order
j at most, whose syntax is defined by the rule:

Γ ` λxA.M : A→ A

Γ ` YAM : A
where ∀x ∈ Γ : ordx < i and ordA ≤ j.

Operational semantics of IA

To define the operational semantics of IA we proceed slightly differently than for PCF. Instead
of giving the semantics for closed terms, we consider terms whose free variables are all of type
var. A context Γ whose variables are all assigned the type var is called a var-context. Terms
are “closed” by means of stores. A store is a function mapping free variables of type var to
natural numbers. It is called Γ-store just if its domain of definition is precisely the domain of
the typing-context Γ. If s is a store then s | x 7→ n denotes the store that maps x to n and acts
according to s for other variables.

The set of IA canonical forms is given by the grammar:

V ::= skip | n | λxA.M | x | mkvar M N
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where n ranges over natural number and x over variable names.
An IA program is a term together with a Γ-store such that Γ ` M : A. The evaluation

semantics is expressed by the judgment form:

s,M ⇓ s′, V

where s and s′ are Γ-stores, V is a canonical form and Γ ` V : A.
The operational semantics for IA is given by the rule of PCF (Table 2.2) together with the

rules of Table 2.4 in which the following abbreviation is used:

M1 ⇓ V1 M2 ⇓ V2

M ⇓ V
for

s,M1 ⇓ s
′, V1 s′,M2 ⇓ s

′′, V2

s,M ⇓ s′′, V

Sequencing:
M ⇓ skip N ⇓ V

seq M N ⇓ V

Variables:
s,N ⇓ s′, n s′,M ⇓ s′′, x

s, assign M N ⇓ (s′′ | x 7→ n), skip

s,M ⇓ s′, x

s, deref M ⇓ s′, s′(x)

Bad-variables:
N ⇓ n M ⇓ mkvar M1 M2 M1 n ⇓ skip

assign M N ⇓ skip

N ⇓ mkvar M1 M2 M2 ⇓ n

deref M ⇓ n

Block:
(s | x 7→ 0),M ⇓ (s′ | x 7→ n), V

s, new x in M ⇓ s′, V

Table 2.4: Big-step operational semantics of IA.

Small-step semantics

The operational semantics of IA can equivalently be defined by means of a small-step semantics:
We use reduction rules are of the form s,M → s′,M ′ where s and s′ denote the stores and M
and M ′ denotes IA terms. The relation → is defined by the following rules (We write M →M ′

as an abbreviation for s,M → s′,M ′.):

• β-reduction: If MβM ′ then M →M ′;

• PCF constants:

succ n → n+ 1

pred n+ 1 → n

pred 0 → 0

cond 0 N1N2 → N1

cond (n+ 1) N1N2 → N2

Y M → M(Y M) ;

• IA constants:

seq skip M → M

s, new x in M → (s|x 7→ 0),M

s, assign x n → (s|x 7→ n), skip

s, deref x → s, s(x)

assign (mkvarMN) n → Mn

deref (mkvarMN) → N ,
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where n ranges over the natural numbers.
The redexes—the expressions occurring in the left-hand side of the reduction rules—can be

reduced when occurring as part of a larger expression. The locations where such reduction can
occur are defined by means of evaluation contexts—expressions containing a hole denoted by
‘−’ indicating a position where a reduction can take place. They are given by the grammar

E[−] ::= −| EN | succ E | pred E | cond E N1 N2 |

seq E N | deref E | assign E n | assign M E |

mkvar M E | mkvar E M | new x in E .

The small-step semantics is then completed with the rule:

M → N

E[M ]→ E[N ]
.

Substitution

The substitution operation naturally extends to IA: it is done inductively on the structure of
the term. For the block-variable case this gives:

(new x in M) [N/y] = new z in M [z/x] [N/y] if x 6= y, z fresh;

(new x in M) [N/x] = new x in M

For capture-permitting substitution, the former equation becomes:

(new x in M) {N/y} = new x in M {N/y} if x 6= y.

2.2 Higher-Order Grammars and the Safety Restriction

We present the safety restriction in the context of higher-order grammars as it was originally
defined [KNU02]. We give a brief introduction to the concept of higher-order grammars. A more
detailed introduction on the subject is de Miranda’s thesis [dM06].

2.2.1 Higher-order grammars

We consider simple types over a single atom o. Given a set of typed symbols S, the set of
applicative terms generated from S, written A(S) is defined as the closure of S under the
application rule (i.e., if M : A→ B and N : A are in A(S) then so is MN : B).

Definition 2.2.1. A higher-order grammar is a tuple 〈Σ,N ,R, S〉, where

- Σ is a ranked alphabet (in the sense that each symbol f ∈ Σ has a positive arity written
arity(f)) of terminals;

- N is a finite set of typed non-terminals;

- S is a distinguished ground-type symbol of N , called the start symbol;

- R is a finite set of production (or rewrite) rules. For each non-terminal F : (A1, . . . , An, o) ∈ N
there is (at least) one rule of the form:

Fz1 . . . zm → e

where each zi (called parameter) is a variable of type Ai and e is an applicative term of type
o generated from the typed symbols in Σ ∪ N ∪ {z1 : A1, . . . , zm : Am}.

We say that the grammar is order-n just in case the order of the highest-order non-terminal is
n.

An applicative term generated from the terminals Σ only (without non-terminals), and
viewed as a Σ-labelled tree, is called a value term.
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Higher-order grammars as generators of term tree languages

From now on we will consider higher-order grammars in which the ranked-alphabet Σ is restricted
to terminals of order 1 at most so that each terminal f ∈ Σ has type or → o where r ≥ 0 is the
arity of f . The idea is that the base type o inhabits the set of trees. An order-0 terminal thus
represents a leaf-constructor while an order-1 terminal represents a node-constructor.

A higher-order grammar G determines a tree language denoted L(G) consisting of all the
finite value terms that can be obtained by normalizing the start symbol S using the reduction
relation induced by the rewriting rules of G. This normalization can be done using different
reduction strategies, also called derivation modes. The main ones are: outside-in (OI), inside-out
(IO), and unrestricted. As the names suggest, in the OI derivation mode the outermost redex
is reduced first, in IO mode the innermost redex is reduced first; and in unrestricted mode, no
particular choice of redex is imposed. It can be shown that the OI derivation is sufficient in the
sense that every value term obtained from an IO derivation can also be obtained from an OI
derivation. The converse however does not hold [Dam82].

Higher-order grammars as word language generators

Higher-order grammars can be used as generators of word languages by imposing the following
constraints on the set of terminals Σ:

• Σ contains a special symbol e : o,

• all other constant f ∈ Σ are of type (o, o).

The idea is that the type o represent the type of strings Σ∗, the symbol e marks the end of the
word and a constant f : (o, o) represents the operation that appends the letter ‘f ’ as a prefix to
a string.

Higher-order grammars as tree generators

In order to generate infinite trees, higher-order grammars are specialized into a device called
recursion scheme. A higher-order recursion scheme, HORS for short, is a higher-order
grammar where the set of rewrite rules is deterministic (i.e., for each non-terminal F ∈ N there
is exactly one production rule with F on the left-hand side).

A recursion scheme R defines a (potentially infinite) value tree denoted [[R]] obtained by
unfolding its rewrite rules ad infinitum, replacing formal by actual parameters each time, starting
from the start symbol S. Formally, [[R]] is defined as the least upper bound of the schematological
tree grammar induced by R in the continuous algebra of ranked trees with the appropriate
ordering [KNU02, dM06].

g

a g

a h

h
. . .

Example 2.2.1. Let G be the following order-2 recursion scheme:

S → H a
H z → F (g z)
F φ → φ (φ (F h))

with non-terminals S : o, F : ((o, o), o), H : (o, o) and terminals g, h, a of
arity 2, 1, 0 respectively. Then the tree generated by G is defined by the
infinite term g a (g a (h (h (h · · · )))) pictured on the right.

2.2.2 The safety restriction

Safety is a syntactic restriction for higher-order grammars introduced by Knapik et al. in order
to study the Monadic Second Order (MSO) theory of infinite trees generated by higher-order
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pushdown automata [KNU02]. The safety restriction has appeared under different forms in the
literature. The first formulation, due to Damm, appeared under the name restriction of derived
types [Dam82]. De Miranda’s thesis contains a comparison of the two formulations [dM06]. The
presentation given here follows that of Knapik et al. [KNU02].

Type homogeneity

We say that a type is homogeneous if it is o or if it is (A1, · · · , An, o) with the condition that
ordA1 ≥ ordA2 ≥ · · · ≥ ordAn and each A1, . . . , An is homogeneous [KNU02].

Notation 2.2.1 (Type partitioning) Suppose that A1, A2, . . . , An are n lists of types, where
Aij denotes the jth type in the list Ai and li the size of Ai. We introduces the following notation
that partitions the Aijs according to their order:

A = (A1 | · · · |Ar | o)

to mean that

• A is the type (A11, A12, · · · , A1l1 , A21, · · · , A2l2 , · · ·An1, · · · , Anln , o),

• ∀i : ∀u, v ∈ Ai : ordu = ord v,

• ∀i, j.∀u ∈ Ai.∀v ∈ Aj .i < j =⇒ ordu > ord v.

So in particular A is homogeneous. If further we have B = (B1 | · · · |Bm | o) then we use the
notation (A1 | · · · |An |B) as an abbreviation for (A1 | · · · |An |B1 | · · · |Bm | o).

Definition

Definition 2.2.2 (Safe grammar). (All types are assumed to be homogeneous.) A term of order
k > 0 is unsafe if it contains an occurrence of a parameter of order strictly less than k, otherwise
the term is safe. An occurrence of an unsafe term t as a subexpression of a term t′ is safe if it
is in the context · · · (ts) · · · , otherwise the occurrence is unsafe. A grammar is safe if no unsafe
term has an unsafe occurrence at a right-hand side of any production.

This definition is a bit opaque and does not seem to make a lot of sense at first. One can
reformulate this definition in a slightly clearer way: A higher-order grammar G whose non-
terminals are of homogeneous type is unsafe if and only if there is a rewrite rule Fz1 . . . zm → e
where e contains a subterm that:

1. occurs in operand position in e,

2. contains a parameter of order strictly less than its order.

(By “operand position” we mean “in the second position of some occurrence of the implicit
application operator of the lambda calculus”.) A grammar is safe if it is not unsafe.

Example 2.2.2 ([KNU02]). Let f : (o, o, o), g, h : (o, o) and a, b : o be Σ constants. The
grammar of level 3 with non-terminals S : o and F : ((o, o), o, o, o) and production rules:

S → Fgab

Fϕxy → f(F (Fϕx)y(hy))(f(ϕx)y)

is not safe because the subterm Fϕx, in the right-hand side expression of the second rule, is of
type (o, o), contains a ground-type variable and occurs at an operand position.

On the other hand, the following production rules are safe:

S → G(ga)b

Gzy → f(G(Gzy)(hy))(fzy) .

It can be shown [KNU02] that these rules are equivalent to the ones given above in the sense
that the induced recursion schemes generate the same infinite tree.
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Example 2.2.3. Let F : ((o, o), o, o, o), G : (o, o) and H : ((o, o), o) be non-terminals and
f : (o, o, o) be a terminal. Then the following rewrite rules are unsafe. (The unsafe occurrences
of unsafe subterms are underlined.):

Gx → H (f x)

F z x y → f (F (F z y) y (z x))x .

Example 2.2.4. The order-2 grammar defined in Example 2.2.1 is unsafe.

2.2.3 Automata-theoretic Characterization

Although very technical, the safety restriction for higher-order recursion schemes has an ap-
pealing machine characterization. Knapik, Niwiński and Urzyczyn showed that for generating
infinite ranked trees, safe higher-order recursion schemes are as expressive as higher-order push-
down automata (PDA) [KNU02].

A pushdown automaton (PDA) is an infinite-state transition system that can manipulate
the content of a stack when performing a transition. Higher-order pushdown automata were
introduced as a generalization of PDA [Mas76]. Instead of manipulating a simple stack, a
higher-order PDA manipulates iterated stacks. An order-1 PDA is an ordinary PDA, an order-2
PDA manipulates order-2 stacks which are stacks of order-1 stacks. In addition to the usual
push and pop transitions of a PDA, an order-2 PDA has order-2 variants: a push2 operation
that duplicates the top order-1 stack, and a pop2 that pops the entire top order-1 stack. This
definition generalizes to any order n ∈ N.

Theorem 2.2.1 (Knapik, Niwiński and Urzyczyn, [KNU02]). Let L be a Σ-labelled term tree
language. L is the language of a safe order-n grammar (using the OI derivation) if and only if
it is accepted by an order-n pushdown automaton.

So in particular, a (potentially) infinite tree t is generated by a safe order-n recursion scheme
if and only if it is accepted by an order-n pushdown automaton.

A similar characterization has subsequently been obtained for unrestricted grammars: Hague,
Murawski, Ong and Serre have introduced a new kind of pushdown automata called collapsible
pushdown automata (CPDA) and showed their equivalence with unrestricted higher-order gram-
mars. The internal structure manipulated by a CPDA is a stack in which every symbol has a
link pointing to some other substacks situated below it. There is an additional stack-operation
called collapse whose effect is to replace the content of the stack by the sub-stack indicated by
the link attached to the top symbol of the stack.

Theorem 2.2.2 (Hague, Murawski, Ong and Serre, [HMOS08]). A potentially infinite (ranked)
tree t is generated by an order-n recursion scheme if and only if it is accepted by an order-n
collapsible pushdown automaton.

We have defined higher-order grammars as generators of word languages and tress. Thanks
to the machine characterization, it is possible to define the notion of graph generated by a higher-
order grammars: the graph generated by a grammar is defined as the configuration graph of the
corresponding collapsible higher-order pushdown automaton. In particular, the graph generated
by a safe grammar is the configuration graph of the corresponding higher-order PDA.

2.2.4 Expressivity

Higher-order PDA/grammars can be used as generating device for word-languages, trees, or
graphs, thus inducing strict infinite hierarchies as the order of the PDA varies. For word-
languages this is known as the Maslov hierarchy: orders 0, 1 and 2 correspond respectively to
the regular, context-free and indexed languages. For trees, orders 0, 1 and 2 are respectively the
regular, algebraic and hyperalgebraic trees.



24 Chapter 2. Background

2.2.5 Is safety a genuine restriction?

The implications that the safety constraint has on the expressivity of higher-order grammars
are not completely understood. A partial answer has been given for word languages: Aehlig,
de Miranda and Ong showed that up to order 2, there is no intrinsically unsafe word language
[AdMO05b]: any word language generated by an unsafe order-2 grammar can also be generated
by some (potentially non-deterministic) order-2 safe grammar. For trees, Urzyczyn conjectured
[dM06] that safety constrains expressivity. He even proposed a tree—known as Urzyczyn’s
tree—generated by an unsafe order-2 recursion scheme that he conjectured to not be generated
by any safe order-2 recursion scheme. At the time of this writing, this still remains a conjecture.

A similar question can be asked from a verification point of view: Are the structures generated
by safe higher-order grammars easier to verify that those generated by unrestricted grammars?
The reason why the safety constraint was introduced in the first place was precisely to be able to
show that the generated trees have decidable Monadic Second Order (MSO) theories [KNU02].
In fact, it was subsequently shown that this result also holds in the general unrestricted case
[Ong06a]:

Theorem 2.2.3 (Ong, 2006). The modal mu-calculus model checking problem for trees generated
by order-n recursion schemes is n-EXPTIME complete for each n ≥ 0.

This result implies that these trees have decidable MSO theories since the two logics are
equi-expressive over trees. The proof of this theorem relies on a game-semantic argument based
on the theory of traversals (that will be presented in Chapter 4) which radically differs from
the argument used by Knapik et al. for the case of safe grammars [KNU02]. A generalization of
Theorem 2.2.3 for graphs was later obtained by Hague et al. [HMOS08]:

Theorem 2.2.4 (Hague et al., 2008). For each n ≥ 0, the modal mu-calculus model check-
ing problem for configuration graphs of order-n collapsible pushdown systems is n-EXPTIME
complete.

For graphs, the MSO logic is strictly more expressive than the modal mu-calculus. In the
same paper it is shown that MSO theories of collapsible pushdown graphs are undecidable while
those of pushdown graphs are decidable [HMOS08]. Hence from a verification point of view,
safety can indeed be considered as a genuine constraint.

2.2.6 Higher-order grammars and the simply-typed lambda calculus

There is a natural correspondence between higher-order grammars and the simply-typed lambda
calculus: deterministic higher-order grammars (i.e., recursion schemes) are essentially closed
simply-typed lambda-terms of ground type extended with mutual recursion and generated from
the terminal symbols Σ of the grammar. A similar correspondence holds between (possibly
non-deterministic) higher-order grammars and the simply-typed lambda calculus extended with
a non-deterministic branching operator. We now show how this correspondence works in the
deterministic case.

Let Λmut→ (Σ) denote the simply-typed lambda calculus extended with mutual recursion and
generated from the set of typed constants Σ. The syntax of the mutual recursion operator is
given by the typing-rule

(Ymut)
Γ `Σ M1 : A→ A1 Γ `Σ Mq : A→ Aq

Γ `Σ Ymut(M1, . . . ,Mq) : A1
A = A1 × . . .×Aq, q ≥ 0

whose semantics is given by

Ymut(M1, . . . ,Mq)→ π1(Y 〈M1 . . .Mq〉) ,

Y 〈M1, . . . ,Mq〉 → 〈M1(Y 〈M1, . . . ,Mq〉), . . . ,Mq(Y 〈M1, . . . ,Mq〉)〉 ,
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where π1 denotes the first projection for q-tuples. (The operator Y denotes the usual Y -
combinator of PCF extended to product types.)

Let R = 〈Σ,N ,R, F0〉 be a higher-order recursion scheme with N = {F0, . . . , Fq} and
R = {Fi x1 . . . xn → ei | 0 ≤ i ≤ q} for some q ≥ 0. We define the closed Λmut→ (Σ)-term
HORStoLmd(R) as follows:

HORStoLmd(R) ≡ Ymut(F̃0, . . . , F̃q)

F̃i ≡ λF0 . . . Fqx1 . . . xn.ei for 0 ≤ i ≤ q .

Conversely, every Λmut→ (Σ)-term can be reformulated as a higher-order recursion scheme.
The algorithm LmdToHORS of Table 2.5, described in an ML-like pseudo-code, takes a closed
Λmut→ (Σ)-term and returns the corresponding higher-order recursion scheme. It proceeds in-
ductively over the syntax of the term. The local variables N and R are used to accumulate
respectively the non-terminals and rewrite rules of the recursion scheme being built. The aux-
iliary function createRules is responsible for creating the rules for a given open lambda-term; it
adds them to the set R and returns and applicative term from A(N ∪ Σ) corresponding to the
input lambda-term. (The symbol ‘@’ denotes the data-constructor used to build lambda-term
applications.)

Input: A closed Λmut→ (Σ)-term `Σ M : T .
Output: A higher-order recursion scheme 〈Σ,N ,R, S〉.

let LmdToHORS(`Σ M : T )
let createRules : Λmut→ (Σ)→ A(N ∪ Σ) = fun

| Γ `Σ α : T with α ∈ Γ ∪ Σ → α
| Γ `Σ MN : B → createRules(Γ `Σ M : A→ B)

@createRules(Γ `Σ N : A)

| x : A `Σ λyB1
1 . . . yBk

k .M : (B, o) → let Γ = x : A, y1 : B1, . . . , yn : Bn
where M is not an abstraction, for some fresh names yk+1 . . . yn in

B = (B1 . . . Bn), and 1 ≤ k ≤ n, let e = createRules(Γ `Σ Mdyk+1e . . . dyne : o)
and F be a fresh non-terminal name in

R← “F x y → e” :: R
N ← “F : (A,B, o)” :: N
“F x”

| x : A `Σ Ymut(M1, . . . ,Mq) : B1 → for i = 1 .. q do

where Mi : Bi for i ∈ {1..q}, createRules(x : A `Σ Mi : Bi)
let “F x f1 . . . fq y → e”← hd R in

R← “F̂i x y → e[F̂1x/f1] · · · [F̂qx/fq]”
:: tail R

N ← “F̂i : (A,Bi)” :: tail N
done

“F̂1 x”
in

N ,R← [], []
appterm← createRules(`Σ M : T )
〈Σ, “S : o” :: N , “S → appterm” :: R, S〉

Table 2.5: Algorithm LmdToHORS converting a mutually recursive lambda-term into a higher-
order recursion scheme.

It is straightforward to check that for every higher-order recursion scheme R the recursion
scheme LmdToHORS(HORSToLmd(R)) is the same as R (up to renaming of the non-terminals
and rule parameters).
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Example 2.2.5. Let R denote the recursion scheme of Example 2.2.1. We have:

HORSToLmd(R) ≡ Ymut(S̃, H̃, F̃ )

where S̃ ≡ λSHF.H a

H̃ ≡ λSHFz.F (g z)

F̃ ≡ λSHFφ.φ (φ (F h)) .

Converting this term back to a HOG gives LmdToHORS(HORSToLmd(R)) = 〈Σ,N ,R, S〉 where

N = {S : o, F̂1 : o, F̂2 : (o, o), F̂3 : ((o, o), o)} and

R = {S → F̂1, F̂1 → F̂2 a, F̂2 z → F̂3 (g z), F̂3 ψ → ψ(ψ(F̂3 h))} .

The following intermediary rules are created during the execution of the algorithm:

F1 S H F → H a, F2 S H F z → F (g z), F3 S H Fψ → ψ(ψ(F h)) ,

where F1 : (o, (o, o), ((o, o), o), o), F2 : (o, (o, o), ((o, o), o), o, o), F3 : (o, (o, o), ((o, o), o), (o, o), o).

2.3 Game Semantics

Game semantics is a very powerful paradigm for giving models of programming languages. It
was the first kind of semantics able to provide a fully abstract model of the language PCF,
a result which was subsequently extended to other languages. In a nutshell, the term “full
abstraction” means that the model provides a faithful mathematical characterization of the
language. A natural way to give a semantic account of a language consists therefore in giving
a game-semantic characterization of it. A question that we will try to answer in this thesis is:
How does a syntactic restriction such as safety impact on the on the game model of a language?
A substantial part of this thesis is devoted to this question (Chapter 4 and 6).

This chapter introduces the basic notions of game semantics including the categorical inter-
pretation, the game interpretation of PCF and IA, and the full abstraction results. It concludes
by giving a brief summary of some important results in algorithmic game semantics. For an
introduction, we recommend the tutorial by Samson Abramsky [AM98b] on which this chap-
ter is based. Many details and proofs will be omitted; we refer the reader to other literature
[HO00, AMJ94] for a complete account. The reader familiar with game semantics may very well
consider skipping this chapter altogether as all the definitions and notations introduced here are
standard.

2.3.1 Historical remarks

We give an outline of the history of game semantics. Cardone and Hindley gave a more detailed
survey [CH06].

Logic

Game semantics finds its origin in various works [Lor61, BC82, Bla92, Joy77]. Paul Lorenzen
introduced a game semantics for logic in the 1950s to study intuitionistic logic [Lor61] where
the notion of logical truth is modeled using game-theoretic concepts such as the existence of
a winning strategy. Four decades later, this approach was used by Andreas Blass [Bla92] to
establish a connection with Girard’s linear logic. Joyal [Joy77] later presented his “combinato-
rial” calculus of strategies, establishing the first categorical account of two-player games. In the
1990s, Samson Abramsky and Radha Jagadeesan [AJ92] on one hand, Martin Hyland and Luke
Ong [HO93] on the other hand, used game semantics to prove full completeness of Multiplicative
Linear Logic (MLL).
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Models of programming languages

Subsequently, game semantics emerged as a new paradigm for the study of formal models for
programming languages. Three different independent research groups: Samson Abramsky, Rad-
hakrishnan Jagadeesan and Pasquale Malacaria [AMJ94]; Martin Hyland and Luke Ong [HO00];
and Nickau [Nic94] introduced a new kind of model based on game semantics in order to solve a
long standing problem in the semanticists community: finding a fully abstract model for PCF.

Many approaches were used to define models for programming languages before the intro-
duction of game models. Among the successful ones were the:

• operational semantics: The meaning of a program is defined by describing the behaviour
of a machine executing it. This is formally done by means of a state transition system;

• axiomatic semantics: The behaviour of the program is defined by means of axioms. This
kind of semantics lends itself well to proving correctness of the program by static analysis
of the program code;

• denotational semantics: Programs are mapped to mathematical objects with good prop-
erties (such as compositionality). This mapping is done by structural induction on the
syntax of the program.

In game semantics, the idea is to model the program as a game played by two protagonists:
the Opponent, representing the environment, and the Proponent, representing the program.
The meaning of the program is then modeled by a strategy for the Proponent.

The problem of full abstraction for PCF

The problem of the Full Abstraction for PCF goes back to the 1970s. Scott constructed a
model of PCF based on domain theory [Sco93] which gives a sound interpretation of observa-
tional equivalence: if two terms have the same domain theoretic interpretation then they are
observationally equivalent. However the converse is not true: There exist two PCF terms which
are observationally equivalent but have different domain theoretic denotations—we say that the
model is not fully abstract.

The reason why the domain theoretic model is not fully abstract lies in the fact that the
parallel-or operator defined by the following truth table

p-or ⊥ tt ff

⊥ ⊥ tt ⊥
tt tt tt tt
ff ⊥ tt ff

is not definable by any PCF term. Indeed, it is possible to define two different PCF terms
that have the same behaviour except when applied to a term computing p-or. Since p-or is not
definable in PCF, these two terms will have the same denotation, hence the model is not fully
abstract.

One solution to the problem is to “patch” PCF by adding the p-or operator. The resulting
language “PCF+p-or” was shown to be fully-abstracted by Scott domain theoretic model [Plo77].
The language that we are now dealing with, however, is strictly more powerful than PCF—it
allows parallel execution of commands whereas PCF only permits sequential execution.

Another approach involves the elimination of the undefinable elements (like p-or) by strength-
ening the conditions on the function used in the model. This approach was followed by Berry
who gave a model based on stable functions [Ber78, Ber79], a class of functions smaller than the
class of strict and continuous function. Unfortunately this approach did not succeed.

Fully abstract models for PCF were found at the same time and independently by three
research teams: Abramsky, Jagadeesan and Malacaria [AMJ94], Hyland and Ong [HO00] and
Nickau [Nic94]. These three approaches are all based on game semantics.
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The game-semantic approach has subsequently been adapted to other varieties of program-
ming paradigms leading to fully abstract models of languages featuring stores (Idealized Al-
gol), call-by-value [HY99, AM98a] and call-by-name, general references [AHM98], polymorphism
[AJ05], control features (continuation and exception), non determinism, concurrency, etc.

2.3.2 Definitions

We now introduce formally the notion of game that we will use in later sections to model pro-
gramming languages. We consider a two-player game. The players are named O for Opponent

and P for Proponent. The game played by these two players is constrained by an arena. The
arena defines the possible moves of the game. By analogy with real board games, the arena
represents the board together with rules indicating which are the legal moves for each player.
The analogy with board game will stop here; instead it is preferable to regard our games as
dialogs between the two players. The dialog unfolds as follows: The Opponent interviews the
Proponent; P’s goal is to answer the initial question asked by O. P can also ask intermediary
questions to O in order to request more precision about O’s initial question; O can subsequently
ask further questions to P. We thus distinguish two kinds of moves in our games: the questions
and the answers. This process induces a flow of questions and answers between O and P which
can possibly last forever. In game semantics, attention is given to the study of this flow of
questions and answers; the notion of ‘winning a game’ or ‘winner of the game’ is not a concern.

2.3.2.1 Arenas

The arena defines the bases of the game for the players. It is formally given by a directed
acyclic graph (DAG) whose internal nodes correspond to question moves and leaves correspond
to answer moves.

Definition 2.3.1 (Arena). An arena is a structure 〈M,λ,`〉 where:

• M is the set of possible moves;

• λ : M → {O,P} × {Q,A} is a labelling function specifying which are the question and
answer moves, and which moves can be played by O and P. Formally, it is given by a
pair of functions λOP : M → {O,P} and λQA : M → {Q,A} such that λ is the pairing
〈λOP , λQA〉. An element m of M is an O-move if λOP (m) = O and a P-move otherwise; it
is a question if λQA(m) = Q and an answer otherwise.

• ` is an enabling relation on M ×M such that (M,`) is a directed acyclic graph (DAG)
satisfying the following conditions:

(e1) The roots are O-questions: For every DAG’s root r, λ(r) = OQ;

(e2) Internal nodes of the DAG are questions: m ` n =⇒ λQA(m) = Q (thus answers
moves are necessarily leaves);

(e3) A player move can only enable moves played by the other player: m ` n =⇒
λOP (m) 6= λOP (n).

We abbreviate the set {O,P} × {Q,A} as {OQ,OA,PQ,PA}. λ denotes the labelling
function obtained by swapping the role of the Opponent and Proponent in λ:

λ(m) = OQ ⇐⇒ λ(m) = PQ

and λ(m) = OA ⇐⇒ λ(m) = PA .

The roots of the DAG (M,`) are called the initial moves.
The simplest possible arena is the one with an empty set of moves; it is written 1.
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Example 2.3.1 (The flat arena). Let A be any countable set. The flat arena over A is defined
as the arena 〈M,λ,`〉 such that M has one move q with λ(q) = OQ and for each element in A,
there is a corresponding move ai in M with λ(ai) = PA for some i ∈ N. The enabling relation `
is defined to be {q ` ai |i ∈ N}. This arena is represented by the tree q

a0 a1 . . .

whose vertices

represent the moves and edges represent the enabling relation. In the rest of this thesis we will
just write N to mean the flat arena over N:

q

0 1 2 . . .

Definition 2.3.2 (Justified sequence of moves). A justified sequence is a sequence of moves s
together with an associated sequence of pointers. Any move m in the sequence that is not initial
has a pointer that points to a previous move n that enables it (i.e., n ` m).

(Formally we can regard a justified sequence as a sequence of pairs, each pair encoding an
element of the sequence together with an index indicating the position where the element points
to.)

Since initial moves are all O-moves, the first move of a justified sequence is necessarily an
O-move.

Convention 2.3.1 Justification pointers are graphically represented with arrows as follows:

q4 q3 q2 q3 q2 q1 .

We will sometimes omit the justification pointers altogether if they do not play any role in the
argument.

Notation 2.3.1 We write s · t, or just s t, to denote the justified sequence obtained by concate-
nating s and t. The empty sequence is written ε. Given a justified sequence s = m1 ·m2 . . .mn

(where pointers are not represented) we write s6mi
for m1 ·m2 . . . mi (the prefix sequence of s

up to the move mi); and s<mi
for m1 ·m2 . . . mi−1.

Definition 2.3.3 (Hereditary projection). Let s be a justified sequence of moves. We say that
a move m0 occurring in s is hereditarily justified by a move n occurring in s if there exist moves
m1, . . . ,mq occurring in s for q ≥ 0 such that n justifies mq and mk justifies mk−1 for 1 ≤ k ≤ q.

Suppose that n is an occurrence of a move in the sequence s then s � n denotes the subse-
quence of s consisting of the moves hereditarily justified by n. If I is a set of initial moves then
s � I denotes the subsequence of s consisting of the moves hereditarily justified by moves in I.

Justified sequences of moves will be used to record the history of all the moves that have
been played so far in the (yet to be defined) game. Two particular subsequences called the
P-view and the O-view are of interest. These subsequences correspond to restricted views that
each player has of the history of the game in a given position.

Definition 2.3.4 (View). Given a justified sequence of moves s, the Proponent view (P-view)
written psq is defined by induction as follows:

pεq = ε,

ps ·mq = psq · m if m is a P-move,

ps ·mq = m if m is initial (O-move) ,

ps ·m · t · nq = psq ·m · n if n is a non initial O-move .

The O-view xsy is defined similarly:

xεy = ε,

xs ·my = xsy · m if m is a O-move,

xs ·m · t · ny = psq ·m · n if n is a P-move .
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2.3.2.2 Games

Only certain kinds of justified sequences will be of interest in our games. We call legal position
any justified sequence that satisfies two conditions: alternation and visibility. Alternation says
that players O and P play alternatively. Visibility expresses that each non-initial move is justified
by a move situated in the local context at that point. Formally:

Definition 2.3.5 (Legal position). A legal position is a justified sequence of moves s respecting
the following constraints:

• Alternation: For every subsequence m · n of s, λOP (m) 6= λOP (n).

• Visibility : For every subsequence t ·m of s where m is not initial, if m is a P-move then m
points to a move occurring in psq; and if m is a O-move then m points to a move occurring
in xsy.

The set of legal positions of an arena A is denoted by LA.

Definition 2.3.6 (Game). A game is a structure 〈M,λ,`, P 〉 such that

• 〈M,λ,`〉 is an arena;

• P , called the set of valid positions, is:

– a non-empty prefix closed subset of the set of legal positions,

– closed by initial hereditary projection: If s is a valid position then for every set I of
occurrences of initial moves in s, s � I is also a valid position.

The empty arena 1 together with the empty set of valid positions defines the simplest possible
game; we will also denote it by 1.

Example 2.3.2. Consider the flat arena N. The set of valid positions P = {ε, q}∪{q ·ai |i ∈ N}
defines a game on the arena N.

2.3.2.3 Constructions on games

We now present basic transformations that are used to construct games.
Consider the two functions f : A→ C and g : B → C, we write [f, g] to denote the pairing

of f and g defined on the direct sum A + B. Given a game A with a set of moves MA, we
use the projection operator s � A to denote the subsequence of s consisting of all moves in MA.
Although this notation conflicts with the hereditary projection operator, it should not cause any
confusion.

Tensor product Given two games A and B the tensor product A⊗B is defined as:

MA⊗B = MA +MB

λA⊗B = [λA, λB ]

`A⊗B = `A ∪ `B

PA⊗B = {s ∈ LA⊗B|s � A ∈ PA ∧ s � B ∈ PB} .

In particular, n is initial in A⊗B if and only if n is initial in A or B. And m `A⊗B n holds
if and only if m `A n or m `B n holds.
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Function space The game A ( B is defined as follows:

MA(B = MA +MB

λA(B = [λA, λB ]

`A(B = `A ∪ `B ∪ {(m,n) | m initial in B ∧ n initial in A}

PA⊗B = {s ∈ LA⊗B|s � A ∈ PA ∧ s � B ∈ PB} .

Cartesian product The game A×B is defined as follows:

MA×B = MA +MB

λA×B = [λA, λB ]

`A×B = `A ∪ `B

PA×B = {s ∈ LA⊗B|s � A ∈ PA ∧ s � B = ε}

∪{s ∈ LA⊗B|s � A ∈ PB ∧ s � A = ε} .

Note that a play of the game A× B is either a play of A or a play of B, whereas a play of
the game A⊗B may be an interleaving of plays of A and B.

2.3.2.4 Representation of plays

Plays of the game are usually represented in a table diagram. The columns of the table corre-
spond to the different components of the arena and each row corresponds to one move in the
play. The first row always represents an O-move, this is because O is the only player who can
open a game (since roots of the arena are O-moves).

For example the play q q 8 9 on the game N ( N is represented by the following diagram:

N ( N

q O
q P
8 O

9 P

We sometimes also represent the justification pointers on the diagrams.

2.3.2.5 Strategy

During the game, a player may face several choices when it is his turn to play. A strategy is a
guide telling the player which move to make when the game is in a given position.

Definition 2.3.7. A strategy for player P on a given game 〈M,λ,`, P 〉 is a non-empty set of
even-length positions from P such that:

1. if sab ∈ σ then s ∈ σ (no unreachable position);

2. if sab, sac ∈ σ then b = c and b has the same justifier as c (determinacy).

(Alternatively, a strategy can be viewed as a partial function mapping odd-length legal positions
to P-moves.)

The idea is that the presence of the even-length sequence sab in σ tells the player P that
whenever the game is in position s and player O plays the move a then it must respond by
playing the move b. The first condition ensures that the strategy σ only considers positions that
the strategy itself could have led to in a previous move. The second condition in the definition
requires that this choice of move is deterministic (i.e., there is a function f from the set of odd
length position to the set of moves M such that f(sa) = b).

For every game A, the smallest possible strategy is called the empty strategy and written ⊥.
It is formally defined by {ε}, which corresponds to a strategy that never responds.
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Remark 2.3.1 There is an alternative definition for strategies in which a prefix-closed set is
used as opposed to the above definition which relies on even-length prefix -closed sets. If σ
denotes a strategy in the sense of Def. 2.3.7 then the corresponding strategy in the alternative
definition is given by σ ∪ dom(σ) where dom(σ) is the domain of σ defined as

dom(σ) = {sa ∈ P oddA | ∃b.sab ∈ σ} .

Copy-cat strategy For every game A there is a strategy idA on the game A ( A called the
copy-cat strategy . We write A1 and A2 to denote the first and second copies of the sub-game A
of A ( A.

Let A be one of the arena A1 or A2. We write A⊥ to denote the game A1 if A = A2 and A2

otherwise. The copy-cat strategy proceeds as follows: Whenever P has to respond to an O-move
played in A, it first replicates this move in the game A⊥. O then responds in A⊥ and finally P
replicates O’s response back in A.

It is formally defined by:

idA = {s ∈ P even
A(A | ∀t 6even s . t � A1 = t � A2} ,

where P even
A denotes the set of valid positions of even length in the game A, and ‘t 6even s’

denotes that t is an even-length prefix of s.
The copy-cat strategy is also called the identity strategy on A because it acts as the unit

for the operation of strategy composition defined in the next paragraph.

Example 2.3.3. (a) The copy-cat strategy on N is given by the following generic play:

N ( N

q
q
n

n

(This type of diagram was originally introduced to represent plays but as we see here, by
giving a generic play, it can also be used to represent a strategy.)

(b) The copy-cat strategy on N ( N is given by the following diagram:

(N ( N) ( (N ( N)
q

q
q

q
m

m
n

n

2.3.2.6 Composition

One of the salient features of game-semantic models is compositionality, the ability to compute
the denotation of a composite program by composing the denotation of its constituent programs.
This notion of composition happens at the level of strategies. We now formally define this
operation.

Definition 2.3.8 (Interaction sequence). Let u be a sequence of moves from games A, B and
C together with justification pointers attached to all moves except those that are initial in C.



Chapter 2. Background 33

The projection of s on the game A ( B, written u � A,B is the subsequence of s obtained
by removing from u the moves in C and pointers to moves in C. The projection on B ( C is
defined similarly.

An interaction sequence is a sequence of moves with pointers from A, B and C such that
u � A,B and u � B,C are legal positions of the game A→ B and B → C respectively. We write
Int(A,B,C) for the set of all such sequences.

We define the projection on the game A ( C as follows: u � A,C is the subsequence of u
consisting of the moves from A and C with some additional pointers: we add a pointer from
a ∈ A to c ∈ C whenever a points to some move b ∈ B itself pointing to c; all the pointers to
moves in B are removed.

Given two strategies σ : A ( B and τ : B ( C, the interaction σ‖τ of σ and τ is defined
as

σ‖τ = {u ∈ Int(A,B,C) | u � A,B ∈ σ ∧ u � B,C ∈ τ} .

Strategy composition is performed by “parallel composition plus hiding” as defined in the
trace semantics of CSP [Hoa83]. Formally,

Definition 2.3.9 (Strategy composition). Let σ : A ( B and τ : B ( C be two strategies.
The composite σ; τ is defined as:

σ; τ = {u � A,C | u ∈ σ‖τ} .

It can be verified that composition is well-defined, associative and that the copy-cat strategy
idA is the identity for composition [HO00].

2.3.2.7 Constraint on strategies

Different classes of strategies will be considered depending on the features of the language that
we want to model. Here is a list of restrictions that are commonly considered:

• Well-bracketing: We call pending question the last question in a sequence that has not
been answered. A strategy σ is well-bracketed if for every play s ·m ∈ σ where m is an
answer, m points to the pending question in s.

• History-free strategies: a strategy is history-free if the Proponent’s move at any position
of the game where he has to play is determined by the last move of the Opponent (i.e., P
ignores the complete history up the last move).

• History-sensitive strategies: The Proponent follows a history-sensitive strategy if he needs
to have access to the full history of the moves in order to decide which move to make.

• Innocence: In these strategies, the Proponent determines his next move based solely on a
restricted view of the history of the play, namely the P-view at that point. It always plays
the same move for a given P-view. Innocence plays an important role in the modeling of
purely functional languages.

The formal definition of innocence is:

Definition 2.3.10 (Innocence). Given positions sab, ta ∈ LA where sab has even length and
psaq = ptaq, there is a unique extension of ta by the move b together with a justification pointer
such that psabq = ptabq. We write this extension match(sab, ta).

The strategy σ : A is innocent if and only if:




psaq = ptaq
sab ∈ σ

t ∈ σ ∧ ta ∈ PA


 =⇒ match(sab, ta) ∈ σ .
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Since the next move is determined by the P-view, an innocent strategy induces a partial
function mapping P-views to P-moves called the view function. Not every partial function
from P-views to P-moves gives rise to an innocent strategy, however. (Hyland and Ong [HO00]
gave a sufficient condition.)

2.3.3 Categorical interpretation

This section recalls briefly the categorical interpretation of games [McC96a, HO00, AMJ94].
We consider the category [Cro93] G whose objects are games and morphisms are strategies. A
morphism from A to B is a strategy on the game A ( B. Composition of morphisms is given by
strategy composition. We also consider sub-categories of G corresponding to various restrictions
imposed on strategies: Gi is the sub-category whose morphisms are the innocent strategies, Gb
has only the well-bracketed strategies and Gib has the innocent and well-bracketed strategies.

Proposition 2.3.1. G, Gi, Gb and Gib are categories.

In particular this means that composition of strategies is well-defined, associative, has a unit
(the copy-cat strategy), preserves innocence and well-bracketedness [HO00, AMJ94].

2.3.3.1 Monoidal structure

In Sec. 2.3.2.3 we have defined the tensor product on games. We now define the corresponding
transformation on morphisms. Given two strategies σ : A ( B and τ : C ( D the strategy
σ ⊗ τ : (A⊗ C) ( (B ⊗D) is defined by:

σ ⊗ τ = {s ∈ LA⊗C(B⊗D s � A,B ∈ σ ∧ s � C,D ∈ τ} .

It can be shown that the tensor product is associative, commutative and has I = 〈∅, ∅, ∅, {ε}〉
as identity. Hence the game category G is a symmetric monoidal category. Moreover Gi and Gb
are sub-symmetric monoidal categories of G, and Gib is a sub-symmetric monoidal category of
Gi, Gb and G.

2.3.3.2 Closed structure

Let A, B and C be three games. Given a strategy on A ⊗ B ( C we can clearly convert it
into a strategy on A ( (B ( C) by performing the appropriate retagging of the moves. This
transformation defines an isomorphism written ΛB and called currying. Thus the hom-set
G(A ⊗ B,C) is isomorphic to the hom-set G(A,B ( C), which makes G an autonomous (i.e.,
symmetric monoidal closed) category. The categories Gi and Gb are sub-autonomous categories
of G, and Gib is a sub-autonomous category of Gi, Gb and G.

We write evA,B : (A ( B) ⊗ A → B to denote the evaluation strategy obtained by
uncurrying the identity map on A→ B. The evaluation strategy is in fact the copy-cat strategy
for the game (A ( B)⊗A→ B.

2.3.3.3 Cartesian product

The cartesian product from Sec. 2.3.2.3 defines indeed a cartesian product in the category G,
Gi, Gb and Gib. The projections π1 : A× B → A and π1 : A× B → B are given by the obvious
copy-cat strategies. Given two category morphisms σ : C → A and τ : C → B, the pairing

morphism 〈σ, τ〉 : C → A×B is given by:

〈σ, τ〉 = {s ∈ LC(A×B | s � C,A ∈ σ ∧ s � B = ε}

∪ {s ∈ LC(A×B | s � C,B ∈ τ ∧ s � A = ε} .
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2.3.3.4 Cartesian closed structure

To obtain a cartesian closed category it remains to define a terminal object as well as the
exponential construct for every two games A and B. The category G itself is not cartesian
closed but it is possible to define a new category of games that is cartesian closed.

For every game A the exponential game !A is given by:

M!A = MA

λ!A = λA

`!A = `A

P!A = {s ∈ L!A| for each initial move m, s � m ∈ PA} .

Think of it as the multi-threaded version of the game A in which a new copy the game can be
spawned at any time. Plays of !A are thus interleavings of plays of A. We have the following
identities:

!(A×B) = !A⊗!B

1 = !1 .

A game A is said to be well-opened if for every position s ∈ PA the only initial move in s is
the first one. In a well-opened game, plays contain a single “thread” of moves. Given a strategy
on a well-opened game, one can turn it into a “multi-threaded” strategy using the promotion
operator:

Definition 2.3.11 (Promotion). Consider a well-opened game B. Given a strategy on !A ( B,
its promotion σ† : !A ( !B is the strategy which plays several copies of σ. Formally:

σ† = {s ∈ L!A(!B | for all initial m, s � m ∈ σ} .

It can be shown that promotion is a well-defined strategy and that it preserves innocence
and well-bracketing. We now introduce the category of well-opened games:

Definition 2.3.12 (Category of well-opened games). The category C of well-opened games, also
called the co-Kleisli category of G, is defined as follows:

- The objects are the well-opened games.

- A morphism σ : A→ B is a strategy for the game !A ( B,

- The identity map for A is the copy-cat strategy on !A ( A (which is well-defined for well-
opened games). It is called dereliction, denoted by derA and defined formally by:

derA = {s ∈ P even
!A(A | ∀t 6even s . t � !A = t � A} .

- Composition of morphisms σ : !A ( B and τ : !B ( C denoted by σ # τ : !A ( C is defined
as σ†; τ .

C is a well-defined category and has three sub-categories Ci, Cb, Cib corresponding respectively
to sub-category of innocent, well-bracketed, and innocent well-bracketed strategies.

The empty game 1 is a terminal object for the category C. Further for every two games
A and B, we define their product as A × B and their exponential as !A ( B. The hom-sets
C(A×B,C) and C(A, !B ( C) are isomorphic. Indeed:

C(A×B,C) = G(!(A ×B), C)

= G(!A ⊗ !B,C)
∼= G(!A, !B ( C) (G is a closed monoidal category)

= C(A, !B ( C) .

Hence C is a cartesian closed category. Furthermore Ci and Cb are sub-cartesian closed categories
of C, and Cib is as sub-cartesian closed category of each of C, Ci and Cb.
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2.3.3.5 Order enrichment

Strategies can be ordered using the inclusion ordering. Under this ordering, the set of strategies
on a given game A is a pointed directed complete partial order; the least upper bound is given
by the set-theoretic union and the least element is the empty strategy {ε}.

Moreover all the operators on strategies that we have defined so far (composition, tensor
product, etc.) are continuous. Hence the categories C and G are cpo-enriched.

2.3.3.6 Intrinsic preorder

Let Σ denote the Sierpinski game with a single question q and single answer a. There are only
two strategies on Σ: ⊥ = {ε} and > = {ε, qa}, both innocent and well-bracketed. For every
object A, the intrinsic preorder .A on the set of strategies on the game A is defined by:

σ .A τ ⇐⇒ ∀α : A→ Σ. σ # τ = > =⇒ τ # α = > .

This indeed defines a preorder [AMJ94]. The quotiented category C/. is defined as follows.
The objects of C/. are those of C, and the morphisms are the equivalence classes of morphisms
in C modulo the equivalence relation induced by ..

We will consider the quotiented categories C$/ .$ where $ ranges in {i, b, ib}. (The full
abstraction of the game-semantic model of PCF holds in the quotiented category Cib/.ib rather
than Cib.)

2.3.4 The fully abstract game model of PCF

In this section we show how game semantics can be used to model the programming language
PCF and we recall the full abstraction result [HO00].

It is well known that cartesian closed categories are models of typed lambda calculi. We have
just seen in the previous section that games and strategies form a cartesian closed category, they
can therefore be used to model typed lambda-calculi.

The idea is as follows. The game played is induced by the type of the term. The Opponent
(O) incarnates the environment while the Proponent (P) incarnates the term to model. The
Proponent’s strategy is determined by the term itself; it is computed inductively on its syn-
tax. This means that O is responsible of providing the values of the term’s input parameters,
whereas P is responsible for performing the computation of the term itself. A play of the game
unfolds as follows: The Opponent opens the game by asking the question “What is the result
of the execution of the term?”. The Proponent may then request further information by asking
questions such as “What is the input given to the term?”; O can provide P with an answer—the
value of the input—or can continue by asking another question. This dialog goes on until O
obtains an answer to his initial question.

2.3.4.1 Modeling the simple types

Each simple type A is interpreted by a game from the category C denoted [[A]]. A program
context Γ = x1 : A1, . . . xn : An is interpreted by the game [[Γ]] = [[A1]]× . . .× [[An]]. The empty
context is interpreted by the terminal object 1 of the cartesian closed category C: [[∅]] = 1.

The base type exp is interpreted by the flat game N over the natural number. Given the
interpretation of the base type, the interpretation of the function space type A→ B is given by
the exponential object of [[A]] and [[B]] in the cartesian closed category C:

[[A→ B]] =![[A]] ( [[B]] .
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2.3.4.2 Lambda calculus fragment

A term-in-context Γ `M : A is interpreted in the model by a strategy on the game [[Γ]]→ [[A]].
For instance take the game [[exp]]. It has only one question (the initial O-question) and

P-moves are answers corresponding to each possible value of a natural number. There exist only
two kinds of strategies for the game [[exp]]:

(i) The empty strategy where P never answer the initial question. This corresponds to a non
terminating computation;

(ii) The strategies where P always answers by playing the same number n. This models a
numerical constant of the language.

The strategy denotation of a term-in-context is defined inductively on the structure of the term:
• Variables are interpreted by projection:

[[x1 : A1, . . . , xn : An ` xi : Ai]] = πi : [[Ai]]× . . .× [[Ai]]× . . .× [[An]]→ [[Ai]] .

• Abstraction: The term-in-context Γ ` λxA.M : A→ B is modeled by a morphism [[Γ]]→
(![[A]] ( [[B]]) obtained by currying:

[[Γ ` λxA.M : A→ B]] = Λ([[Γ, x : A `M : B]]) .

• Application is modeled using the evaluation map evA,B : (!A ( B)×A→ B:

[[Γ `MN : B]] = 〈[[Γ `M : A→ B,Γ ` N : A]]〉 # evA,B .

Example 2.3.4 (Kierstead terms). In Sec. 2.3.6 we have shown that there exist two different
strategies on the game [[((N1 → N2)→ N3)→ N4]] containing a play whose underlying sequence
of move is q4q3q2q3q2q1 but whose justification pointers differ.

These two strategies are precisely the denotation of the Kierstead terms defined as follows:

M1 ≡ λf.f(λx.f(λy.y)) : ((N→ N)→ N)→ N

M2 ≡ λf.f(λx.f(λy.x)) : ((N→ N)→ N)→ N .

Suppose that q1 is justified by the first occurrence of q2 then it means that the Proponent is
requesting the value of the variable x bound in the subterm λx.f(λy....). If P needs to know the
value of x, this means that P follows the strategy induced by the subterm λy.x: this corresponds
to a play of the strategy [[M2]]. Otherwise q1 is justified by the second occurrence of q2, which
corresponds to a play of [[M1]].

2.3.4.3 PCF fragment

We now show how to model PCF constructs. In the following, we tag the sub-arenas of the
games considered to make it possible to distinguish identical arenas from different components
of the game. We also tag moves (in exponent) to identify the component in which the move
belongs. We will omit the pointers in the play when no ambiguity arise.

The arithmetic constants of PCF are interpreted as follows:

• The successor arithmetic operator is modeled by the following strategy on [[N1 → N0]]:

[[succ]] = Prefeven{q0 · q1 · n1 · (n+ 1)0 | n ∈ N} .

where PrefevenX denotes the set consisting of the prefixes of even length of plays of X.

• The predecessor arithmetic operator is denoted by the strategy

[[pred]] = Prefeven
(
{q0 · q1 · n1 · (n− 1)0 | n > 0} ∪ {q0 · q1 · 01 · 00}

)
.
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• Given a term-in-context Γ ` succ M : exp we define:

[[Γ ` succ M : exp]] = [[Γ `M : exp]] # [[succ]]

[[Γ ` pred M : exp]] = [[Γ `M : exp]] # [[pred]] .

• The conditional operator is denoted by the following strategy on [[N3 × N2 × N1 → N0]]:

[[cond]] = Prefeven{q0 ·q3 ·0·q2 ·n2 ·n0 | n ∈ N}∪Prefeven{q0 ·q3 ·m·q2 ·n2 ·n0 |m > 0, n ∈ N} .

Given a term-in-context Γ ` cond M N1 N2 : exp we define:

[[Γ ` cond M N1 N2 : exp]] = 〈[[Γ `M : exp]], [[Γ ` N1 : exp]], [[Γ ` N2 : exp]]〉 # [[cond]] .

The interpretation of the Y combinator is slightly more complicated. Consider the term
Γ ` M : A → A. Its denotation f is a morphism [[Γ]] × [[A]] → [[A]]. We define the chain gn of
morphisms [[Γ]]→ [[A]] as follows:

g0 = ⊥

gn+1 = F (gn) = 〈id[[Γ]], gn〉 # f

where ⊥ denotes the empty strategy {ε}. It is easy to see that (gn)n∈N forms a chain. The
denotation [[Y M ]] is defined as the least upper bound of the chain gn which is also the least fixed
point of F . Its existence is guaranteed by the fact that the category of games is cpo-enriched.

Since all the strategies encountered up to now are innocent and well-bracketed, the game
model of PCF can be interpreted in any of the four categories C, Ci, Cb, Cib. The category Cib is
referred as the intentional game model of PCF.

2.3.4.4 Observational preorder

A context denoted C[−] is a term containing a hole denoted by the symbol ‘−’. If C[−] is a
context then C[M ] denotes the term obtained after replacing the hole by the term M . C[M ]
is well-formed provided that M has the appropriate type. This substitution is done capture-
permitting, as opposed to the capture-avoiding substitution used to contract beta-redexes in the
lambda calculus.

Definition 2.3.13. The observational preorder is a relation <
∼ on terms defined as follows:

For every two closed terms M and N of the same type,

M <
∼ N ⇐⇒ for all context C[−] such that C[M ] and C[N ] are well-

formed closed PCF term of type exp, C[M ] ⇓ implies C[N ] ⇓
.

The reflexive closure of <
∼, denoted ∼=, is called the observational equivalence relation.

The intuition behind this definition is that two terms are observationally equivalent if there
is no context that distinguishes them; in which case they can be safely interchanged in any
program context.

2.3.4.5 Soundness

We say that a model is sound for evaluation if the denotation of a term is preserved by the
evaluation relation ⇓ of the big-step semantics of the language. For every term M and value V
we have:

M ⇓ V =⇒ [[M ]] = [[V ]] .
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Lemma 2.3.1 ([AM98b]). The game model of PCF is sound for evaluation.

Definition 2.3.14 (Computable terms).

• A closed term `M : B of base type is computable if [[M ]] 6= ⊥ implies M ⇓.

• A higher-order closed term ` M : A → B is computable if MN is computable for every
computable closed term ` N : A.

• An open term x1 : A1, . . . , xn : An ` M : A → B is computable if ` M [N1/x1, . . . Nn/xn]
is computable for all computable closed terms N1 : A1, . . . , Nn : An.

A model is computationally adequate if all terms are computable.

Lemma 2.3.2 ([AM98b]). The game model of PCF is computationally adequate.

A model of a programming language is said to be sound if whenever the denotation of two
programs are equal then the two programs are observationally equivalent; formally for every
closed terms M and N of the same type we have:

[[M ]] = [[N ]] =⇒ M ∼= N .

Soundness is the least condition one can require from a model of programming language: it
guarantees that we can reason about terms by manipulating objects in the denotational model.

The model is said to be inequationally sound if the following stronger condition holds

[[M ]] ⊆ [[N ]] =⇒ M <
∼ N .

The inequational soundness of the game model of PCF follows from the last two lemmas:

Proposition 2.3.2. The game model of PCF is inequationally sound.

Proof. Take two closed PCF termsM andN . Suppose that [[M ]] ⊆ [[N ]] then by compositionality
of the model we have [[C[M ]]] ⊆ [[C[N ]]]. Suppose that C[M ] ⇓ for some context C[−] then by
soundness (Lemma 2.3.1) we have [[C[M ]]] 6= ⊥, which implies [[C[N ]]] 6= ⊥. The adequacy of
the model (Lemma 2.3.2) then gives us C[N ] ⇓. Hence M <

∼ N .

2.3.4.6 Definability

We now work in the category Cib of innocent and well-bracketed strategies. The definability
property is the key to the full-abstraction result. It says that every compact element of the
model is the denotation of some term. In Cib, the compact morphisms are the innocent
strategies with finite view-function. Due to its economical syntax, PCF does not satisfy the
definability result: there are strategies that are not the denotation of any term in PCF. For
instance consider the ternary conditional strategy acting as follows: It tests the value of its first
parameter, if it is equal to 0 or 1 then it returns the value of the second or third parameter
respectively, otherwise it returns the value of the fourth parameter. This is illustrated in the left
diagram of Fig. 2.3.4.6. Such computation can be operationally simulated in PCF by the term
T3 = cond M N1(cond (pred M) N2 N3). The term T3, however, is not denoted by the ternary
conditional strategy. Its denotation is instead given by the right diagram on Fig. 2.3.4.6.

In PCFc, however, the ternary conditional strategy is definable by the term case3. In fact,
the definability result holds for PCFc:

Proposition 2.3.3 (Definability). Let A be a PCF type and σ be a compact innocent and
well-bracketed strategy on A. There exists a PCFc term M such that [[M ]] = σ.

The definability only holds for PCFc but this suffice to prove full abstraction of PCF. This
is because the casek constructs of PCFc can all be simulated by PCF terms with the same
operational semantics, and consequently PCFc is a conservative extension of PCF (i.e., if M
and N are terms such that for every PCF-context C[−], C[M ] ⇓ =⇒ C[N ] ⇓ then the same is
true for every PCFc-context.)
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Figure 2.1: Strategy denotation of case3 (left) and T3 (right).
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2.3.4.7 Full abstraction

The converse of soundness is called completeness. A model is complete if:

M ∼= N =⇒ [[M ]] = [[N ]] .

Further, if the stronger relation

M <
∼ N =⇒ [[M ]] ⊆ [[N ]]

holds then the model is said to be inequationally complete.
A model is fully abstract if it is both sound and complete, and inequationally fully

abstract if it is inequationally sound and inequationally complete.
Full abstraction of PCF cannot be stated directly in the category Cib. Instead we need to

consider the quotiented category Cib/.ib. But first we need to make sure that Cib/.ib is a model
of PCF. Cib/.ib is a poset-enriched cartesian closed category. The denotation of the basic types
and constants of PCF can be transposed from Cib to Cib/.ib. Although it is not known whether
Cib/.ib is enriched over the category of CPOs, it can be proved that it satisfies a condition
called rationality [AMJ94] and this suffices to ensure that Cib/.ib is indeed a model of PCF.
This category will be referred as the extensional game model of PCF. The full abstraction
of the game model then follows from Proposition 2.3.2 and 2.3.3:

Theorem 2.3.1 (Full abstraction [AMJ94, HO00, Nic94]). Let M and N be two closed PCF
terms.

[[M ]] .ib [[N ]] ⇐⇒ M <
∼ N ,

where .ib denotes the intrinsic preorder of the category Cib.

2.3.5 The fully abstract game model of Idealized Algol

We now describe the fully abstract game model of IA [AM99].
All the strategies used to model PCF are well-bracketed and innocent. To obtain a model of

IA, however we need to introduce strategies that are not innocent. This is necessary to model
the memory cell variable created with the new operator. The intuition is that a cell needs to
remember the last value which was written in it in order to be able to return it when it is
subsequently read, and this can only be done by looking at the whole history of moves, not only
those present in the P-view. We therefore restrict our attention to the categories C and Cb.

Base types

The type com is modeled by the flat game with a single initial question run and a single answer
done. The idea is that O can request the execution of a command by playing run, P then
executes the command and if it terminates, acknowledges it by playing done.

The variable type var is modeled by the game comω × exp illustrated below:

ok

write0 write1 write2 . . . read

0 1 2 . . .

Modelling the constants

• The constant skip is interpreted by the strategy {ε, run · done}.
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• Sequential composition seqexp is interpreted by the following strategy:

!com ⊗ !exp
seqexp

( exp

q
run

done

q
n

n

• Assignment assign and dereferencing deref are denoted by the following strategies:

!var ⊗ !exp
assign

( com

q
q
n

writen
ok

done

!var
deref
( exp

q
read

n
n

• mkvar is modeled by the paired strategy 〈mkvaracc, mkvarexp〉 where mkvaracc and mkvarexp
are the following strategies:

!(!exp ( com) ⊗ !exp
mkvaracc

( comω

writen
run

q
n

done

ok

!(!exp ( com) ⊗ !exp
mkvarexp

( exp

read

q
n

n

• Block-allocated variable (new): The strategies introduced until now are all innocent. In
order to model the new operator, it is necessary to introduce non-innocent strategies, also called
knowing strategies. We call memory-cell strategy the knowing well-bracketed strategy written
cell : I (!var behaving as follows: It responds to write with ok and to read with the last
value written or 0 if no value has been written yet. The denotation of a term-in-context Γ `
new x in M : A is then defined as the strategy:

[[Γ ` new x in M : A]] = (id[[Γ]] ⊗ cell) # [[Γ, x : var `M : A]] :!Γ ( com .

Full abstraction

Inequational soundness can also be shown for IA. Proving soundness of the evaluation requires
slightly more work than in the PCF case due to the fact that stores need to be made explicit.
Also, one needs to define an appropriate notion of computable term that takes into account the
presence of stores in the evaluation semantics. It is also possible to prove that the model is
computational adequate. We then have:

Proposition 2.3.4 (Abramksy and McCusker [AMJ94]). The game model of IA is inequation-
ally sound.

A result called the Innocent Factorization Theorem [AM97] shows that the strategies in
Gb can all be obtained by composing the non-innocent strategy cell with some innocent strat-
egy. The strategy cell can therefore be viewed as a generic non-innocent strategy. Using this
factorization argument, it is possible to prove the definability result:
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Proposition 2.3.5 (Definability). For every compact well-bracketed strategy σ on a game A
denoting a IA type, there exists an IA-term M such that [[M ]] = σ.

Full abstraction for the model Cb is then a consequence of inequational soundness and defin-
ability:

Theorem 2.3.2 (Full abstraction). Let M and N be two closed IA-terms.

[[M ]] .b [[N ]] ⇐⇒ M <
∼ N ,

where .b denotes the intrinsic preorder of the category Cb.

2.3.6 On the necessity of justification pointers

For every legal justified sequence of moves s, we write ?(s) to denote the subsequence consisting
of the unanswered question moves of s. It is easy to check that if s satisfies alternation then so
does ?(s).

Lemma 2.3.3. If s · q is a legal position (i.e., a justified sequence satisfying visibility and
alternation) satisfying well-bracketing and q is a non-initial question then q points in ?(s).

Proof. By induction on the length of s · q. The base case s = ε is trivial. Let s = s · q, where q
is not initial.

Suppose q is a P-move. We prove that q cannot point to an O-question that has been
answered. Suppose that an O-move q′ occurs before q and is answered by the move a also
occurring before q. Then we have s = s1 · q

′O · s2 · a
P · s3 · q

P where a is justified by q′. a is not
in the P-view ps<qq. Indeed this would imply that some O-move occurring in s3 points to a,
but this is impossible since answer moves are not enablers. Hence the move a must be situated
underneath an O-to-P link. Let m denote the link’s origin, the P-view of s has the following
form: psq = ps1 · q

′O · s2 · a
P . . .mOq . . . qP where m is an O-move pointing before a.

If m is an answer move then it must point to the last unanswered move (the last move
in ?(s<m)). If m is a question move then it is not initial since there is a link going from m.
Therefore by the induction hypothesis, m must point to a move in ?(s<m).

Since s is well bracketed, all the questions in the segment q′ . . . a are answered. Therefore
since m points to an unanswered question occurring before a, m must point to a move occurring
strictly before q′. Consequently q′ does not occur in the P-view psq. By visibility, q must point
in the P-view psq therefore q does not point to q′.

A similar argument holds if q is an O-move.

This means that in a well-bracketed legal position s·m where m is not initial, m’s justifier is a
question occurring in ?(s). Also if m is an answer then its justifier is precisely the last question
in ?(s). Furthermore, if m is a P-move then by visibility it should point to an unanswered
question in pmq therefore it should also point in ?(pmq). Similarly, if m is a non initial O-move
then it points in ?(xmy).

Lemma 2.3.4. Let s be a legal well-bracketed position.

(i) If s = ε or if the last move in s is not a P-answer then ?(psq) = p?(s)q;

(ii) If s = ε or if the last move in s is not an O-answer then ?(xsy) = x?(s)y.

Proof. (i) By induction on the length of s. The base case is trivial. Step case: Suppose that
s ·m is a legal well-bracketed position.
• If m is an initial O-question then ?(ps ·mq) =?(m) = m = p?(s) ·mq = p?(s ·m)q.
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• If m is a non initial O-question then s · mO = s′ · qP · s′′ · mO where m is justified by
q. We have ?(psq) =?(ps′q · q ·m) =?(ps′q) · q ·m. If s′ is not empty then its last move must
be an O-move (by alternation), therefore by the induction hypothesis ?(ps′q) =?(p?(s′)q). By
the previous lemma, m’s justified occurs in ?(s) therefore ?(s ·m) =?(s′) · qP · u ·mO for some
sequence u and thus p?(s ·m)q = p?(s′)q · qP ·mO.
• If m is an O-answer then s ·m = s′ · qP · s′′ ·mO where m is justified by q. We then have

?(ps ·mq) =?(ps′qqa) =?(ps′q) and since s is well-bracketed, we have ?(s) =?(s′). The induction
hypothesis permits us to conclude.
• If m is a P-question then ps · mq = psq · m and ?(ps · mq) =?(psq) · m. Moreover

p?(s · m)q = p?(s) · mq = p?(s)q · m. By alternation if s is not empty it must end with an
O-move so we can conclude using the induction hypothesis.

(ii) The argument is similar to (i).

Note that in (i) and (ii), it is important that s does not end with a P-answer. For instance
consider the legal position

s = qO0 qP1 qO2 qP3 qO4 a
P

ending with a P-answer. We have p?(s)q = pq0 · q1 · q2 · q3q = q0 · q1 · q2 · q3 but ?(psq) =
?(q0 · q1 · q4 · a) = q0 · q1 · q4.

By the previous remark and lemma we obtain the following corollary:

Corollary 2.3.3. Let s ·m be a legal well-bracketed position.

(i) If m is a P-move then it points in ?(psq) = p?(s)q.

(ii) If m is a non initial O-move then it points in ?(xsy) = x?(s)y.

Definition 2.3.15 (Order). Let 〈M,λ,`〉 be a game. The order of a question move q ∈ M ,
written ord q, is given by the length (l) of the longest enabling chain of question moves starting
from q (q = q1 ` q2 ` . . . ` ql) minus one (i.e., ord q = l − 1); the order of an answer move is
defined as −1. The order of a game 〈M,λ,`〉, written ord〈M,λ,`〉, is defined as maxm∈M ordm
with the convention max ∅ = −1.

For instance the initial question in the game N has order 0.

Proposition 2.3.6 (Pointers are superfluous up to order 2). Let A be a game of order at most
2 where each question move enables at least one answer move (Therefore an order-0 move is
necessarily a question enabling answer moves only). Let s be a justified sequence of moves in
the game A satisfying alternation, visibility, well-openedness and well-bracketing. If s contains
a single initial move then the pointers of the sequence s can be uniquely reconstructed from the
underlying sequence of moves.

Proof. Let A be an arena of order 2 at most and let s be a legal well-bracketed position in
LA. W.l.o.g. we can assume that the game A has a single initial move q0. Indeed, since s is
well-opened, its first move m0 is the only initial move in the sequence, thus m0 is the root of
some sub-arena A′ of A. Hence s can be seen as a play on the game A′ instead of A.

Since A is of order 2 at most, all the moves in s except q0 are of order 1 at most. We prove
by induction on the length of s that ?(s) corresponds to one of the cases 0, A, B, C, D shown on
the table below, and that the pointers in s can be recovered uniquely. Let L denote the language
L = { pq | q0 ` p ` q ∧ ord p = 1 ∧ ord q = 0}.

Case λOP (m) ?(s) ∈ where...

0 O {ε}
A P q0
B O q0 · L

∗ · p q0 ` p, ord p = 1
C P q0 · L

∗ · pq q0 ` p ` q, ord p = 1, ord q = 0
D O q0 · L

∗ · q q0 ` q, ord q = 0
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Base cases: If s is the empty play then there is no pointer to recover and s corresponds to case
0. If s is a singleton then it must be the initial question q0, so there is no pointer to recover.
This corresponds to case A.
Step case: If s = u ·m for some non empty legal well-bracketed position u and move m ∈ MA

then by the induction hypothesis the pointers in u can all be recovered and u corresponds to
one of the cases 0, A, B, C or D. We proceed by case analysis:

case 0 ?(u) = ε. By Corollary 2.3.3, m points in p?(u)q = ε. Hence this case is impossible.
case A ?(u) = q0 and the last move m is played by P. By Corollary 2.3.3, m points to

q0. If m is an answer to the initial question q0 then s is a complete play and ?(s) = ε, which
corresponds to case 0. If m is a first order question then ?(s) = q0p and it is O’s turn to play
after s therefore s falls into category B. If m is an order 0 question then s falls into category D.

case B ?(u) ∈ q0 ·L
∗ · p where ord p = 1 and m is an O-move. By Corollary 2.3.3, m points

in p?(u)q = q0p. Since m is an O-move it can only point to p. If m is an answer to p then
?(s) =?(u ·m) ∈ q0 · L

∗ which is covered by case A and C. If m is an order 0 question pointing
to p then we have ?(s) =?(u) ·m ∈ q0 · L

∗ · pm and s falls into category C.
case C ?(u) ∈ q0 · L

∗ · pq where ord p = 1, ord q = 0, q0 justifies p, p justifies q and m is
played by P .
Suppose that m is an answer, then the well-bracketing condition implies that q is answered first.
The move m therefore points to q and we have ?(s) =?(u ·m) ∈ q0 · L∗ · p. This corresponds to
case B.
Suppose that m is a question, then it is a P-move and therefore is cannot be justified by p. It
cannot be justified by q either because q is an order 0 question and therefore enables answer
moves only. Similarly m is not justified by any move in L∗. Hence m must point to the initial
question q0. There are two sub-cases, either m is an order 0 move and then s falls into category
D or m is an order 1 move and s falls into category B.

case D ?(u) ∈ q0 · L
∗ · q where ord q = 0 and m is played by O.

Again by Corollary 2.3.3, m points in x?(u)y = q0q. Since m is a P-move it can only point to
q. Since q is of order 0, it only enables answer moves therefore m is an answer to q. Hence
?(s) =?(u ·m) ∈ q0 · L

∗ and s falls either into category A or C.

Consequently for order-2 games, plays are entirely determined by the underlying pointer-
less sequence of moves. At order 3, however, eliminating pointers causes ambiguities. Take for
instance the game ((N1 → N2)→ N3)→ N4 and sequence of moves s = q4q3q2q3q2q1, where the
superscripts indicate the component of the game in which each move is played. What are the
valid plays whose underlying sequence of moves is s? By the visibility condition, the pointers of
the first five moves are uniquely determined:

s = q4 q3 q2 q3 q2 q1 .

For the last move, however, there is an ambiguity: its justifier can be any of the two occurrences
of q2. The visibility condition does not eliminate this ambiguity since both occurrences of q2

appear in the P-view psq = s. These two possibilities correspond to two different strategies for
the Proponent.

2.3.7 Algorithmic game semantics

Game semantics has proved to be a very successful paradigm in fundamental computer sci-
ence. Following the resolution of the full abstraction problem for PCF, game semantics was
subsequently used to obtain fully abstract models of a variety of programming languages. More
recently, game semantics has emerged as a new approach to program verification and program
analysis. Ghica and McCusker identified a fragment of Idealized Algol for which the game deno-
tation of programs can be expressed using regular expressions. Consequently, the observational
equivalence problem for this fragment is decidable [GM00, GM03]. This development opened
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up a new branch of research called Algorithmic game semantics which has interesting applica-
tions in program verification [AGOM03, DGL05]. This section gives a quick overview of some
important results in the field.

2.3.7.1 Effective presentability

The starting point of algorithmic game semantics is a result shown by Abramsky and McCusker
called the Characterization Theorem [AM97, Theorem 25]. We say that a play is complete if
it is maximal and all questions have been answered. One can show that for every IA type T ,
the complete plays on the game [[T ]] are precisely those in which the initial question has been
answered. A game satisfying this condition is said to be simple [AM97]. The characterization
theorem can then be stated as follows:

Theorem 2.3.4 (Characterization Theorem for simple games (Abramsky, McCusker [AM97])).
Let σ and τ be strategies on a simple game A. Then:

σ ≤ τ ⇐⇒ comp(σ) ⊆ comp(τ) .

Thus in the game model of Idealized Algol, observational equivalence is characterized by
equality of the set of complete plays.

This result implies that the fully abstract model of Idealized Algol is effectively presentable
[Loa98b] (i.e., the denotation of a term can be computed by a Turing Machine). The proof
crucially relies on the presence of imperative features in IA. Indeed, Loader has shown that even
on compact strategies, observation equivalence of PCF is undecidable [Loa01]. This implies that
there is no fully abstract model of PCF that is effectively representable.

Algorithmic game semantics is concerned with deriving decision procedures for the observa-
tional equivalence problem for various fragments of IA. This problem can be stated as follows:
Given two β-normal forms M and N in a given fragment of IA, does M ∼= N hold? By the
Characterization Theorem 2.3.4, this problem reduces to comparing the set of complete plays of
two given terms. Observational equivalence is undecidable in the general case, but it becomes
decidable when restricted to some lower-order fragments of IA. This question has now been fully
investigated and there is now a complete classification of decidability results for the finitary
fragments of IA.

2.3.7.2 The order-2 fragment of IA

Ghica and McCusker were the first to show that the observational equivalence problem becomes
decidable when restricting the language IA to some finitary fragment. They showed that for the
second-order finitary fragment of Idealized Algol, written IA2, the set of complete plays of the
strategy denotation can be expressed as an extended regular expression [GM00]:

Lemma 2.3.5 (Ghica and McCusker, [GM00]). For every IA2-term Γ ` M : T , the set of
complete plays of [[Γ `M : T ]] is regular.

Since equivalence of regular expressions is decidable with complexity PSPACE, by the Char-
acterization Theorem this gives a decision procedure for observational equivalence of IA2-terms.
In the same paper they show that the same result holds for the IA2 + while fragment. At order
2, this result cannot be extend further as Ong showed that observational equivalence is already
undecidable for IA2 + Y1 [Ong02].

2.3.7.3 Other fragments of IA

Other finitary fragments were subsequently considered. Ong considered the order-3 finitary
fragment, denoted IA3. He showed that the set of complete plays is a context-free language,
thus observational equivalence reduces to the Deterministic Pushdown Automata Equivalence
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(DPDA) problem [Ong02]. This problem was shown to be decidable [Sén01] but its complexity
is still unknown; we only know that it is primitive recursive [Sti02].

Even for IA3 + while, the fragment obtained by throwing in iteration, the problem remains
decidable. Moreover the problem lies in EXPTIME [MW05]. For the fragments IAi + Y0 for
i = 1, 2, 3, observational equivalence is as difficult as DPDA equivalence (i.e., there is a reduction
in both directions) [MOW05]. Finally, Murawski showed that the problem becomes undecidable
beyond order 3 (IAi with i ≥ 4) [Mur03].

The complete classification of complexity results for IA is recapitulated in Table 2.6. Unde-
fined fragments are marked with the symbol ×.

Fragment pure +while +Y0 +Y1

IA0 PTIME × × ×
IA1 coNP PSPACE DPDA EQUIV ×
IA2 PSPACE PSPACE DPDA EQUIV undecidable
IA3 EXPTIME EXPTIME DPDA EQUIV undecidable

IAi, i ≥ 4 undecidable undecidable undecidable undecidable

Table 2.6: The complete complexity classification for observational equivalence in IA.

The coNP and PSPACE results are due to Murawski [Mur05].
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Chapter 3

The Safe Lambda Calculus

The safety constraint was originally introduced as a syntactical restriction in order to study
decidability of Monadic Second Order theories over infinite trees generated by higher-order
recursion schemes [KNU02]. The good algorithmic properties of safety in the setting of higher-
order recursion schemes (see background chapter) motivate further investigations in the more
general setting of the simply-typed lambda calculus. In this chapter, we adapt and generalize
the safety syntactic restriction to the lambda calculus, giving rise to what we call the “safe
lambda calculus”.

The first part introduces the typing system of the safe lambda calculus. As remarked in the
background chapter, a higher-order grammar can be viewed as a closed simply-typed lambda-
term; however this term has a particular shape owing to the structure of the grammatical rules:
the right-hand side of a rule is an applicative term (i.e., containing no lambda abstraction) of
ground type. An adaptation of safety to the lambda calculus setting, however, ought to handle
all possible terms, including those containing lambda-abstraction. Our notion of safety is defined
in such a way.

The typing system of the safe lambda calculus is a small variation of the simply-typed
lambda calculus where the abstraction rule is able to abstract more than one variable at a time
but with an extra constraint: the free variables in the resulting term must have order greater
than the term itself. The application rule is similarly constrained. The connection with safe
higher-order grammars is then made evident by restricting our calculus to pure applicative term:
an applicative term of ground type is typable in the safe lambda calculus if and only if it is safe
in the sense of Knapik et al.

We study how terms of this language behave with respect to the term conversions commonly
studied in the lambda calculus: we adapt the notion of beta-reduction to ensure that a version
of the context-reduction lemma holds—safe terms reduce to safe terms—and we show that the
conversion to eta-long normal form preserves safety.

Next, in an attempt to quantify the impact of the safety constraint, we look at the complexity
of the beta-equivalence problem—Given two safe terms, are they beta-equivalent?. The problem
is known to be non-elementary for unrestricted terms [Sta79b]. We show PSPACE-hardness for
the safe case by reduction from the True Quantifier Boolean Formula problem (TQBF). This
PSPACE-complete problem is encodable in the order-3 fragment of the simply-typed lambda
calculus, but our encoding in the safe lambda calculus makes use of the entire type-hierarchy.
We conjecture the problem to be elementary.

The loss of expressivity caused by safety is then characterized in terms of the numeric
functions that are representable: we show that they are precisely the multivariate polynomials
without the conditional operator. We then give a similar characterization in terms of word-
functions representable.

We then consider classical typing problems in the setting of the safe lambda calculus: we
show that type-checking and typability are decidable and we observe that type inhabitation is
(at least) semi-decidable.
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We conclude the chapter by looking at extensions of the simply-typed lambda calculus. We
look at how the safety restriction can be defined for languages featuring recursion and imperative
feature. This allows us to derive notions of safe sub-language of PCF and Idealized Algol.

Remark 3.0.2 (Related work) A first attempt to adapt the safety restriction to the lambda
calculus was made by Aehlig et al. in an unpublished technical report [AdMO04]. The calculus
that we present here is both simpler (the typing system is just a slight variation of the simply-
typed lambda calculus) and more general (no condition is imposed on types and use of Σ-
constants of any order is allowed).

3.1 Definition and properties

3.1.1 Safety adapted to the lambda calculus

We use sequents of the form Γ `$ M : A to represent term-in-context where Γ is a typing-context
(a consistent set of typing assumptions), A is the type and M is a term (either annotated or
untyped). As defined in Sec. 2.1, we write Λ for the set of untyped lambda-terms and ΛT for
the set of lambda-terms annotated with simple types T. We will introduced various subscripts
$ to represent terms-in-context from different typing systems. The subscript ‘st’ refers to the
(Curry-style or Church-style) simply-typed lambda calculus (see Convention 3.1.1).

We fix an atomic type symbol o and for every natural number n ∈ N we use type notation
n to refer to the type no defined in Sec. 2.1.5 (0 ≡ o and (k + 1) ≡ k → o for k ≥ 0). A type
A1 → · · · → An → B, where B is not necessarily ground, will be written (A1, · · · , An, B).

Definition 3.1.1 (The safe lambda calculus).

(i) The safe lambda calculus à la Curry, denoted “safe ΛCu
→ ”, is a sub-system of the simply-

typed lambda calculus à la Curry. It is defined as the set of judgments of the form
Γ `s M : A, where M ranges over untyped term, that are derivable from the system of
rules of Table 3.1.

(ii) The safe lambda calculus à la Church, denoted “safe ΛCh
→ ”, is the typing system obtained

by adding type annotations in the λ-binders in the abstraction rule of the safe lambda
calculus à la Curry (see Sec. 2.1.7). In this system, M ranges over annotated term.

(iii) The sub-systems defined by the same rules in (i) and (ii), such that all types that occur in
them are homogeneous (Sec. 2.2.2), are called the homogeneous safe lambda calculus

à la Curry and à la Church respectively.

We will consider extension of the safe lambda calculus with constants. For every set Ξ of
higher-order constants, we introduce sequents of the form Γ `Ξ

$ M : A, for some subscript $, to
denote the typing system obtained by adding the rule:

(const)
`Ξ

$ f : A
f ∈ Ξ .

For convenience, we shall omit the superscript from `Ξ
$ whenever the set of constants Ξ is clear

from the context.
The safe lambda calculus deviates from the standard definition of the simply-typed lambda

calculus in a number of ways. First the application and abstraction rules can respectively perform
multiple applications and abstract several variables at once. (Of course this feature alone does
not alter expressivity.) Crucially, the side-conditions in the application rule and abstraction
rule require the variables in the typing context to have orders no smaller than that of the term
being formed. Safe terms can be applied together using the rule (appas), but the resulting term
is only “almost-safe”; it can then be turned into a safe term using the abstraction rule. We do
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(var)
x : A `s x : A

(wk)
Γ `s M : A

∆ `s M : A
Γ ⊂ ∆ (δ)

Γ `s M : A

Γ `̀ app M : A

(appas)
Γ `s M : (A1, . . . , An, B) Γ `s N1 : A1 . . . Γ `s Nn : An

Γ `̀ app M N1 . . . Nn : B

(app)
Γ `s M : (A1, . . . , An, B) Γ `s N1 : A1 . . . Γ `s Nn : An

Γ `s M N1 . . . Nn : B
ord Γ ≥ ordB

(abs)
Γ, x1 : A1, . . . , xn : An `̀ app M : B

Γ `s λx1 . . . xn.M : (A1, . . . , An, B)
ord Γ ≥ ord (A1, . . . , An, B)

where ord Γ denotes the set {ordA | y : A ∈ Γ} and for S ⊆ N, u ∈ N, “S ≥ u” means that u
is a lower-bound of S.

Table 3.1: The safe lambda calculus à la Curry.

not impose any constraint on types. In particular, type-homogeneity, which was an assumption
of the original definition of safe grammars [KNU02], is not required here. Another difference is
that we allow the addition of Ξ-constants with arbitrary higher-order types.

Definition 3.1.2 (Safe terms).

(i) An untyped term M ∈ Λ is safe if the judgment Γ `s M : T is derivable in the safe lambda
calculus à la Curry for some context Γ and type T . Otherwise it is said to be unsafe.

(ii) A type-annotated term M ∈ ΛT is safe if the judgment Γ `s M : T is derivable in the safe
lambda calculus à la Church for some context Γ and type T . Otherwise it is said to be
unsafe.

(iii) An untyped term M ∈ Λ is universally safe if all its valid type annotations are safe (i.e.,
for every M ′ ∈ ΛT, context Γ and type A such that Γ `Ch M

′ : A and |M ′| ≡ M , M ′ is
safe). It is universally unsafe if all its valid type annotations are unsafe.

(iv) A term M that is typable as Γ `̀ app M : T for some Γ, T is called an almost safe

application.

(v) A term-in-context Γ `st M : T of the Curry-style (resp. Γ `Ch M : T of the Church-
style) simply-typed lambda calculus is said to be safe if Γ `s M : T is also typable in the
Curry-style (resp. Church-style) safe lambda calculus.

Convention 3.1.1 To avoid cumbersome notations, we will use sequents of the form Γ `s M : A
to refer to judgments of both versions of the safe lambda calculus (Curry and Church). When
we specify that M is an untyped term in Λ then it is understood that the judgement refers to
a term-in-context typed in the Curry-style safe lambda calculus; if M ranges over annotated
terms in ΛT then it refers to a term-in-context typed in the Church-style safe lambda calculus.
When the domain of M is not specified then it means that the current argument, definition,
lemma or proposition is valid in both systems.

Example 3.1.1 (Kierstead terms). Consider the annotated terms M1 ≡ λf2.f(λxo.f(λyo.y))
and M2 ≡ λf

2.f(λxo.f(λyo.x)). M2 is unsafe because in the subterm f(λyo.x), the free variable
x has order 0 which is smaller than ord (λyo.x) = 1. On the other hand, M1 is safe as the
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following proof tree shows:

(abs)

(app)

(var)
f : 2 `s f : 2

(wk)

(var)
f : 2 `s f : 2

f : 2, x : o `s f : 2

y : o `s y : o
(var)

y : o `̀ app y : o
(δ)

y : o `s λy
o.y : 1o

(abs)

f : 2, x : o `s λy
o.y : 1o

(wk)

f : 2, x : o `s f(λyo.y) : o
(app)

f : 2 `s λx
o.f(λyo.y) : (o, o)

(abs)

f : 2 `s f(λxo.f(λyo.y)) : o

`s M1 ≡ λf
2.f(λxo.f(λyo.y)) : 3

Now consider the untyped terms underlying M1 and M2: |M1| ≡ λf.f(λx.f(λy.y)) and
|M2| ≡ λf.f(λx.f(λy.x)) both have for principal type α3 ≡ ((α → α) → α) → α. Further,
every typing derivation for |M1| and |M2| in the simply-typed lambda calculus assigns the same
type α to the occurrences of the variables x and y. Hence |M1| is universally safe and |M2| is
universally unsafe.

Example 3.1.2. The term-in-context f : (1, 1, o) `̀ app (λϕ2θ3.ϕ(λxo.x))(f(λxo.x)) ≡ M : 3 is
almost safe. Abstracting f produces the safe term-in-context `s λf

(1,1,o).M : ((1, 1, o), 3).

The basic properties of the simply-typed lambda calculus also hold in the safe lambda cal-
culus:

Lemma 3.1.1. (i) Γ `s M : B ∧ Γ ⊆ Γ′ =⇒ Γ′ `s M : B

(ii) Γ `s M : B =⇒ FV (M) ⊆ dom(Γ)

(iii) Γ `s M : B =⇒ ΓM `s M : B where ΓM = {z : A ∈ Γ | z ∈ FV (M)}.

Proof. Trivial.

It is easy to see that valid typing judgements of the safe lambda calculus satisfy the following
simple invariant that we will later refer as the “basic property of the safe lambda calculus”:

Lemma 3.1.2 (Basic property). Let Γ `s M : B be a valid judgment of the Curry or Church-like
safe lambda calculus. Then

∀z : A ∈ Γ : z ∈ FV (M) =⇒ ordA ≥ ordB .

Note that the converse does not hold: Take the annotated term λyozo.(λxo.y)z. Since it is
closed, it trivially satisfies the condition in the conclusion of the previous lemma, but it is not
safe because the variable y is not abstracted by the abstraction ‘λx’. The converse does not even
hold for applicative terms: for instance the term-in-context f : 2, g : (o, o, o), y : o `st f(g y) : o
satisfies the condition of the lemma but it is unsafe because the term g y of type 1 occurs in
operand position and contains a free occurrence of a ground-type variable y.

Subterms

The Subterm Lemma of the simply-typed lambda calculus does not hold anymore: a safe term
may contain unsafe subterms. For instance the term λfx.fx is universally safe however its
subterm λx.fx is universally unsafe. There is, however, a subclass of subterms for which this
result holds:
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Definition 3.1.3 (Large subterms). Let M be an untyped term, the set s̃ub(M) of large

subterms of M is defined inductively by

s̃ub(x) = {x}

s̃ub(MN) = {N} ∪ s̃ub(M) ∪ s̃ub(N)

s̃ub(λx.M) = {λx.M} ∪ s̃ub(M) where M is not an abstraction.

The set of large subterms of an annotated type is defined identically.

Lemma 3.1.3 (Subterm lemma for safe ΛCh
→ and safe ΛCu

→ ). Let M range over Λ or ΛT. Then

Γ `s M : T ∧ M ′ ∈ s̃ub(M) =⇒ Γ′ `s M
′ : T ′ for some Γ′, T ′.

Proof. The proof is a trivial induction on the structure of the term

To indicate that a term is unsafe we will sometimes highlight the source of its unsafety by
underlining one of its large subterm as well as some free occurrence of a variable in that subterm
that does not satisfy the condition of the previous Lemma; we may underline just the variable
if the large subterm is clear. For instance the term λf2.f(λxo.f(λyo.x)) is unsafe because the
subterm λyo.x has order greater than the order of the variable x occurring free in it.

The applicative homogeneously-typed fragment of the safe lambda calculus captures the
original notion of safety due to Knapik et al. in the context of higher-order grammars (Def. 2.2.2):

Proposition 3.1.1 (Correspondence with safe grammars). Let G = 〈Σ,N ,R, S〉 be a grammar
and let e be an applicative term generated from the symbols in N ∪Σ∪ { zA1

1 , · · · , zAm
m }. A rule

Fz1 . . . zm → e in R is safe (in the original sense of Knapik et al.) if and only if z1 : A1, · · · , zm :
Am `

Σ∪N
s e : o is a valid typing judgement of the homogeneous (Curry or Church-style) safe

lambda calculus.

Proof. First we observe that since e is an applicative term, the distinction between Curry and
Church-style lambda calculus does not matter. We show by induction that

(i) z1, . . . , zm `̀ app t : A is a valid judgment of the homogeneous safe lambda calculus
containing no abstraction if and only if in the Knapik sense, all the occurrences of unsafe
subterms of t are safe occurrences.

(ii) z1, . . . , zm `s t : A is a valid judgment of the homogeneous safe lambda calculus contain-
ing no abstraction if and only if in the Knapik sense, all the occurrences of unsafe subterms of
t are safe occurrences, and all parameters occurring in t have order greater than ord t.

The constant and variable rules are trivial. Application case: By definition, a term t0 . . . tn is
Knapik-safe iff for all 0 ≤ i ≤ n, all the occurrences of unsafe subterms of ti are safe occurrences
(in the Knapik sense), and for all 1 ≤ j ≤ n, the operands occurring in tj have order greater
than ord tj. The (appas) rule and the induction hypothesis permit us to conclude.

Now since e is an applicative term of ground type, the previous result gives: z1, . . . , zm `s e : o
is a valid judgment of the homogeneous safe lambda calculus iff all the occurrences of unsafe
subterms of e are safe occurrences, which is in turn equivalent to “Fz1 . . . zm → e is safe” by
definition of Knapik-safety for grammar rules.

Remark 3.1.1 This result was first proved by de Miranda [dM06] for a different notion of safe
lambda calculus. See Remark 3.1.7.

In what sense is the safe lambda calculus safe?

It is an elementary fact that when performing β-reduction in the lambda calculus, one must use
capture-avoiding substitution, which is standardly implemented by renaming bound variables
afresh upon each substitution. In the safe lambda calculus, however, variable capture can never
happen (as the following lemma shows). Substitution can therefore be implemented simply by
capture-permitting replacement, without any need for variable renaming.
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Convention 3.1.2 (Safe variable typing convention) We say that a set Γ of typing assumptions
of the form x : A, for some variable x and simple type T , is order-consistent if all the types
assigned to a given variable are of the same order:

x : A1 ∈ Γ ∧ x : A2 ∈ Γ =⇒ ordA1 = ordA2 .

Let M ∈ ΛT be an annotated term. We define the set Ass(M) as the set of type-assignments
induced by the type annotations in M :

Ass(x) = ∅

Ass(M N) = Ass(M) ∪Ass(N)

Ass(λxT .M) = {x : T} ∪Ass(M) .

By extension, the set of type-assignments induced by a term-in-context Γ `Ch M : T is given by
Ass(Γ `Ch M : T ) = Γ ∪ Ass(M). A type-annotated term M is said to be order-consistent

just if the set Ass(M) is; a countable set of terms M0,M1, . . . is order-consistent just if⋃
i≥0Ass(Mi) is. This notion naturally extends to (countable sets of) terms-in-context.

We now adopt the safe variable typing convention: In any definition, theorem or proof
involving countably many terms, it is assumed that the set of terms involved is order-consistent.

Example 3.1.3. The set of typing assumptions {x : o, x : 1} is not order-consistent. Therefore
the annotated term λx1.x(λxo.x) is not order-consistent; however, it is alpha-equivalent to the
term λy1.y(λxo.x) which is order-consistent.

The set of terms {λx0.x, λx1.x} is not order-consistent.

In the following, we write M {N/x} to denote the capture-permitting substitution that tex-
tually replaces all free occurrences of x in M by N without performing variable renaming (see
Def. 2.1.3) and M

{
N/x

}
to refer to its simultaneous variant (Def. 2.1.5).

Lemma 3.1.4 (No-variable-capture lemma). In the safe lambda calculus à la Church, there
is no variable capture when performing simultaneous capture-permitting substitution provided
that we adopt the safe variable typing convention (Convention 3.1.2): If Γ, x : B `s M : A,
Γ `s N1 : B1, · · · ,Γ `s Nn : Bn, where |x| = n then

M{N/x} ≡M [N/x] .

Proof. We prove the result by structural induction on M . The variable, constant and weakening
cases are trivial. Otherwise, M is of the form λyC .M0 . . .Mm where y = y1 . . . yp, m, p ≥ 0 and
for every 0 ≤ i ≤ m, Mi is safe. The simultaneous capture-permitting substitution gives:

M
{
N/x

}
≡ λyC .M0

{
N � I/x � I

}
. . .Mm

{
N � I/x � I

}

where I = {i ∈ 1..n | xi 6∈ y} and for every list s, s � I denotes the sublist of s obtained by
keeping only elements in s whose position index in the list belongs to I.

Suppose for contradiction that a variable capture occurs in M
{
N/x

}
. By the induction

hypothesis there is no variable capture in Mi

{
N � I/x � I

}
for 0 ≤ i ≤ m. This means that we

are in the following situation: For some i ∈ I and 1 ≤ j ≤ p the variable yj occurs freely in Ni,
and xi occurs freely in M . Since yj ∈ FV (Ni) we must have yj : D ∈ Γ for some type D, and
by the safe variable typing convention, we necessarily have ordD = ordCj . Therefore:

ordD = ≥ ordBi by Lemma 3.1.2 since yj ∈ FV (Ni),

≥ ordA by Lemma 3.1.2 since xi ∈ FV (M),

= 1 + max{ordCk | 1 ≤ k ≤ p}

> ordCj

= ordD by the safe variable typing convention,

which gives us a contradiction.
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Example 3.1.4. (i) In order to contract the β-redex in

f : (o, o, o), x : o `Ch (λϕ(o,o)xo.ϕ x)(f x) : (o, o)

one should rename afresh the bound variable x to prevent the capture of the free occurrence
of x in the underlined subterm during substitution. Consequently, by the previous lemma,
the term is not safe. And indeed the basic property of the safe lambda calculus is not
satisfied because ordx = 0 < 1 = ord fx.

(ii) Adopting the safe variable typing convention is crucial for the lemma to hold. For instance
take the safe terms M ≡ λyo.x and N ≡ y. We have x : 1 `s M : o→ 1 and y : 1 `s N : 1.
But

M {N/x} ≡ λyo.y 6≡ λxo.y ≡M [N/x] .

Alternatively, the following version of the No-variable capture Lemma does not rely on
Convention 3.1.2:

Lemma 3.1.5. Let Γ, x : B `s M : A, Γ `s N1 : B1, · · · ,Γ `s Nn : Bn, with |x| = n, be valid
judgements of the safe lambda calculus à la Church. Then if further Γ `Ch M{N/x} : A is a
valid Church simply-typed term-in-context (not-necessarily safe) then

M{N/x} ≡M [N/x] .

Proof. The proof is the same as for the previous Lemma except that to show that ordCj =
ordC we use the assumption Γ `Ch M{N/x} : A instead of the safe typing convention: Since

the annotated term λyC .M0

{
N � I/x � I

}
. . .Mm

{
N � I/x � I

}
is typable in the Church-like

lambda calculus, the free variables yj in Ni must be bound by the abstraction λyC . Consequently
its type must be Cj. Hence D ≡ Cj and ordD = ordCj .

Remark 3.1.2 A version of the No-variable-capture Lemma also holds in safe grammars, as is
implicit in (for example Lemma 3.2 of) the original paper [KNU02].

Note that lambda-terms that do not require variable-capture when being reduced are not
necessarily safe. For instance the β-redex in λyozo.(λxo.y)z can be soundly contracted using
capture-permitting substitution, even though the term is not safe.

Lemma 3.1.6 (Substitution Lemma). Let Γ `s N : A. Then

(i) Γ, x : A `s M : B =⇒ Γ `s M [N/x] : B,

(ii) Γ, x : A `̀ app M : B =⇒ Γ `̀ app M [N/x] : B.

Further if Γ `s N : A and Γ `s M : A are homogeneously safe then so is Γ `s M [N/x] : B, and
if Γ `s N : A and Γ `s M : A are homogeneously almost-safe then so is Γ `s M [N/x] : B.

Proof. Let Γ `s N : A. We show (i) and (ii) simultaneously by induction on the derivation tree
of Γ, x : A `s M : B or Γ, x : A `̀ app M : B. The base cases (var) and (const) are trivial. The
cases (δ) and (wk) follow immediately from the induction hypothesis.

Case (abs): We have Γ, x : A `s λy
C .Q ≡M : (C,D). Suppose that x belongs to y then the

substitution is not pushed inside the lambda so the result holds trivially. Otherwise suppose that
Γ, x : A, y : C `̀ app Q : D. Applying the induction hypothesis (ii) on this term-in-context gives:

Γ, y : C `̀ app Q [N/x] : D and by the rule (abs) we obtain: Γ `s λy
C .Q [N/x] : (C,D). We can

then conclude since λyC .Q [N/x] ≡ (λyC .Q) [N/x] under the safe variable naming convention
(Convention 3.1.2).
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Case (appas): We have M ≡ M0M1 . . .Mp for p ≥ 1 and Γ `s Mk : Ak for 1 ≤ k ≤ p. By
the induction hypothesis, we have Γ `s Mk [N/x] : Ak for all k. The rules (appas) permit us to
conclude.

Case (app): Again it is proved by applying the induction hypothesis on the premises of the
rules.

Finally, term substitution preserves types so in particular it preserves type homogeneity.

Remark 3.1.3 (i) This result naturally extends to simultaneous substitution: If Γ `s Nk : Ak
for 1 ≤ k ≤ n then Γ, x1 : A1, . . . xn : An `s M : B implies Γ `s M [N1/x1, . . . , Nn/xn] : B
and Γ, x1 : A1, . . . xn : An `̀ app M : B implies Γ `̀ app M [N1/x1, . . . , Nn/xn] : B.

(ii) Observe that the type substitution lemma of the simply-typed lambda calculus does not
hold in the safe lambda calculus. This is because type substitution allows one to alter
the order of the variables occurring in the term. For instance take M ≡ λfy.f(λx.y). Its
principal type in the lambda calculus is A ≡ ((α → β) → γ) → β → γ for some atomic
types α, β and γ. Then the judgement `st M : A is unsafe (because ord y = ordx), the
judgment `st M : A [β → β/β] is safe, and the judgment `st M : A [β → β/β] [α→ α/α]
is unsafe.

3.1.2 Safe beta reduction

It is desirable to have an appropriate notion of reduction for our calculus. The standard β-
reduction rule is not adequate, however, because safety is not preserved by β-reduction as the
following example shows: The safe term λf (o,o,o)zowo.(λxoyo.fxy)zw β-reduces in one step to
λf (o,o,o)zowo.(λyo.fzy)w, which is unsafe since the underlined order-1 subterm contains a free
occurrence of a ground variable; but if we perform one more reduction we obtain the safe term
λf (o,o,o)zowo.fzw. This suggests simultaneous contraction of “consecutive” β-redexes. In order
to define this notion of reduction we first introduce the corresponding notion of redex.

In the simply-typed lambda calculus a redex is a term of the form (λx.M)N . In the safe
lambda calculus, a redex is a succession of several standard redexes:

Definition 3.1.4 (Safe redex). An untyped safe redex is an untyped almost safe application
of the form (λx1 . . . xn.M)N1 . . . Nl for some l, n ≥ 1 such that M is an almost safe application.
(Consequently λx1 . . . xn.M is safe and each Ni is safe for 1 ≤ i ≤ n.) The notion of annotated
safe redex is defined similarly.

For instance, in the case n < l, a safe redex has a derivation tree of the following form:

(app)

(wk)

(abs)
. . .

Γ′, x : A `s M : (An+1, . . . , Al, B)

Γ `s λx.M : (A1, . . . , Al, B)

. . .

Γ `s N1 : A1

. . .

Γ `s Nl : Al

Γ `s (λx.M)N1 . . . Nl : B

where the abbreviations x and x : A stand for x1 . . . xn and x1 : A1, . . . , xn : An respectively.

Example 3.1.5. The term (λf1.((λg1h1.h)(λzo.z))) (λzo.z) (λzo.z) is a safe redex of type o→ o.
This example shows that there exist safe redexes of the form (λx1 . . . xn.M)N1 . . . Nl with l > n.

A safe redex is by definition an almost safe term, but it is not necessarily a safe term. For
instance the term (λxoyo.x)z is a safe redex but it is only an almost safe term. The reason
why we call such redexes “safe” is because when they occur within a safe term, it is possible
to contract them without breaking the safety of the whole term. Before proving this result, we
first define how safe redexes are contracted:
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Definition 3.1.5 (Safe redex contraction). We use the abbreviations x = x1 . . . xn, N =
N1 . . . Nl and y = y1 . . . y1m for n, l, q ≥ 1. The relation βs (when viewed as a function) is
defined on the set of safe redexes as follows:

βs = { (λx.M)N1 . . . Nl 7→ λxl+1 . . . xn.M
[
N/x1 . . . xl

]
| n > l}

∪ { (λx.M)N1 . . . Nl 7→M [N1 . . . Nn/x]Nn+1 . . . Nl | n ≤ l} .

where the notation M [R1 . . . Rk/z1 . . . zk] denotes the simultaneous substitution (Def. 2.1.6).

Lemma 3.1.7 (βs preserves safety). Suppose that M1 βsM2. Then

(i) M2 is almost safe;

(ii) Γ `s M1 : A =⇒ Γ `s M2 : A.

Proof. Let M1 βsM2 for some almost safe redex M1 and term M2 of type A. By definition, M1

is of the form (λx1 . . . xn.M)N1 . . . Nl for some safe terms N1, . . . , Nl of type B1, . . . , Bn; almost
safe term M of type C; and such that (λx1 . . . xn.M) is a safe term of type (B1, . . . , Bn, C).
- Suppose n > l then A = (Bl+1, . . . , Bn, C). (i) By the Substitution Lemma 3.1.6(ii), the

term M
[
N/x1 . . . xl

]
: C is an almost safe application: Γ, xl+1 : Bl+1, . . . xn : Bn `̀ app

M
[
N/x1 . . . xl

]
: C. Thus by definition, λxl+1 . . . xn.M

[
N/x1 . . . xl

]
≡M2 is almost safe.

(ii) Suppose that M1 is safe. W.l.o.g we can assume that the last rule used to form M1

is (app) (and not the weakening rule (wk)), thus we have dom Γ = FV (M1), and Lemma
3.1.2 gives us ordA ≤ ordΓ. This allows us to use the rule (abs) to form the safe term
Γ `s λxl+1 . . . xn.M

[
N/x1 . . . xl

]
≡M2 : A.

- Suppose n ≤ l. (i) Again by the Substitution Lemma we have that M [N1 . . . Nn/x] is an
almost safe application: Γ `̀ app M [N1 . . . Nn/x] : C. If n = l then the proof is finished;
otherwise (n < l) we further apply the rule (appas) l− n times which gives us the almost safe
application Γ `̀ app M2 : A.
(ii) Suppose that M1 is safe. If n = l then M2 ≡ M [N1 . . . Nn/x] is safe by the Substitution
Lemma; if n < l then we obtain the judgement Γ `s M2 : A by applying the rule (appas)
l − n− 1 times on Γ `s M [N1 . . . Nn/x] : C followed by one application of (app).

We can now define a notion of reduction for safe terms:

Definition 3.1.6 (Safe beta-reduction). The safe β-reduction, written→βs
, is the compatible

closure of the relation βs with respect to the formation rules of the safe lambda calculus (i.e.,
it is the smallest relation such that if M1 βsM2 and C[M ] is a safe term for some context
C[−] formed with the rules of the simply-typed lambda calculus then C[M1]→βs

C[M2]). The
relation =βs

is defined as the reflexive, symmetric, transitive closure of →βs
.

Lemma 3.1.8. The safe reduction relation →βs
:

(i) is a subset of the transitive closure of →β (→βs
⊂�β);

(ii) is strongly normalizing;

(iii) has the unique normal form property;

(iv) has the Church-Rosser property.

Proof. (i) Immediate from the definition: The safe β-reduction is just a multi-step β-reduction.
(ii) This is because →βs

⊂�β, and →β is strongly normalizing in the simply-typed lambda
calculus. (iii) It is easy to see that a safe term has a beta-redex if and only if it has a safe
beta-redex (Because a beta-redex can always be “widen” into consecutive beta-redexes of the
shape of those in Def. 3.1.5). Therefore the set of βs-normal forms is equal to the set of βs-
normal forms. The unicity of β-normal form then implies the unicity of βs-normal form. (iv) is
a consequence of (i) and (ii).
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Since →βs
is by definition the compatible closure of βs by the formation rules of the safe

lambda calculus, Lemma 3.1.7 implies

Lemma 3.1.9 (Subject Reduction). Let M1 →βs
M2. Then

(i) Γ `s M1 : B =⇒ Γ `s M2 : B,

(ii) Γ `̀ app M1 : B =⇒ Γ `̀ app M2 : B.

Proof. Suppose that M1 →βs
M2. Then we have M1 ≡ C[R1] and M2 ≡ C[N2] for some context

C[−] and safe redex N1 with N1 βsN2.
(i) If the safe redex N1 is a safe term Γ′ `s N1 : A then by Lemma 3.1.7(ii) we have

Γ′ `s N2 : A. We can therefore deduce Γ `s C[N2] ≡M2 : B by replacing the derivation subtree
of Γ′ `s N1 : A by the derivation tree of Γ′ `s N1 : A in the derivation tree of Γ `s C[N1] : B.

Otherwise N1 is an almost safe application that is not safe and therefore N1 is a strict
subterm of M1. In the derivation tree of a safe term, an almost safe application that is not safe
can only occur as a premise of the abstraction rule. Thus the context C[−] must be of the form
C ′[λy.−] for some context C ′[−] and such that λy.N1 is a safe term: Γ′′ `s λy.N1 : C for some
Γ′′, C. Applying the abstraction rule on N2 gives Γ′′ `s λy.N2 : C. Hence as in the previous
case we can deduce Γ `s C[N2] ≡ C ′[λy.N2] ≡ M2 : B by substituting the derivation tree of
Γ′′ `s λy.N2 : C for the derivation tree Γ′′ `s λy.N1 : C in the derivation tree of Γ `s M1 : B.

(ii) If N1 is a safe term the we conclude as in (i). Otherwise, N1 is an almost safe application:
if C[−] ≡ − then we can conclude immediately by Lemma 3.1.7(i); otherwise N1 necessarily
occurs as a subterm of a safe subterm of M1 so we can conclude as in (i).

Remark 3.1.4 →βs
does not preserve “unsafety”: Take any safe annotated-term S and unsafe

annotated-term U of the same type τ , then the term (λxτyτ .y)U S : τ is unsafe but it βs-reduces
to S which is safe.

3.1.3 Eta-long normal form

We now restrict our attention to the Church-style (safe) lambda calculus. Since terms are anno-
tated, their type as well as the types of their subterms are uniquely determined. The η-expansion
of M : A → B is defined as the annotated term λxA.Mx : A → B where x : A is a fresh vari-
able. The η-long-expansion of a term M : (A1, . . . , An, o) is defined as λϕA1

1 . . . ϕAl

l .Mϕ1 . . . ϕl
where each ϕi is a fresh variable. The η-long normal form (or just η-long nf) of an annotated
term (also referred in the literature as long reduced form, η-normal form or extensional form
[JP76, Hue75, Hue76]) is obtained by hereditarily η-expanding the body of every lambda ab-
straction as well as every subterm occurring in an operand position (i.e., occurring as the second
argument of some occurrence of the binary application operator). Formally,

Definition 3.1.7. The η-long normal form, written dMe or sometimes ηlnf(t), of an anno-
tated term M of type (A1, . . . , An, o) with n ≥ 0 is defined by cases according to the syntactic
shape of M (A simply-typed term is either an abstraction or it can be written uniquely as
s0s1 . . . sm where m ≥ 0 and s0 is a variable, a Σ-constant or an abstraction.):

dλxτ .Ne ≡ λxτ .dNe

dαN1 . . . Nme ≡ λϕA.αdN1e . . . dNmedϕ1e . . . dϕne

d(λxτ .N)N1 . . . Npe ≡ λϕA.(λxτ .dNe)dN1e . . . dNpedϕ1e . . . dϕne

where m ≥ 0, p ≥ 1, x is a variable, ϕ = ϕ1 . . . ϕn and each ϕi : Ai is a fresh variable, and α is
either a variable or a constant.

Remark 3.1.5 The η-long normal form is defined for every simply-typed lambda-term, whether
β-normal or not. Furthermore, the transformation does not introduce any new redex therefore
the η-long normal form of a β-normal term is also β-normal.
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Definition 3.1.8. We say that a safe annotated term is long-safe just if it is typable in the
Church-like safe lambda calculus without using the rule (appas) from Def. 3.1.1. Equivalently,
it is long-safe just if the judgment Γ `l M : T for some Γ, T can be derived from the system of
rules of Table 3.2.

(varl)
Γ `l x : A

x : A ∈ Γ (wkl)
Γ `l M : A

∆ `l M : A
Γ ⊂ ∆

(appl)
Γ `l M : (A1, . . . , An, B) Γ `l N1 : A1 . . . Γ `l Nn : An

Γ `l MN1 . . . Nn : B
ord Γ ≥ ordB

(absl)
Γ, x1 : A1, . . . , xn : An `l M : B

Γ `l λx
A1
1 . . . xAn

n .M : (A1, . . . , An, B)
ord Γ ≥ ord (A1, . . . , An, B)

Table 3.2: Typing rules for long-safe terms-in-contexts.

The terminology “long-safe” does not mean that those terms are in η-long normal form; the
name is deliberately suggestive of a forthcoming lemma (Lemma 3.1.13). By definition, if an
annotated term is long-safe then it is safe:

Lemma 3.1.10. Γ `l M : T =⇒ Γ `s M : T .

In general, long-safety is not preserved by η-expansion: for instance we have `l λy
ozo.y :

(o, o, o) but 6`l λx
o.(λyozo.y)x : (o, o, o). On the other hand, η-reduction (of one variable)

preserves long-safety:

Lemma 3.1.11. Γ `l λϕ
τ .M ϕ : A ∧ ϕ 6∈ FV (M) =⇒ Γ `l M : A.

Proof. Suppose Γ `l λϕ
τ .M ϕ : A. If s is an abstraction then by construction the annotated-term

s is necessarily safe. IfM ≡ N0 . . . Np with p ≥ 1 then again, since λϕτ .N0 . . . Npϕ is safe, each of
the Ni is safe for 0 ≤ i ≤ p and for every z ∈ FV (λϕτ .M ϕ), ord z ≥ ordλϕτ .M ϕ = ord s. Since
ϕ does not occur free in M we have FV (M) = FV (λϕτ .M ϕ), thus we can use the application
rule to form ΓM `l N0 . . . Np : A where ΓM is the subset of Γ satisfying dom(Γ) = FV (M). The
weakening rules permits us to conclude Γ `l M : A.

Lemma 3.1.12 (Long-safety is preserved by η-long expansion). Γ `l M : A =⇒ Γ `l dMe : A.

Proof. We first show that for every variable or constant x : A we have x : A `l dxe : A by
induction on ordx. For ground type variable we have x = dxe thus the property clearly holds.
Step case: A = (A1, . . . , An, o) with n > 0. Let ϕi : Ai be a fresh variable for 1 ≤ i ≤ n.
Since ordAi < ordx the induction hypothesis gives ϕi : Ai `l dϕie : Ai. Using (wkl) we obtain
x : A,ϕ : A `l dϕie : Ai. The application rule gives x : A,ϕ : A `l xdϕ1e . . . dϕne : o and the
abstraction rule gives x : A `l λϕ.xdϕ1e . . . dϕne ≡ dxe : A.

We now prove the lemma by induction on s. The base case is covered by the previous
observation. Step case:
• M ≡ xN1 . . . Nm with x : (B1, . . . , Bm, A), A = (A1, . . . , An, o) for some m ≥ 0, n > 0

and Ni : Bi for 1 ≤ i ≤ m. Let ϕi : Ai be fresh variables for 1 ≤ i ≤ n. By the
previous observation we have ϕi : Ai `l dϕie : Ai, the weakening rule then gives us
Γ, ϕ : A `l dϕie : Ai. Since the judgement Γ `l xN1 . . . Nm : A is formed using the
(appl) rule, each Nj must be long-safe for 1 ≤ j ≤ m, thus by the induction hypothesis
we have Γ `l dNje : Bj and by weakening we get Γ, ϕ : A `l dNje : Bj. The (appl)
rule then gives Γ, ϕ : A `l xdN1e . . . dNmedϕ1e . . . dϕne : o. Finally the (absl) rule gives
Γ `l λϕ.xdN1e . . . dNmedϕ1e . . . dϕne ≡ dMe : A, the side-condition of (absl) being satisfied
since ord dMe = ordM .
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• M ≡ N0 . . . Nm where m ≥ 1 and N0 is an abstraction. The the eta-long normal form of
M is dMe ≡ λϕ.dN0e . . . dNmedϕ1e . . . dϕne for some fresh variables ϕ1, . . . , ϕn. Again,
using the induction hypothesis we can easily derive dse : A.

• M ≡ ληB .N where A = (B,C) and N is not an abstraction. The induction hypothesis
gives Γ, η : B `l dNe : C and using (absl) we get Γ `l λη.dNe ≡ dMe : A.

Remark 3.1.6

1. The converse of this lemma does not hold: performing η-reduction over a large abstraction
does not in general preserve long-safety. This does not contradict Lemma 3.1.11 which
states that safety is preserved when performing η-reduction on an abstraction of a single
variable. The simplest counter-example is the term f (o,o,o) `st λx

o.fx which is not long-safe
and whose eta-long normal form f (o,o,o) `l λx

oyo.fxy is long-safe. Even for closed terms
the converse does not hold: λf (o,o,o)g((o,o,o),o).g(λxo.fx) is not long-safe but its eta-long
normal form λf (o,o,o)g((o,o,o),o).g(λxoyo.fxy) is long-safe. In fact even the closed βη-normal
term λf (o,(o,o),o,o)g((o,o),o,o,o),o).g(λy(o,o)xo.fxy) which is not long-safe has a long-safe η-long
normal form!

2. In an eta-long normal term, applications occurring in it can always be chosen large enough
so that the side-condition of the rule (appl) is satisfied. Hence if a term is still not long-safe
after η-long expansion, then it is necessarily due to some occurrence of an abstraction in
the term for which the side-condition of the abstraction rule is not satisfied.

Lemma 3.1.13. An annotated term M ∈ λT is safe if and only if its η-long normal form is
long-safe; formally:

Γ `s M : T ⇐⇒ Γ `l dMe : T .

Proof. (Only if) Let Γ `s M : (A1, . . . , Al, o). We show the result by induction on the structure
of M . The base cases and weakening case are trivial. Abstraction: M has the form λy.M0 . . .Mp

for some safe terms Mk, 0 ≤ k ≤ p, p ≥ 0. By the subject reduction lemma we have ΓM `s

M : (A1, . . . , Al, o) where ΓM is the subset of Γ containing only typing for free variables in M .
The η-long expansion of M is λyx1..xl.dMedx1e . . . dxle for some variables x1 : A1, . . . , xl : Al
fresh in M . Let k range in {1..l}. By Lemma 3.1.12 and 3.1.10, each dxke is safe, and by the
I.H. dMe is also safe. Therefore by (appas), so is dMedx1e . . . dxle. By Lemma 3.1.2, all the free
variables of M have order greater than ord (A1, . . . , Al, o), hence we can use the abstraction rule
to form the judgment ΓM `s λyx1..xl.dMedx1e . . . dxle : (A1, . . . , Al, o) and the weakening rule
permits us to conclude. The application case is treated identically.

(If) By induction on the structure of the Church term-in-context Γ `Ch M : T : The vari-
able, constant and weakening cases are trivial. Suppose that M is an application of the form
xN1 . . . Nm : A for m ≥ 1. Its η-long normal form is xdN1e . . . dNmedϕ1e . . . dϕme : o for
some fresh variables ϕ1, . . .ϕm. By assumption this term is long-safe term therefore we have
ordA ≤ ordΓ and for 1 ≤ i ≤ m, dNie is also long-safe. By the induction hypothesis this implies
that each Ni is safe. We can then form the judgment Γ `s xN1 . . . Nm : A using the rules (var)
and (app) (this is allowed since we have ordA ≤ ord Γ). The case M ≡ (λx.N)N1 . . . Nm for
m ≥ 1 is treated identically.

Suppose that M ≡ λxB.N : A. By assumption, its η-long n.f. λxBϕC .dNedϕ1e . . . dϕme : A
(for some fresh variables ϕ = ϕ1 . . . ϕm) is long-safe. Thus we have ordA ≤ ord Γ. Furthermore
the long-safe subterm dMedϕ1e . . . dϕme is precisely the eta-long normal form of Mϕ1 . . . ϕm : o
therefore by the induction hypothesis we have that Mϕ1 . . . ϕm : o is safe. Since the ϕi’s are
all safe (by rule (var)), we can “peal-off” m applications of the rule (appas) (or (app)) from the
sequent Γ, x : B,ϕ : C `s sϕ1 . . . ϕm : o which gives us the sequent Γ, x : B,ϕ : C `̀ app M : A.
Since the variables ϕ are fresh for M , we can further peal-off one application of the weakening
rule to obtain the judgment Γ, x : B `s M : A. Finally we obtain Γ `s λx

B .M : A using the rule
(abs) (which is permitted since we have ordA ≤ ord Γ).



Chapter 3. The Safe Lambda Calculus 61

Proposition 3.1.2. An annotated term M ∈ ΛT is safe if and only if its η-long normal form
is safe; formally:

Γ `s M : B ⇐⇒ Γ `s dMe : B .

Proof.

(If): Γ `s dMe : T =⇒ Γ `l dMe : T By Lemma 3.1.13 (only if),

=⇒ Γ `s dMe : T By Lemma 3.1.13 (if).

(Only if): Γ `s M : T =⇒ Γ `l dMe : T By Lemma 3.1.13 (only if),

=⇒ Γ `s dMe : T By Lemma 3.1.10.

3.1.4 Almost safety

We now give an alternative presentation of the safe lambda calculus. Consider the Curry-style
system of rules of Table 3.3. (The Church-style version of this system is obtained by annotating
the λ-binder in the abstraction rule.)

(varas)
Γ `̀ app x : A

x : A ∈ Γ (wkas)
Γ `̀ app M : A

∆ `̀ app M : A
Γ ⊂ ∆ (wk)

Γ `s M : A

∆ `s M : A
Γ ⊂ ∆

(appas)
Γ `̀ app M : A→ B Γ `s N : A

Γ `̀ app M N : B
(absas)

Γ, x : A `̀ M : B

Γ `̀ λx.M : A→ B

(δ)
Γ `s M : A

Γ `̀ app M : A
(δ′)

Γ `̀ app M : A

Γ `̀ M : A
(ρ)

Γ `̀ M : A

Γ `s M : A
ord Γ ≥ ordA .

Table 3.3: Alternative definition of the safe lambda calculus à la Curry.

It is easy to see that these (Curry-style and Church-style) systems of rules are equivalent to
the ones from Def. 3.1.1 in the sense that they generate the same set of judgments of the form
Γ `s M : T . The above systems, however, have the advantage of decomposing the application
and abstraction rules into atomic steps where only one variable is abstracted at a time and only
two terms are applied together at a time.

Definition 3.1.9. Terms typed with the entailment operator `̀ are called almost safe terms.
Terms typed with the entailment operator `̀ app are called almost safe applications.

The intuition behind these rules is that almost safe terms represent terms that are not safe
but which can become safe if sufficiently many safe terms are applied to them or if sufficiently
many variables are abstracted. The rule (appas) is used to form applications in which each
applied term is safe:

Lemma 3.1.14.

1. If Γ `̀ app M : T then M ≡ N0 . . . Nm for some m ≥ 0 where Ni is safe for every 0 ≤ i ≤ m;

2. If Γ `̀ M : T then M ≡ λx1 . . . xn.N0 . . . Nm for some n,m ≥ 0 where Ni is safe for every
0 ≤ i ≤ m.

This result follows immediately from the definition of the rules.
The rule (absas) is nothing less than the standard abstraction rule of the lambda calculus.

As soon as the context and the type of the term being formed respect the safety condition (i.e.,
all the context variables have order greater than the order of the type), the term can be marked
as safe. This is done using the rule (ρ). Together with the rule (δ′) this implies that the closure
of an almost safe term is always safe:



62 Chapter 3. The Safe Lambda Calculus

Lemma 3.1.15. Γ `̀ app M : T ∧ dom(Γ) = FV (M) =⇒ `s closure(M) : T .

The two weakening rules (wk) and (wkas) permit one to extend the context of a safe term
or an almost safe application. We could have added a third rule to allow weakening for almost
safe terms Γ `̀ M : T as well. This is however not necessary because this kind of weakening can
always be eliminated. (In particular if the term is an abstraction then we can instead apply the
rule (wkas) just before the abstraction rule).

An annotated term is almost safe if and only if its eta-long normal form is safe:

Lemma 3.1.16. Let M ∈ ΛT. Then Γ `̀ M : T if and only if Γ `̀ ηlnf(M) : T .

Proof. Only if: Let Γ `̀ M : T be an almost safe term. We proceed by induction on M .
Suppose that the last rule used is (δ′). Then by Lemma 3.1.14 M is an application N0N1 . . . Nk :
(A1, . . . , An) with k ≥ 0. Let ϕi for i ∈ {1..n} be fresh variables, using the rules (varas), (wkas),
(appas) and (absas) we can build the almost safe term Γ `̀ λϕA1

1 . . . ϕAn
n .N0N1 . . . Nkϕ1 . . . ϕn : T .

If the last rule used is (δ) then M is safe therefore by Proposition 3.1.2, its eta-long normal
form is safe and therefore by (δ) it is also almost safe.

If the last rule used is (absas) then by the induction hypothesis the eta-long nf of the premise
is almost safe so we can conclude using (absas).

If: It is again a proof by structural induction on the eta-long normal form. The basic idea
is that we can “peal-off” applications of the rules (absas) and (appapp) introduced during the
eta-expansion.

The two preceding lemmas show that the closure of the eta-long normal form of an almost
safe term is safe. This explains the expression “almost safe”: an almost safe is semantically
safe in the sense that it is (extensionally) equivalent to a safe term; on the other hand it is
syntactically unsafe since it cannot appear as an operand of an application inside a larger safe
term.

Lemma 3.1.17 (Safe beta reduction preserves almost safety). Let M →βs
M ′. Then

Γ `̀ M : A =⇒ Γ `̀ M ′ : A .

Proof. Suppose that M →βs
M ′ and Γ `̀ M : A. By Lemma 3.1.14, M ≡ λx1 . . . xn.N0 . . . Nm

for some n,m ≥ 0 where Ni is safe for every 0 ≤ i ≤ m. There are two cases: If the redex
occurs in some Ni for 0 ≤ i ≤ m then we have N ≡ λx1 . . . xn.N0 . . . N

′
i . . . Nm where Ni →βs

N ′
i

for some N ′
i . Since safety is preserved by safe reduction (Lemma 3.1.9), N ′

i is safe. Hence we
can conclude using the application and abstraction rule. The second case is when the redex
is N1 . . . Nq for some 1 ≤ q ≤ m. This means that N0 is of the form λy1 . . . yq.P for some
safe term P , and M ′ ≡ P [N1/y1 . . . Nq/yq]Nq+1 . . . Nm. The Substitution Lemma 3.1.6 and the
application and abstraction rules permit us to conclude.

3.1.5 Safety with respect to other type-ranking functions

We call type-ranking function any function rank : T −→ (L,≤) mapping the set T of simple
types over a set of atomic types A to some preorder (L,≤).

Example 3.1.6. The followings are examples of type-ranking functions T −→ (N,≤):

• The type-order defined by ord(α) = 0 for α ∈ A, and ord(A → B) = max(ord(A) +
1, ord(B));

• The height defined by height(A→ B) = 1+ max(height(A),height(B)) and height(α) = 0
for α ∈ A;

• The type-arity defined by arity(A→ B) = 1 + arity(B) and arity(α) = 0 for α ∈ A;
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• The size defined by size(α) = 0 for α ∈ A and size(A→ B) = size(A) + size(B).

The pairing of two type-ranking functions is also a type-ranking function. For instance the pair-
ing 〈ord, arity〉 : T −→ (N×N,≤) is a type-ranking function where ≤ denotes the lexicographic
ordering.

We have defined the safe lambda calculus as a restriction on the simply-typed lambda calculus
obtained by restricting the occurrences of variables according to their order. Would it make
sense to define a version of the safe lambda calculus where the constraint relies on a different
type-ranking function?

In the safe lambda calculus, the application and abstraction rules permit us to perform
multiple abstraction or application at a time. For the abstraction rule, the idea is that the
side-condition might not be satisfied after one abstraction but it may become after consecutive
abstractions, and similarly for the application rule. So by design, the typing system implic-
itly assumes that abstracting variables increases the order of the term’s type, and inversely
performing application decreases its order:

rank(A→ B) ≥ rank(B) . (3.1)

On the other hand, in order to prove the No-variable-capture Lemma we need the following
property:

rank(A→ B) > rank(A) . (3.2)

The minimal function satisfying the two previous equations is precisely the function ord
(i.e., any function rank : T −→ (L,≤) satisfying (3.1) and (3.2) is greater than ord by pointwise
ordering). Hence the typing-system defining the safe lambda calculus is only of interest if the
ranking function used is the type-order function ord.

3.1.6 Homogeneous safe lambda calculus

Our version of the safe lambda calculus does not make any assumption on types. In its original
form however—in the setting of higher-order grammars—the safety restriction makes a further
assumption on types called homogeneity. We recall from Sec. 2.2.2 that a type (A1, . . . An, o)
is said to be homogeneous whenever ordA1 ≥ ordA2 ≥ . . . ≥ ordAn and each of the Ai
is homogeneous. As defined in Sec. 3.1.1, the homogeneous safe lambda calculus denotes the
restriction of the safe lambda calculus where types occurring in the derivation trees are all
homogeneous. We now give a presentation of this calculus by means of a proper system of rules
in which type homogeneity is implicitly enforced by the typing rules themselves.

We call stratified context any context of the form x11 : A11, · · · , x1r : A1r, x21 : A21, . . .
such that variables are listed in decreasing order and such that for every k, l and i > j, ordxik >
ordxjl. In other words, the context is stratified into lists of variables of the same orders, and the
stratifications are arranged in strict decreasing order. Such stratified context will be abbreviated
as

x1 : A1 | · · · |xn : An .

For every unstratified context Γ, we write strat(Γ) to denote any possible valid stratification of
Γ.

Definition 3.1.10. We define typing judgements of the form: x1 : A1 | · · · |xn : An `h M : B
by induction over the following rules:

(h-const)
`h f : A

f : A ∈ Σ (h-var)
x1 : A1 | · · · |xn : An `h xij : Aij

(δ)
Γ `h M : A

Γ `̀ h.app M : A

(h-wk)
Γ `h M : B Γ ⊂ ∆

∆ `h M : B
(perm)

Γ `h M : B σ(Γ) homogeneous

σ(Γ) `h M : B
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(h-appas)
Γ `h s : (A1, . . . , An, B) Γ `h t1 : A1 . . . Γ `h tn : An

Γ `̀ h.app s t1 . . . tn : B

(h-appstrat)
Γ `h N0 :

(
B11, . . . , B1l |B2 | · · · |Bm | o

)
Γ `h N1 : B11 . . . Γ `h Nl : B1l

Γ `h N0N1 · · ·Nl : (B2 | · · · |Bm | o)

(h-apppartial)
Γ `h M :

(
B11, . . . , B1l |B2 | · · · |Bm | o

)
Γ `h N : B11

Γ `h MN : (B12, . . . , B1l |B2 | · · · |Bm | o)
ord Γ > ordB11

(h-abs)
x1 : A1 | · · · |xp+1 : Ap+1 | · · · |xn : An `̀ h.app M : B

x1 : A1 | · · · |xp : Ap `h λxp+1 . . . xn.M : (Ap+1 | . . . |An |B)
ordAn ≥ ordB − 1

where ∆ is an homogeneously-typed alphabet, Σ is a set of homogeneously-typed constants, and
σ ranges over permutations on lists of type-assignments.

The main changes compared to the rules of the non-homogeneous safe lambda calculus are:

(i) The contexts are stratified;

(ii) All the types appearing in the rule are homogeneous;

(iii) The rule (h-appas) is the counterpart of rule (appas) in the safe lambda calculus: you can
form an homogeneous almost safe term by applying several safe terms together;

(iv) The original application rule (app) is split into two rules: (a) (h-appstrat) is a “stratified
application”. It applies an entire level of the type stratification. Because of type homo-
geneity, sufficiently many terms are applied to make the order of the term decrease, so no
side-condition is necessary. (b) (h-apppartial) is a partial application: it applies only two
terms together provided that some condition on types is satisfied;

(v) Type-homogeneity constrains the order in which the variables are abstracted: in the rule
(h-abs), if a variable of a given order is abstracted then all the lower layers in the stratified
context need to be abstracted as well;

(vi) Because of the previous point and because contexts are stratified, the side-condition present
in the rule (abs) of the original safe lambda calculus is always satisfied and is not required
here. Instead the side-condition in (h-abs) ensures that the type (An|B) is homogeneous.

Lemma 3.1.18 (Basic properties). Let Γ `h M : B be a valid judgment then

(i) B is homogeneous;

(ii) ∀z : A ∈ Γ : z ∈ FV (M) =⇒ ordA ≥ ordB;

(iii) (Context reduction) ΓM `h M : B where ΓM = {z : A ∈ Γ | z ∈ FV (M)}.

Proof. (i) and (ii) are proved by a trivial induction. (iii) Variables in Γ not occurring free in M
are necessarily introduced by the weakening rule. The derivation of ΓM `h M : A can thus be
obtained by removing all the unnecessary applications of the weakening rule from the derivation
tree of Γ `h M : A.

Proposition 3.1.3. The judgement strat(Γ) `h M : T (resp. strat(Γ) `̀ h.app M : T ) is valid
if and only if there is a derivation tree for Γ `s M : T (resp. Γ `̀ app M : T ) in the Curry-style
safe lambda calculus (Def. 3.1.1) such that all the types appearing in the derivation tree are
homogeneously-typed.
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Proof. Only if : The proof is by a trivial structural induction on Γ `h M : T . If : We proceed
by structural induction on the derivation tree of Γ `s M : T . The cases (var), (const), (wk) and
(appas) are trivial. Suppose that the rule (app) is used. Then we can form the equivalent homo-
geneous term by using the I.H. and applying (appstrat) several times followed by one application
of (apppartial).

Abstraction: The sequent is of the form Γ `s λx1 . . . xn.s : (A1, . . . , An, B) with ord Γ ≥
ord (A1, . . . , An, B). By the induction hypothesis we have strat(Γ, x1 : A1, . . . , xn : An) `̀ h.app

s : B. Since we have ordΓ ≥ ord (A1, . . . , An, B), all the variables in Γ have order strictly greater
than the variables x1, . . . , xn. Therefore there exists a stratification of Γ, x1, . . . , xn of the form

strat(Γ) | y1 : Y1 | · · · | yl : Yl

for some l ≥ 1 such that the sequence of variables y1, . . . , yl is equal to x1, . . . , xn. Hence using
the permutation rule (perm) we can form the judgment

strat(Γ) | y1 : Y1 | · · · | yl : Yl `̀ h.app s : B .

We can now apply the rule (h-abs) to form strat(Γ) `̀ h.app λx1 . . . xn.s : (A1, . . . , An, B). The
side-condition of the rule is satisfied because (A1, . . . , An, B) is homogeneous by assumption.

Example 3.1.7.
(i) The untyped term (λfx.x)gy is homogeneously safe. One possible derivation is:

(appstrat)

(wk)

(appstrat)

(wk)

(abs)

(wk)

(abs)

(δ)

(var)
x : o `h x : o

`̀ h.app x : o

`h λx.x : 1

f : (o, o) `h λx.x : 1

`h λfx.x : (1, o, o)

g : (o, o) `h λfx.x : (1, o, o) g : 1 `h g : 1
(var)

g : 1 `h (λfx.x)g : 1

g : 1, y : o `h (λfx.x)g : 1

y : o `h y : o
(var)

g : 1, y : o `h y : o
(wk)

g : 1, y : o `h (λfx.x)gy : o

(ii) The annotated-terms λg(o,(o,o),o)xo.gx and λg(o,(o,o),o)xo.gx(λx.x) are both safe but not
homogeneously safe because they are not homogeneously typed. This shows that the safe lambda
calculus strictly contains the homogeneous safe lambda calculus.

(iii) The annotated-term λx0f1ϕ2.ϕ is safe but not homogeneously safe because its type
(0, 1, 2, 2) is not homogeneous. On the other hand, the untyped term λxfϕ.ϕ is homogeneously
safe because the annotation λx0f0ϕ0.ϕ is safe and homogeneously typed.

Example 3.1.8. Take the following term:

E ≡ (λa.a(λb.a(λcd.d)))(λe.e(λf.f)) .

(It was used by Sereni [Ser05] as a counter-example to show that not all simply-typed terms
are size-change terminating [LJBA01].) The untyped term E is universally safe. Indeed, let
E′ ∈ ΛT be a type-annotation of E (i.e., |E′| = E) such that E′ is typable in the Church
simply-typed lambda calculus. Then it is easy to check that we have

`Ch E
′ : A→ A
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for some type A ∈ T (and thus E has for principal type α → α) and the type assignments for
the bound variables in E′ are of the form:

a : C → A→ A

b : B → B

c : B → B

d : A

e : C ≡ (B → B)→ A→ A

f : B

for some for some types A,B ∈ T (not necessarily atomic). It is then an easy exercise to check
that for every type A,B ∈ T, we can form the following term-in-context:

`s E
′ : A→ A .

On the other hand, E is only homogeneously safe (and not universally homogeneously safe).
More precisely, its annotation E′ is homogeneously safe if and only if ordB ≥ ordA−1. Formally:

`h E
′ : A→ A ⇐⇒ ordB ≥ ordA− 1 .

(In particular, the condition in the right-hand side implies that A, B and the types of a, b, c, d, e, f
are all homogeneous.)

Remark 3.1.7 (Related work) In her thesis, de Miranda proposed a different notion of safe
lambda calculus [dM06]. This notion corresponds to (a less general version of) our notion of ho-
mogeneous safe lambda calculus: the applicative fragment (i.e., without lambda-abstraction) of
de Miranda’s typing system coincides with the applicative fragment of the system of Def. 3.1.10.
In particular a version of Proposition 3.1.1 is shown by de Miranda [dM06]. In the pres-
ence of lambda abstraction, however, our system is less restrictive. For instance the judgment
`h λf

(o,o,o)xo.fx : (o, o) is derivable in the homogeneous safe lambda calculus but not in the
safe lambda calculus à la de Miranda. One can show that the system introduced by de Miranda
is in fact equivalent to the fragment of the long-safe lambda calculus (Def. 3.1.8) restricted to
homogeneous types.

3.2 Complexity

This section is concerned with the complexity of the beta-eta equivalence problem for the safe
lambda calculus: Given two safe lambda-terms, are they equivalent up to βη-conversion?

Let exph(m) denote the tower of exponential function defined by:

exp0(m) = m

exph+1(m) = 2exph(m) .

Recall that a program is elementary recursive if its run-time can be bounded by expK(n) for
some constant K where n is the length of the input.

3.2.1 Statman’s result

A famous result by Statman states that deciding the βη-equality of two first-order typable
lambda-terms is not elementary recursive [Sta79b]. The proof proceeds by encoding the Henkin
quantifier elimination of type theory in the simply-typed lambda calculus. Simpler proofs have
subsequently been given: one by Mairson [Mai92] and another by Loader [Loa98a]. Both proceed
by encoding the Henkin quantifier elimination procedure in the lambda calculus, as in the original
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proof, but their use of list iteration to implement quantifier elimination makes them much easier
to understand.

It turns out that all these encodings rely on unsafe terms: Statman’s encoding uses the
conditional function sg which is not definable in the safe lambda calculus [BO07]; Mairson’s
encoding uses unsafe terms to encode both quantifier elimination and set membership, and
Loader’s encoding uses unsafe terms to build list iterators. We are thus led to conjecture that
finite type theory (see definition in Sec. 3.2.2) is intrinsically unsafe in the sense that every
encoding of it in the lambda calculus is necessarily unsafe. Of course this conjecture does not
rule out the possibility that another non-elementary problem is encodable in the safe lambda
calculus.

We start this section by presenting an adaptation of Mairson’s encoding. We show that
quantifier elimination can be safely encoded and explain why it is problematic to encode set-
membership safely. We will then use this encoding to interpret the True Quantifier Boolean
Formula (TQBF) problem in the safe lambda calculus, thus showing that deciding beta-eta
equality is PSPACE-hard.

3.2.2 Mairson’s encoding

We recall the definition of finite type theory. We define D0 = {true, false} and Dk+1 =
powerset(Dk). For k ≥ 0, we write xk, yk and zk to denote variables ranging over Dk. Prime
formulae are x0, true ∈ y1, false ∈ y1, and xk ∈ yk+1. Formulae are built up from prime
formulae using the logical connectives ∧, ∨, →, ¬ and the quantifiers ∀ and ∃. Meyer showed
that deciding the validity of such formulae requires nonelementary time [Mey74].

In Mairson’s encoding, boolean values are encoded by terms of type B = σ → σ → σ for
some type σ, and variables of order k ≥ 0 are encoded by terms of type ∆k defined as ∆0 ≡ B

and ∆k+1 ≡ ∆k
∗ where for every type α, α∗ = (α → τ → τ) → τ → τ for some type τ . Using

this encoding, unsafety manifests itself in two different ways.

1. First in the encoding of set membership. The prime formula xk ∈ yk+1 is encoded as

xk : ∆k, y
k+1 : ∆k+1 `st y

k+1(λyk : ∆k.OR(eqk x
k yk) F : ∆k → ∆k+1 → ∆0 (3.3)

for some terms OR, F , eqk. This term is unsafe because of the underline occurrence of xk

which is not abstracted together with yk.

2. Secondly, quantifier elimination is performed using a list iterator Dk+1 of type ∆k+2 which
acts like the fold right function from functional programming over the list of all elements of
Dk. Thus for instance the formula ∀x0.∃y0.x0 ∨ y0 is encoded as

`st D0(λx
0 : ∆0.AND(D0(λy

0 : ∆0.OR(x0 ∨ y0))F )) T : B

where the type τ is instantiated as B. This term is unsafe since the underlined occurrence is
unsafely bound. This is due to the presence of two nested quantifiers in the formula, which are
encoded as two nested list iterations. More generally, nested binding will be encoded safely if
and only if every variable x in the formula is bound by the first quantifier ∃z or ∀z in the path
to the root of the AST of the formula satisfying ord z ≥ ordx. For instance, assuming that
set-membership can be encoded safely, the interpretation of ∀xk.∃yk+1.xk ∈ yk+1 is unsafe
whereas the encoding of ∀yk+1.∃xk.xk ∈ yk+1 is safe.

Surprisingly, the ‘unsafety’ of the quantifier elimination procedure can be easily overcome.
The idea is as follows. We introduce multiple domains of representation for formulae. An element
of Dk is thereby represented by countably many terms of type ∆n

k where n ∈ N indicates the
level of the domain of representation. The type ∆n

k is defined in such a way that its order
strictly increases as n grows. Furthermore, there exists a term that can lower the domain of
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representation of a given term. Thus each formula variable can have a different domain of
representation, and since there are infinitely many such domains, it is always possible to find an
assignment of representation domains to variables such that the resulting encoding term is safe.

For set-membership, however, there is no obvious way to obtain a safe encoding. In order to
turn Mairson’s encoding of set-membership (3.3) into a safe term, we would need to have access
to a function that changes the domain of representation of an encoded higher-order value of the
type-hierarchy. Unfortunately, such transformation is intrinsically unsafe!

We now present the encoding in details.

3.2.2.1 Encoding basic boolean operations

Let o be a base type and define the family of types σ0 ≡ o, σn+1 ≡ σn → σn satisfying ordσn = n.
Booleans are encoded over domains Bn ≡ σn → o → o → o for n ≥ 0, each type Bn being of
order n + 1. We write in+1 to denote the term λxσn .x : σn+1 for n ≥ 0. The truth values true
and false are represented by the following closed terms parameterized by n ∈ N:

T n ≡ λuσnxoyo.x : Bn

Fn ≡ λuσnxoyo.y : Bn .

Clearly these terms are safe. Moreover the following relations hold for all n, n′ ≥ 0:

λuσn′ .T n+1 in+1 →β T
n′

λuσn′ .Fn+1 in+1 →β F
n′

.

It is then possible to change the domain of representation of a Boolean value from a higher-level
to another arbitrary level using the conversion term:

Cn+17→n′

0 ≡ λmBn+1uσn′ .m in+1 : Bn+1 → Bn′

so that if a term M of type Bn, for n ≥ 1, is beta-eta convertible to T n (resp. Fn) then Cn 7→n′

0 M
of type Bn′ is beta-eta convertible to T n

′

(resp. Fn
′

).
Observe that although Cn+17→n′

0 is safe for all n, n′ ≥ 0, if we apply a variable to it then the
resulting term

x : Bn+1 `st Cn+17→n′

0 x : Bn

is safe if and only if ordBn+1 ≥ ordBn′ , that is to say if and only if the transformation decreases
the domain of representation of x.

Boolean functions are encoded by the following closed safe terms parameterized by n:

ANDn ≡ λpBnqBnuσnxoyo.p u (q u x y) y : Bn → Bn → Bn

ORn ≡ λpBnqBnuσnxoyo.p u x (q u x y) : Bn → Bn → Bn

NOT n ≡ λpBnuσnxoλyo.p u y x : Bn → Bn → Bn .

3.2.2.2 Coding elements of the type hierarchy

For every n ∈ N we define the hierarchy of type ∆n
k as follows: ∆n

0 ≡ Bn and ∆n
k+1 ≡ ∆n

k
∗

where for every type α, α∗ = (α → τ → τ) → τ → τ . An occurrence of a formula variable
xk will be encoded as a term variable xk of type ∆n

k for some level of domain representation
n ∈ N. Following Mairson’s encoding, each set Dk is represented by a list Dn

k consisting of all
its elements:

Dn
0 ≡ λc

Bn→τ→τeτ .c T n (c Fn e) : ∆n
1

Dn
k+1 ≡ powerset Dn

k : ∆n
k+2
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where

powerset ≡ λA∗(α→α∗∗→α∗∗)→α∗∗→α∗∗

.

A∗ double (λcα
∗→τ→τbτ .c (λc′α→τ→τ b′τ .b′) b)

: ((α→ α∗∗ → α∗∗)→ α∗∗ → α∗∗)→ α∗∗

double ≡ λxα l(α
∗→τ→τ)→τ→τ cα

∗→τ→τ bτ .

l(λeα
∗

.c (λc′α→τ→τ b′τ .c′ x (e c′ b′)))(l c b)

: α→ α∗∗ → α∗∗ .

In all these terms, the only variable occurrence that is potentially unsafe is the underlined
occurrence x in double. This occurrence is safely bound just when ordα ≥ ord τ . Consequently
for all k, n ≥ 0, Dn

k is safe if and only if ordα ≥ ord τ .

3.2.2.3 Quantifier elimination

Terms of type ∆n
k+1 are now used as iterators over lists of elements of type ∆n

k and we set τ ≡ Bn
in the type ∆n

k+1 in order to iterate a level-n Boolean function. Since ord∆n
k ≥ ord Bn for all

n, all the instantiations of the terms Dn
k will be safe. Following [Mai92], quantifier elimination

interprets the formula ∀xk.Φ(xk) as the iterated conjunction:

Cn 7→0
0

(
Dn
k(λx

k : ∆n
k .AND

n(Φ̂ xk))T n
)
,

where Φ̂ is the interpretation of Φ and n is the representation level chosen for the variable xk.

Similarly we interpret ∃xk.Φ(xk) by the disjunction Cn 7→0
0

(
Dn
k(λx

k : ∆n
k .AND

n(Φ̂xk))T n
)
.

3.2.2.4 Encoding the formula

Given a formula of type theory, it is possible to encode it in the lambda calculus by inductively
applying the above encodings of boolean operations and quantifiers on the formula; each variable
occurrence in the formula being assigned some domain of representation.

We now show that there exists an assignment of representation domains for each variable

occurrence such that the resulting term is safe. Let x
kp
p . . . xk11 for p ≥ 1 be the list of variables

appearing in the formula, given in order of appearance of their binder in the formula (i.e., x
kp
p is

bound by the leftmost binder). We fix the domain of representation of each variable as follows.
The right-most variable xk11 will be encoded in the domain ∆0

k1
; and if for 1 ≤ i < p the domain

of representation of xki

i is ∆l
kl

then the domain of representation of x
ki+1

i+1 is defined as ∆l′

ki+1

where l′ is the smallest natural number such that ord ∆l′

ki+1
is strictly greater than ord∆l

ki
.

This way, since variables that are bound first have higher order, variables that are bound in
nested list-iterations (corresponding to nested quantifiers in the formula) are guaranteed to be
safely bound.

Example 3.2.1. The formula ∀x0.∃y0.x0 ∨ y0, which is encoded by an unsafe term in Mairson’s
encoding, is represented in our encoding by the safe term:

`s C17→0
0

(
D1

0 (λx0 : ∆1
0.AND

0(D0
0 (λy0 : ∆0

0.OR
0(OR0 (C17→0

0 x0) y0)) F 0)) T 1
)

: B0 .

3.2.2.5 Set-membership

To complete the interpretation of prime formulae, we would need to show how to encode set
membership. The use of multiple domains of representation does not suffice to turn Mairson’s
encoding into a safe term. We would further need to have a version of the Booleans conversion
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term Cn+17→n′

0 generalized to higher-order sets. This transformation can be interpreted as the
simply-typed term:

Cn 7→n′

k+1 ≡ λm
∆n

k+1u∆n
k
→τ→τvτ .m(λz∆n

kwτ .u(Cn 7→n′

k z)w)v : ∆n
k+1 → ∆n′

k+1 .

Unfortunately this term is safe if and only if n = n′—the largest underlined subterm is safe
just when n ≥ n′ and the other underline subterm is safe just when n′ ≥ n—in which case the
transformation is of no interest.

This leads us to conjecture that the set-membership function is intrinsically unsafe.

If Cn 7→n′

k+1 were safely representable then the encoding would go as follows: We set τ ≡ B0

in the types ∆n
k+1 for all n, k ≥ 0 in order to iterate a level-0 Boolean function. Firstly, the

formulae “true ∈ y1” and “false ∈ y1” can be encoded by the safe terms y1(λx0.OR0 x0)F 0

and y1(λx0.OR0(NOT 0 x0))F 0 respectively. For the general case “xk ∈ yk+1” we proceed as in
Mairson’s proof [Mai92]: we introduce lambda-terms encoding set equality, set membership and
subset tests, and we further parameterize these encodings by a natural number n.

membern+1
k+1 ≡ λx

∆n+1
k y∆n+1

k+1 .(Cn+17→n
k+1 y) (λz∆n

k .OR0(eqnk (Cn+17→n
k x) z)) F 0

: ∆n+1
k → ∆n+1

k+1 → B0

subsetnk+1 ≡ λx
∆n

k+1y∆n
k+1.x (λx∆n

k .AND0(membernk+1 x y)) T
0

: ∆n
k+1 → ∆n

k+1 → B0

eqn0 ≡ λx
Bn .λyBn .Cn 7→0

0 (ORn(ANDn x y)(ANDn(NOT n x)(NOT n y)))

: Bn → Bn → B0

eqnk+1 ≡ λx
∆n

k+1 y∆n
k+1.(λop∆n

k+1→∆n
k+1→B0.AND0(op x y)(op y x)) subsetnk+1

: ∆n
k+1 → ∆n

k+1 → B0 .

The variables in the definition of eqnk+1 and subsetnk+1 are safely bounds. Moreover, the occur-

rence of x in membern+1
k+1 is now safely bound—which was not the case in Mairson’s original

encoding—thanks to the fact that the representation domain of z is lower than that of x. The
formula xk ∈ yk+1 can then be encoded as

x : ∆n
k , y : ∆n′

k+1 `st member
u
k+1 (Cn 7→u

k x) (Cn′ 7→u
k+1 y) : B0

for some n, n′ ≥ 2 and u = min(n, n′) + 1.
Unfortunately, this encoding is not completely safe because it uses the unsafe conversion

terms Cn 7→n′

k for k ≥ 1.

3.2.3 PSPACE-hardness

We observe that instances of the True Quantified Boolean Formulae satisfaction problem (TQBF)
are special instances of the decision problem for finite type theory. These instances corresponds
to formulae in which set membership is not allowed and variables are all taken from the base
domain D0. As we have shown in the previous section, such restricted formulae can be safely
encoded in the safe lambda calculus. Therefore since TQBF is PSPACE-complete we have:

Theorem 3.2.1. Deciding βη-equality of two safe lambda-terms is PSPACE-hard.

Example 3.2.2. Using the encoding where τ is set to B0 in the types ∆n
k for all k, n ≥ 0, the
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formula ∀x∃y∃z(x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z) is represented by the safe term:

`s D2
0(λx

B2 .AND0

(D1
0(λy

B1 .OR0

(D0
0(λz

B0 .OR0

(AND0(OR0(OR0 (C27→0
0 x) (C17→0

0 y))z)

(OR0(OR0(NEG0(C27→0
0 x))(NEG0(C17→0

0 y)))(NEG0 z)))

)F 0)

)F 0)

)T 0

: B0 .

Remark 3.2.1 The Boolean satisfaction problem (SAT) is just a particular instance of TQBF
where formulae are restricted to use only existential quantifiers, thus the safe lambda calculus is
also NP-hard. Asperti gave an interpretation of SAT in the simply-typed lambda calculus but
his encoding relies on unsafe terms [Asp].

3.2.4 Other complexity results

3.2.4.1 Better lower bound?

Since the safety condition restricts the expressivity of the lambda calculus in a non-trivial way,
one can reasonably expect the beta-eta equality problem (where types are not restricted) to have
a lower complexity in the safe case than in the normal case. Our failed attempt to encode type
theory in the safe lambda calculus suggests that the non-elementary lower bound that holds in
the simply-typed lambda calculus no longer applies in the safe lambda calculus. Nevertheless,
one may not rule out the possibility that another non recursive problem is encodable in the safe
lambda calculus.

We have shown that the problem is PSPACE-hard but this is probably a coarse lower bound.
It would be interesting to know whether it is also EXPTIME-hard.

3.2.4.2 Upper bound

At present, no upper bound is known for the equivalence problem for safe terms.

3.2.4.3 Beta-eta equivalence for terms limited to a finite set of types

Statman showed [Sta79b] that there exists a finite set of types such that the beta-eta equivalence
problem restricted to terms of these types is PSPACE-hard.

The picture is different in the safe lambda calculus since our encoding of TQBF requires the
full type hierarchy. It was indeed necessary to introduce variables of higher-order in order to
eliminate ‘unsafety’. Consequently, we had to use simple types of unbounded order (the order
is linear in the size of the QBF formula). We suspect the decidability problem for safe terms
restricted to any finite set of types to have a complexity lower than PSPACE.

3.2.4.4 Normalization

The normalization problem is: Given a term M , what is its β-normal form? This problem is
non-elementary even when restricted to safe terms as the following example shows. Let τ−2 ≡ o
and for n ≥ −1, τn ≡ τn−1 → τn−1. For k, n ∈ N we write k

n
to denote the kth Church Numeral
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parameterized by n as follows:

k
n
≡ λsτn−1zτn−2 .

k times︷ ︸︸ ︷
s(. . . (s(s z) . . .) : τn .

Then for n ≥ 1, the safe term 2
n−1

2
n−2

. . . 2
0

of type τ0 has length O(n) whereas its normal

form expn(1)
0

has length O(expn(1)).
Statman’s result shows that in the simply-typed lambda calculus, the beta-eta equality

problem is essentially as hard as the normalization problem: they are both non-elementary. It
is not known whether this is still the case in the safe lambda calculus. In particular, it may
be the case that the beta-eta equivalence problem is elementary although we know that the
normalization problem is not.

3.2.4.5 The beta-reduction problem

The beta-reduction problem is related to the beta-eta equivalence problem. It can be stated as
follows: Given a term M1 in β-normal form and a term M2 (possibly containing redexes), does
M2 β-reduce to M1?

Schubert gave a PSPACE algorithm to decide the β-reduction problem for order-3 lambda-
terms [Sch01]. Since order-3 terms are sufficient to encode TQBF in the lambda calculus, this
implies that the problem is PSPACE-complete. No complexity result is known for restrictions
of this problem to terms of order greater than 3. A natural question is whether complexity
characterizations can be obtained when restricting the problem to safe terms.

3.3 Expressivity

3.3.1 Numeric functions representable in the safe lambda calculus

Natural numbers can be encoded in the simply-typed lambda calculus using the Church Nu-
merals: each n ∈ N is encoded as the term n = λsz.snz of type I = ((o, o), o, o) where o is a
ground type. We say that a p-ary function f : Np → N, for p ≥ 0, is represented by a term
F : (I, . . . , I, I) (with p+ 1 occurrences of I) if for all mi ∈ N, 0 ≤ i ≤ p we have:

F m1 . . . mp =β f(m1, . . . ,mp) .

In 1976 Schwichtenberg [Sch76] showed the following:

Theorem 3.3.1 (Schwichtenberg 1976). The numeric functions representable by simply-typed
lambda-terms of type I → . . .→ I using the Church Numeral encoding are exactly the multivari-
ate polynomials extended with the conditional function.

If we restrict ourselves to safe terms, the representable functions are exactly the multivariate
polynomials:

Theorem 3.3.2. The functions representable by safe lambda-expressions of type I → . . . → I
are exactly the multivariate polynomials.

Proof. Natural numbers are encoded as the Church Numerals: n = λsz.snz for each n ∈ N.
Addition: For n,m ∈ N, n+m = λα(o,o)xo.(nα)(mαx). Multiplication: n.m = λα(o,o).n(mα).
These terms are safe and clearly any multivariate polynomial P (n1, . . . , nk) can be computed
by composing the addition and multiplication terms as appropriate.

For the converse, let U be a safe lambda-term of type I → I → I. The generalization to
terms of type In → I for every n ∈ N is immediate (they correspond to polynomials with n
variables). By Lemma 3.1.2, safety is preserved by η-long normal expansion therefore we can
assume that U is in η-long normal form.
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Let N τ
Σ denote the set of safe η-long β-normal terms of type τ with free variables in Σ, and

AτΣ for the set of β-normal terms of type τ with free variables in Σ and of the form ϕs1 . . . sm
for some variable ϕ : (A1, . . . , Am, o) where m ≥ 0 and for all 1 ≤ i ≤ m, si ∈ N

Ai

Σ . Observe
that the set AoΣ contains only safe terms but the sets AτΣ in general may contain unsafe terms.
Let Σ denote the alphabet {x, y : I, z : o, α : o → o}. The sets N 0

∅ is given by the following
grammar defined over the set of terminals Σ ∪ {λxyαz., λz.}:

N
(I,I,I)
∅ → λxyαz.AoΣ

AoΣ → z | A
(o,o)
Σ AoΣ

A
(o,o)
Σ → α | AIΣ N

(o,o)
Σ

N
(o,o)
Σ → λz.AoΣ
AIΣ → x | y .

The key rule is the fourth one: Had we not imposed the safety constraint the right-hand side

would instead be of the form λwo.A
(o,o)
Σ∪{w:o}. Here the safety constraint imposes to abstract all

the ground type variables occurring freely, thus only one free variable of ground type can appear
in the term and we can choose it to be named z up to α-conversion.

We extend the notion of representability to terms of type o, (o, o) and I with free variables
in Σ as follows: A function f : N2 → N is represented by a term Σ `st F : o if and only if for all

m,n ∈ N, F [m,n/x, y] =β α
f(m,n)z; by a term Σ `st G : (o, o) iff G[m,n/x, y] =β λz.α

f(m,n)z;

and by Σ `st H : I iff H[m,n/x, y] =β λαz.α
f(m,n)z.

We now show by induction on the grammar rules that any term generated by the grammar
represents some polynomial: The term x and y represent the projection functions (m,n) 7→ m
and (m,n) 7→ n respectively. The term α and z represent the constant functions (m,n) 7→ 1
and (m,n) 7→ 0 respectively. If F ∈ AoΣ represents the functions f then so does λz.F .

We make the following observations: for m, p, p′ ≥ 0 we have

1. m (λz.αpz) =β λz.α
m·pz;

2. (λz.αpz)(αp
′

z) =β α
p+p′z.

Now suppose that F ∈ AIΣ and G ∈ N
(o,o)
Σ represent the functions f and g respectively then

by the previous observation, FG represents the function f × g. And if F ∈ A
(o,o)
Σ and G ∈ N o

Σ

represent the functions f and g then FG represents the function f + g.
Thus U represents some polynomial as required: for all m,n ∈ N we have U m n =β

λαz.αp(m,n)z where p(m,n) =
∑

0≤k≤dm
iknjk for some ik, jk ≥ 0, d ≥ 0.

Corollary 3.3.3. The conditional operator C : I → I → I → I satisfying:

C t y z →β

{
y, if t→β 0 ;
z, if t→β n+ 1 .

is not definable in the simply-typed safe lambda calculus.

Example 3.3.1. The term λFGHαx.F (λy.Gαx)(Hαx) used by Schwichtenberg [Sch76] to de-
fine the conditional operator is unsafe since the underlined subterm, which is of order 1, occurs
at an operand position and contains an occurrence of x of order 0.

Remark 3.3.1

1. This corollary tells us that the conditional function is not definable when numbers are
represented by the Church Numerals. It may still be possible, however, to represent the
conditional function using a different encoding for natural numbers. A possible way to
compensate for the loss of expressivity caused by the safety constraint consists in intro-
ducing countably many domains of representation for natural numbers. Such a technique
is used to represent the predecessor function in the simply-typed lambda calculus [FLO83].
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2. There are other ways to interpret conditional in the lambda calculus. For instance the
(unsafe) lambda-term λtxy.(C t 0 1)(λu.y)x of type I → o → o → o behaves like the
conditional operator C. It can be shown that there is no such term in the safe lambda
calculus simply because the only safe terms of type I → o→ o→ o up to αβη-equivalence
are λtxy.x and λtxy.y.

3. The boolean conditional can be represented in the safe lambda calculus as follows: we en-
code booleans by terms of type B = ((o, o), o, o). The two truth values are then represented
by λxoyo.x and λxoyo.y and the conditional by λFBGBHB.F G H.

4. It is also possible to define a conditional operator behaving like the conditional operator C
in the second-order lambda calculus [FLO83]: natural numbers are represented by terms
n ≡ Λt.λst→tzt.sn(z) of type J ≡ ∆t.(t→ t)→ (t→ t) and the conditional is encoded by
the term λF JGJHJ .F J (λuJ .G) H. Whether this term is safe or not cannot be answered
just yet as we do not have a notion of safety for second-order typed terms.

3.3.2 Word functions definable in the safe lambda calculus.

Schwichtenberg’s result on numeric functions definable in the lambda calculus was extended to
richer structures: Zaionc studied the problem for words functions, then functions over trees and
eventually the general case of functions over free algebras [Lei93, Zai91, Zai88, Zai87, Zai95]. In
this section we consider the case of word functions expressible in the safe lambda calculus.

We consider equality of terms modulo α, β and η conversion, and we write M =βη N to
denote this equality. For every simple type τ , we write Cl(τ) for the set of closed terms of type
τ (modulo α, β and η conversion). We consider a binary alphabet Σ = {a, b}. The result that
we are about to show naturally extends to all finite alphabets. We consider the set Σ∗ of all
words over Σ. The empty word is denoted ε. We write |w| to denote the length of the word
w ∈ Σ∗. For every k ∈ N we write k to denote the word a . . . a with k occurrences of a, so
that |k| = k. For every n ≥ 1 and k ≥ 0, we write c(n, k) for the n-ary function (Σ∗)n → Σ∗

that maps all inputs to the word k. The function app : (Σ∗)2 → Σ∗ is the usual concatenation
function: app(x, y) is the word obtain by concatenating x and y. The substitution function
sub : (Σ∗)3 → Σ∗ is defined as follows: sub(x, y, z) is the word obtained from x by substituting
the word y for all occurrences of a and z for all occurrences of b.

Take the type B = (o→ o)→ (o→ o)→ o→ o, called the binary word type [Zai87]. There
is a 1-1 correspondence between words over Σ and closed terms of type B: The empty word
ε is represented by λuvx.x, and if w ∈ Σ∗ is represented by a term W ∈ Cl(B) then a · w is
represented by λuvx.u(Wuvx) and b·w is represented by λuvx.v(Wuvx). The term representing
the word w is denoted by w. A closed term of type Bn → B is called a word function. We
say that the function on words h : (Σ∗)n → Σ∗ is represented by the term H ∈ Cl(Bn → B)
just if for all x1, . . . , xn ∈ B∗, Hx1 . . . xn = hx1 . . . xn.

Zaionc showed that there exists a finite base of word functions in the sense that every λ-
definable word function is some composition of functions from the base [Zai87]:

Theorem 3.3.4 (Zaionc [Zai87]). The set of λ-definable word functions is the minimal set
containing the following word functions and closed by composition:

• concatenation app;

• substitution sub;

• extraction of the maximal prefix containing only a given letter;

• non-emptiness check: returns 0 if the word is ε and 1 otherwise, as well as emptiness
check;
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• occurrence check: returns 1 if the word contain an occurrence of a given letter and 0
otherwise;

• first-occurrence check: tests whether the word begins with a given letter;

• all the projections;

• all the constant functions.

The lambda-terms representing the base functions are:

APP ≡ λcduvx.cuv(duvx) SUB ≡ λxdeuvx.c(λy.duvy)(λy.euvy)x

CUTa ≡ λcuvx.cu(λy.x)x CUTb ≡ λcuvx.c(λy.x)vx

SQ ≡ λcuvx.c(λy.ux)(λy.ux)x SQ ≡ λcuvx.c(λy.x)(λy.x)(ux)

BEGa ≡ λcuvx.c(λy.ux)(λy.x)x BEGb ≡ λcuvx.c(λy.x)(λy.ux)x

OCCa ≡ λcuvx.c(λy.ux)(λy.y)x OCCb ≡ λcuvx.c(λy.y)(λy.ux)x .

where APP represents concatenation, SUB substitution, SQ and SQ non-emptiness and empti-
ness checking, BEGa and BEGb first-occurrence test, and OCCa and OCCa occurrence test.

We observe that among these terms only APP and SUB are safe. All the other terms are
unsafe because they contain terms of the form N(λy.x) where x and y are of the same order. It
turns out that APP and SUB constitute a base of terms generating all the functions definable
in the safe lambda calculus as the following theorem states:

Theorem 3.3.5. Let λsafedef denote the minimal set containing the following word functions
and closed by composition:

• concatenation app;

• substitution sub;

• all the projections;

• all the constant functions.

The set of word-functions definable in the safe lambda calculus is precisely λsafedef.

The proof follows the same steps as Zaionc’s proof. The first direction is immediate: The
terms APP and SUB are safe and represent concatenation and substitution. Projections are
represented by safe terms of the form λx1 . . . xn.xi for some i ∈ {1..n}, and constant functions
by λx1 . . . xn.w for some w ∈ Σ∗. For composition, take a functions g : (Σ∗)n → Σ∗ represented
by safe term G ∈ Cl(Bn → B) and functions f1, . . . , fn : (Σ∗)p → Σ∗ represented by safe terms
F1, . . . Fn respectively then the function

(x1, · · · , xp) 7→ g(f1(x1, . . . , xp), . . . , fn(x1, . . . , xp))

is represented by the term λc1 . . . xp.G(F1c1 . . . cp) . . . (Fnc1 . . . cp) which is also safe.

To show the other directions we need to introduce some more definitions. We will write
Op(n, k) to denote the set of open terms M typable as follows:

c1 : B, . . . cn : B, u : (o, o), v : (o, o), xk−1 : o, . . . , x0 : o `st M : o .

Thus we have the following equality (modulo α, β and η conversions) for n, k ≥ 1:

Cl(τ(n, k)) = {λcB1 . . . c
B

n u
(o,o)v(o,o)xok−1 . . . x

o
0.M | M ∈ Op(n, k)}

writing τ(n, k) as a shorthand for the type Bn → (o, o)2 → ok → o. We generalized the notion
of representability to terms of type τ(n, k) as follows:
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Definition 3.3.1 (Function pair representation). A closed term T ∈ Cl(τ(n, k)) represents

the pair of functions (f, p) where f : (Σ∗)n → Σ∗ and p : (Σ∗)n → {0, . . . ,k− 1} if for all
w1, . . . , wn ∈ Σ∗ and for every i ∈ {0 . . . , k − 1} we have:

Tw1 . . . wn =βη λuvxk−1 . . . x0.f(w1, . . . , wn)uvx|p(w1,...,wn)| .

By extension we will say that an open term M from Op(n, k) represents the pair (f, p) just if
M [w1 . . . wn/c1 . . . cn] =βη f(w1, . . . , wn)uvx|p(w1,...,wn)|.

We will call safe pair any pair of functions of the form (w, c(n, i)) where 0 ≤ i ≤ k− 1 and
w is an n-ary function from λsafedef.

Theorem 3.3.6 (Characterization of the representable pairs). The function pairs representable
in the safe lambda calculus are precisely the safe pairs.

Proof. (Soundness). Take a pair (w, c(n, i)) where 0 ≤ i ≤ k − 1 and w is an n-ary function
from λsafedef. As observed earlier, all the functions from λsafedef are representable in the safe
lambda calculus: Let w be the representative of w. The pair (w, c(n, i)) is then represented by
the term λc1 . . . cnuvxk−1 . . . x0.wc1 . . . cnuvxi.

(Completeness) It suffices to consider safe β-η-long normal terms from Op(n, k) only. The
result then immediately follows for every safe term in Cl(τ(n, k)). The subset of Op(n, k)
consisting of β-η-long normal terms is generated by the following grammar [Zai87]:

(αki ) Rk → xi

(βk) | uRk

(γk) | vRk

(δkj ) | cj (

Qk(Rk+1)︷ ︸︸ ︷
λzk.Rk+1[zk, x0, . . . , xk−1/x0, x1, . . . , xk])

(λzk.Rk+1[zk, x0, . . . , xk−1/x0, x1, . . . , xk])

Rk

for k ≥ 1, 0 ≤ i < k, 0 ≤ j ≤ n. The notation M [. . . / . . .] denotes the usual simultaneous
substitution. The non-terminals are Rk for k ≥ 1 and the set of terminals is {zk, λzk | k ≥
1} ∪ {xi |i ≥ 0} ∪ {c1, . . . , cn, u, v}.

Each rule is given a name indicated in parenthesis. We identify a rule name with the right-
hand side of the corresponding rule, thus αki belongs to Op(n, k), βk and γk are functions from
Op(n, k) to Op(n, k), and δkj is a function from Op(n, k+1)×Op(n, k+1)×Op(n, k) to Op(n, k).

We now want to characterize the subset consisting of all safe terms generated by this
grammar. The term αki is always safe; βk(M) and γk(M) are safe if and only if M is; and
δkj (F,G,H) is safe if and only if Qk(F ), Qk(G) and H are safe. The free variables of Qk(F )
belong to {c1, . . . cn, u, v, x0, . . . xk} thus they have order greater than ord z except the xis
which have same order as z. Hence since the xis are not abstracted together with z we have
that Qk(F ) is safe if and only if F is safe and the variables x0 . . . xk do not appear free in
F [zk, x0, . . . , xk−1/x0, x1, . . . , xk], or equivalently if the variables x1 . . . xk do not appear free in
F . Similarly, Qk(G) is safe if and only if G is safe and the variables x1 . . . xk do not appear free
in G.

We therefore need to identify the subclass of terms generated by the non-terminal Rk which
are safe and which do not have any free occurrence of variables in {x1 . . . xk−1}. By imposing this
requirement to the rules of the previous grammar we obtain the following specialized grammar
characterizing the desired subclass:

(αk0) R
k
→ x0
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(β
k
) | uR

k

(γk) | vR
k

(δ
k

j ) | cj (λzk.R
k+1

[zk/x0]) (λzk.R
k+1

[zk/x0]) R
k
.

For every term M , Qk(M) is safe if and only if M can be generated from the non-terminal R
k
.

Thus the subset of Cl(τ(n, k)) consisting of safe beta-normal terms is given by the grammar:

(π̃k) S̃ → λc1 . . . cnuvxk−1 . . . x0.R̃
k

(α̃ki ) R̃k → xi

(β̃k) | uR̃k

(γ̃k) | vR̃k

(δ̃kj ) | cj (λzk.Rk+1[zk/x0]) (λzk.Rk+1[zk/x0]) R̃
k .

To conclude the proof it thus suffices to show that every term generated by this grammar
(starting with the non-terminal S̃) represents a safe pair.

We proceed by induction and show that the non-terminal R
k

generates terms representing
pairs of the form (w, c(n, 0)) while non-terminals S̃ and R̃k generate terms representing pairs of
the form (w, c(n, i)) for 0 ≤ i < k and w ∈λsafedef.

Base case: The term αk0 represents the safe pair (c(n, 0), c(n, 0)) while α̃ki represents the safe
pair (c(n, 0), c(n, i)). Step case: Suppose T ∈ Op(n, k) represents a pair (w, p). Then αk(T )

and α̃k(T ) represent the pair (app(a,w), p); β
k
(T ) and β̃k(T ) represent the pair (app(b, w), p);

and πk(T ) ∈ Cl(τ(n, k)) represents the pair (w, p). Now suppose that E, F and G represent the
pairs (we, c(n, 0)), (wf , c(n, 0)) and (wg, c(n, i)) respectively. Then we have:

δ̃kj (E,F,G)[w1 . . . wn/c1 . . . cn]

= wj (λzk.E[zk/x0])[w1 . . . wn/c1 . . . cn]

(λzk.F [zk/x0])[w1 . . . wn/c1 . . . cn]

G[w1 . . . wn/c1 . . . cn]

=βη wj (λzk.E[w1 . . . wn/c1 . . . cn][z
k/x0])

(λzk.F [w1 . . . wn/c1 . . . cn][z
k/x0])

(wg(w1 . . . wn) u v xi) G represents (h, c(n, i))

=βη wj (λzk.(we(w1 . . . wn) u v x0)[z
k/x0]) E represents (f, c(n, 0))

(λzk.(wf (w1 . . . wn) u v x0)[z
k/x0]) F represents (g, c(n, 0))

(wg(w1 . . . wn) u v xi)

=βη wj (λzk.we(w1 . . . wn) u v z
k)

(λzk.wf (w1 . . . wn) u v z
k)

(wg(w1 . . . wn) u v xi)

=η wj (we(w1 . . . wn) u v) (wf (w1 . . . wn) u v) (wg(w1 . . . wn) u v xi)

=βη w u v xi

where the word-function w is defined as

w : w1, . . . , wn 7→ app(sub(wj , we(w1, . . . , wn), wf (w1, . . . , wn)), wg(x1, . . . , wn)) .

Hence δ̃kj (E,F,G) represents the pair (w, c(n, i)).

The same argument shows that if E, F andG all represent safe pairs then so does δ
k

j (E,F,G).
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Theorem 3.3.5 is obtained by instantiating Theorem 3.3.6 with terms of types τ(n, 1) = In →
I: every closed safe term of this type represents some n-ary function from λsafedef.

3.4 Typing problems

In this section we consider the problems of type checking, typability and type inhabitation as
defined in Sec. 2.1 but recast in the safe lambda calculus:

• Type checking: Given a term M , context Γ and type A, do we have Γ `s M : A?

• Typability: Given a term M and context Γ, is there a type A such that Γ `s M : A?

• Inhabitation: Given a type A, is there a term M such that `s M : A?

We will restrict our attention to the Church-like safe lambda calculus. The results presented
here straightforwardly extend to the Curry version.

3.4.1 Relating derivations from ΛCu
→ and safe ΛCu

→

In this section we compare derivations obtained in the simply-typed lambda calculus with those
obtained in the safe lambda calculus. In order to ease the comparison, we introduce an alter-
native presentation of the simply-typed lambda calculus. The rules of this typing system are
given in Table 3.4. There are two main differences with the rules of Def. 2.1.10: 1. There is now
a weakening rule; 2. Simultaneous consecutive applications and abstractions can be performed
at once.

x : A `Cu x : A

Γ `Cu M : A

∆ `Cu M : A
Γ ⊂ ∆

Γ `Cu M : (A1, . . . , An, B) Γ `Cu N1 : A1 . . . Γ `Cu Nn : An
Γ `Cu M N1 . . . Nn : B

Γ, x1 : A1, . . . , xn : An `Cu M : B

Γ `Cu λx1 . . . xn.M : (A1, . . . , An, B)

Table 3.4: Alternative definition of the lambda calculus à la Curry.

The two presentations are clearly equivalent in the sense that Γ `Cu M : T is derivable in
this system iff it is derivable with the rules of Def. 2.1.10.

Convention 3.4.1 In order to make our derivations canonical, we adopt the following conven-
tion:

• a derivation cannot contain two consecutive applications of the weakening rule;

• when using the weakening rule, the context ∆ is chosen as small as possible so that for
every judgement Γ `Cu M : A appearing in the derivation that is not deduced from the
weakening rule we have FV (M) = dom(Γ).

We are interested in those derivations satisfying the following property: A deduction ∆ of
Γ `Cu M : T is compact if the set of terms appearing in the nodes of the deduction tree ∆
is precisely s̃ub(M). In other words in a compact deduction, each use of the application and
abstraction rule in the deduction is as “large” as possible so that each path in the deduction
tree consists of an axiom followed by an alternation of application/abstraction rules. Compact
derivations are sufficient: if there is derivation in ΛCu

→ then there is a compact derivation with the
same conclusion. We will write Dercu(Γ,M, T ) for the set of compact derivations of Γ `Cu M : T .
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Similarly, we define the notion of compact derivation in the safe lambda calculus. It is easy to
check that, despite the side-conditions imposed by the abstraction rule, the compact deductions
are sufficient. We write Ders(Γ,M, T ) for the set of compact deductions of Γ `s M : T in safe
ΛCu
→ .

We say that a deduction ∆ ∈ Dercu(Γ,M, T ) is safe if ord Γ ≥ ordT and for every term-in-
context Γ′ `st M : T ′ from ∆ that is deduced using the abstraction rule we have ord Γ′ ≥ ordT ′.

For every deduction tree ∆ in Ders(Γ,M, T ) we write ε(∆) to denote the deduction tree
obtained by replacing judgements Γ `s M : T by Γ `Cu M : T and rules of the safe lambda
calculus by their counterpart in the simply-typed lambda calculus (identifying (app) and (appas)).

Lemma 3.4.1 (Relating derivations from ΛCu
→ and safe ΛCu

→ ).

(i) ∆ ∈ Ders(Γ,M, T ) =⇒ ε(∆) ∈ Dercu(Γ,M, T ) ∧ ε(∆) is safe,

(ii) ∆′ ∈ Dercu(Γ,M, T ) ∧ ∆′ is safe. =⇒ ∃∆ ∈ Ders(Γ,M, T ) : ∆′ = ε(∆).

Proof. This follows immediately from the definition of safe ΛCu
→ .

3.4.2 Type checking and typability

By the Principal Type (PT) Theorem 2.1.4, if a term is typable then it has a computable
principal derivation: every other derivation is an instance of that derivation. The same result
holds for compact derivations:

Lemma 3.4.2 (Principal compact derivation). If M is typable in ΛCu
→ then is has a compact

principal derivation ∆ (i.e., any derivation ∆′ ∈ Dercu(Γ,M, T ) is an instance of ∆) that is
computable from M .

Proof. This follows immediately from Theorem 2.1.4. Compact derivations are just “reorga-
nized” derivations: for every standard derivation there exists a corresponding compact deriva-
tion containing the same typing assumptions. The compact principal derivations can be obtained
from the principal derivations by performing the very same “reorganization”.

Proposition 3.4.1. Type checking in safe ΛCu
→ is decidable.

Proof. Let M ∈ Λ, T ∈ T and Γ be a typing-context. We have Γ `s M : T iff Ders(Γ,M, T ) 6= ∅.
By Lemma 3.4.1, there is a derivation in Ders(Γ,M, T ) if and only if there is a safe derivation in
Dercu(Γ,M, T ). We already know that the Type checking problem in ΛCu

→ (“Is Dercu(Γ,M, T )
empty?”) is decidable. If Dercu(Γ,M, T ) is empty then we can answer ‘No’ to the type-checking
problem. Otherwise by the previous Lemma, we can compute a compact principal derivation ∆p

of Γ `s M : T and we know that there exists a safe derivation iff there exists a type-substitution
s for ∆p such that (i) s(∆p) is safe; (ii) the conclusion of s(∆p) is Γ `s M : T .

The latter property can be decided by unifying the types appearing in the conclusion of ∆p

with Γ and T . The former property turns out to be also decidable. Indeed, the deduction ∆p

contains finitely many atoms a1 . . . an ∈ A, n ≥ 1. Therefore the safety of s(∆p) can be expressed
in terms of a system of inequations over the order of the atoms occurring in ∆p. This system
can be reexpressed into a system of inequations S of the form xi > xj for i, j ∈ {1, .., q} and
variables x1, . . . , xq ∈ Z and such that for every atom ak, ord ak = xik for some ik ∈ {1, .., q}.

A substitution s satisfying the required property exists if and only if S has a solution. If the
solution to S is (x1, . . . , xq) then we take the substitution s = [(xk1)o/a1, . . . (xkn

)o/an] for some
fresh atom o ∈ A. (Observe that if (x1, . . . , xq) is a solution then so is (x1 + k, . . . , xq + k) for
k ≥ 0, therefore the xis can all be assumed to be positive.) The system S can then be solved
using a topological sorting algorithm [Knu00].

Proposition 3.4.2. Typability in safe ΛCu
→ is decidable.

Proof. The proof is the same as for Type Checking except that only condition (i) needs to be
decided.
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3.4.3 The type inhabitation problem

Statman showed that the problem of deciding whether a type defined over an infinite number
of ground atoms is inhabited (or equivalently of deciding validity of an intuitionistic implicative
formula) is PSPACE-complete [Sta79a]. In the safe lambda calculus, no complexity is known.
In fact it is not even clear whether the problem is decidable:

Proposition 3.4.3. Inhabitation in safe Λ→ is (at least) semi-decidable: Given a simple type,
there is an algorithm that prints out a safe inhabitant if there is one but may not terminate if
there is not.

Proof. Inhabitants are enumerated using Ben-Yelles’s counting algorithm [Hin97] and each in-
habitant can be tested for typability in safe Λ→ by Proposition 3.4.2.

It is well known that the simply-typed lambda calculus corresponds to intuitionistic im-
plicative logic via the Curry-Howard isomorphism. The theorems of the logic correspond to
inhabited types; further every inhabitant of a type represents a proof of the corresponding for-
mula. Similarly, we can consider the fragment of intuitionistic implicative logic that corresponds
to the safe lambda calculus under the Curry-Howard isomorphism; we call it the safe fragment
of intuitionistic implicative logic.

We would like to compare the reasoning power of these two logics, in other words, to de-
termine which types are inhabited in the lambda calculus but not in the safe lambda calculus.1

Since safety is preserved by β-reduction, it is enough to look at normal inhabitants—those in-
habitants that are in β-normal form. We say that a type is unsafe if it is inhabited and every
inhabitant is unsafe. At order 2, all closed normal terms are safe therefore there is no unsafe
type at this order. The following proposition further shows that every type generated from a
single atom o is not unsafe:

Proposition 3.4.4. Every type generated from one atom o that is inhabited in the lambda
calculus is also inhabited by a safe lambda-term.

Proof. One can transform any unsafe normal inhabitant M into a safe one of the same type as
follows: Compute the eta-long beta-normal form of M . Let x be an occurrence of a ground-type
variable in a subterm of the form λx.C[x] where λx is the binder of x and for some context C[−]
different from the identity (C[−] ≡ −). Since the term is beta-normal and because its type is
built out of a unique atom o, x is necessarily of type o. We then replace the subterm C[x] by
x in M . This transformation is sound because C[x] and x both have type o. We repeat this
procedure until the term stabilizes. This algorithm clearly terminates since the size of the term
decreases strictly after each step. The final term obtained is safe and of the same type as M .

The previous argument crucially uses the fact that the type is generated from a single atom.
It cannot be repeated for types generated from multiple atoms. In fact there are order-3 types
with only 2 atoms that are inhabited by simply-typed terms but not by safe terms as example
(i) below shows.

Example 3.4.1. Let a, b and c be three distinct atoms.

(i) Take the order-3 type (((b, a), b), ((a, b), a), a). Its normal inhabitants are given (up to
α-conversion) by the following family of terms which are all unsafe:

λfg.g(λx1.f(λy1.x1))

λfg.g(λx1.f(λy1.g(λx2.y1)))

λfg.g(λx1.f(λy1.g(λx2.f(λy2.xi))) where i = 1, 2

λfg.g(λx1.f(λy1.g(λx2.f(λy2.g(λx3.yi))) where i = 1, 2

. . .

1This problem was raised by Ugo dal Lago.
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(ii) The order-3 type (((a, c), b), ((c, b), a), a) has for only normal inhabitant the unsafe term
λfg.g(λx.f(λy.c)).

(iii) For every i, j, k ∈ N, let σ(i, j, k) denote the type

σ(i, j, k) ≡ (ia → jb)→ (jb → kc)→ ia → kc

where na denotes the type (. . . ((a → a) → a) . . .) → a containing n + 1 occurrences of a
(as defined in Sec. 2.1.5). This type is inhabited by the “function composition term”:

λxyzw.y(xz)

which is safe if and only if i ≥ j. There exist values for i, j, k such that i < j and σ(i, j, k)
is safely inhabited. For instance σ(1, 3, 4) is inhabited by the safe term

λx1a→3by3b→4cz1cw3c .y(x(λua.u)) .

The order-4 type σ(0, 2, 0), however, is unsafe: its only normal inhabitant is the unsafe
term λxyzw.y(xz).

(The first two examples are due to Luke Ong.)

3.5 Extensions

We now consider extensions of the safe simply-typed lambda calculus.

3.5.1 PCF

We define the language safe PCF as an applied version of the safe lambda calculus. Its
types are the simple types over the single atomic type of natural numbers. It features the
basic arithmetic operators of PCF (additions, substraction and conditional branching) as well
as recursion. Equivalently, it is the restriction of PCF where the application and abstraction
rules are constrained similarly as in the safe lambda calculus. The rules are given in Table 3.5.
The circled rules are those that differ from their PCF counterpart.

We extend the notion of almost safety (Sec. 3.1.4) to PCF: A PCF term is almost safe if
it can be written λx1 . . . xn.N0 . . . Np for some n, p ≥ 0 where Ni is safe for every 0 ≤ i ≤ p.

Example 3.5.1. The addition function and equality test defined in Sec. 2.1.9 are typable in
safe PCF.

The Substitution Lemma and No-variable-capture Lemma of the safe lambda calculus natu-
rally extend to safe PCF. The small-step semantics of safe PCF is given by a relation→ obtained
from the one of PCF after substituting safe β-reduction (Def. 3.1.5) for β-reduction. The Subject
Reduction Lemma from the safe lambda calculus implies that the relation → preserves safety:
suppose that M → N , then Γ `s M : T implies Γ `s N : T . Similarly, the small-step reduction
preserves almost-safety. Further it can again be proved that a term is safe if and only if its
eta-long normal form is safe.

Remark concerning recursion

There are many ways to introduce recursion in the syntax of a programming language. In the
presentation of PCF given in Sec. 2.1.9, recursion is introduced by mean of a set of constants YA,
A ranging over PCF types, incarnating the Y -combinator of the lambda calculus. The syntax
is given by the rule (rec) of Table 3.5. For instance, the addition function can be represented by
the PCF term:

plus ≡ Y (λp x y.cond x y (p (pred x) (succ y))) .
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Functional part

(var)
Γ `s x : A

x : A ∈ Γ (wk)
Γ `s M : A

∆ `s M : A
Γ ⊂ ∆ (δ)

Γ `s M : A

Γ `̀ app M : A'

&

$

%

(appas)
Γ `s M : (A1, . . . , An, B) Γ `s N1 : A1 . . . Γ `s Nn : An

Γ `̀ app M N1 . . . Nn : B

(app)
Γ `s M : (A1, . . . , An, B) Γ `s N1 : A1 . . . Γ `s Nn : An

Γ `s M N1 . . . Nn : B
ordB ≤ ord Γ

(abs)
Γ, x1 : A1, . . . , xn : An `̀ app M : B

Γ `s λx
A1
1 . . . xAn

n .M : (A1, . . . , An, B)
ord (A1, . . . , An, B) ≤ ord Γ

Arithmetic and recursion

(const)
`s n : exp

(succ)
Γ `s M : exp

Γ `s succ M : exp
(pred)

Γ `s M : exp

Γ `s pred M : exp

(cond)
Γ `s M : exp Γ `s N1 : exp Γ `s N2 : exp

Γ `s cond M N1 N2
(rec)

Γ `s M : A→ A

Γ `s YAM : A

Table 3.5: Formation rules for safe PCF.

Recursion can be introduced in different ways, however. For instance using the least upper bound
abstractor ‘µ’ given by the formation rule

(µ)
Γ, f : A `M : A

Γ ` µfA.M : A

where the semantics of µ is given by the rule: µfA.M →M [(µfA.M)/f ]. Using this µ-construct,
the addition function is defined as:

plus ≡ µp(exp→exp)→exp.λxexpyexp.cond x y (p (pred x) (succ y)) .

Clearly in the context of PCF, these two definitions are interchangeable: µfA.M is equivalent
to YA(λfA.M), and YAF is eta-equivalent to YA(λfA.Ff) for some fresh variable f , which is
equivalent to µfA.Ff .

In the context of safe PCF, however, the distinction is important. Indeed, let safe µ-PCF
denote the calculus obtain by replacing the rule (rec) by (µ) in Table 3.5. Then we observe
that safe PCF is strictly contained in safe µ-PCF. Indeed, compare the two ways of defining a
recursive term:

(rec)

(abs)
Γ, f : A `s M : A

Γ `s λf
A.M : A→ A

Γ `s YA(λfA.M)
(µ)

Γ, f : A `s M : A

Γ `s µf
A.M : A

Both derivations start with the premise Γ, f : A `s M : A which implies that ord Γ ≥ ordA. But
in the left derivation, before applying the Y combinator, we need first to abstract the variable
f ; this is done using the abstraction rule whose side-conditions gives ord Γ > ordA. The right
derivation, however, only imposes the weaker condition ord Γ ≥ ordA.

In fact, safe µ-PCF does not really deserve its name because the No-variable-capture lemma
does not hold anymore in this language! Take for instance λfA→B aA.(λxB .(µfB .x))(fa) for
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every types A and B satisfying ordA ≥ ordB. This term belongs to safe µ-PCF and it β-reduces
to λfA→B aA.(µfB.x)[fa/x]. But at this point it is not sound to push the substitution under
the µ without first renaming the variables afresh as it would cause the variable f to be captured
by µf .

Observe that if we were able to distinguish variables that are bound by λ from those bound
by µ—for instance by tagging their occurrences appropriately—then the clash of variable names
would be tolerable in this particular example since the two clashing occurrences of f are bound
by a different kind of binder. Unfortunately, this argument cannot be generalized: there are safe
µ-PCF terms that, when reduced using capture-permitting substitution, cause clashes between
λ-bound variables. Take for instance:

M ≡ λg3 h3 x1.g(µF 3.N(F, g, h, x))

N(F, g, h, x) ≡ x(h(λx1.F (λz0.z)))

where 0 denotes the type o and n + 1 denotes n → o, for n ∈ N. The safe µ-PCF term M
reduces to:

λg3 h3 x1.g(x(h(λx1.F (λz0.z))))[N(F, g, h, x)/F ] ,

and performing this substitution capture-permitting would cause a clash between the two un-
derlined variables.

The conclusion of this is that the definition that we really want for safe PCF is the one based
on the Y combinator. Another reason why safe µ-PCF is not an interesting language is that the
game-semantic characterization of safe PCF that we will establish in Chapter 6 does not hold
in safe µ-PCF.

3.5.1.1 Expressivity

In the lambda calculus, the safety condition significantly limits the expressivity of the language:
as we have observed before, the conditional function over Church numerals is for instance not
definable in the safe lambda calculus. On the other hand in safe PCF the conditional operator
comes for free since the arithmetic constructs are built in the language. So the question is: Does
safety genuinely restrict the power of PCF? We first show that safe PCF is a non-trivial language
by proving, using a reduction from the Queue-Halting problem, that the termination problem
is not decidable. We further observe that despite the strong constraint imposed by safety, the
presence of recursion gives back to safe PCF the computational power of a full-fledged Turing
complete language.

The Queue programming system We fix a finite alphabet Σ = {a1, . . . , ap}. A Queue
program is a finite sequence of instructions that manipulate a FIFO (First In First Out) queue
data-structure. A program P is a sequence of n instructions for some n ∈ N. For 1 ≤ i ≤ n
we write P.i to denote the ith instruction of P . There are four kinds of instruction: halting,
enqueuing, dequeuing and branching. The set of instructions is given by:

I = {halt} ∪ {enqueue a | a ∈ Σ} ∪ {dequeue} ∪ {goto l if first = a | l ∈ 1..n, a ∈ Σ} .

The operational semantics is described using a set of states {halted} ∪ {1, .., n} × Σ∗. The
special state halted is the end-of-program state that is reached when the program terminates.
A state of the form (i, x) ∈ {1, .., n} × Σ∗ indicates that the queue’s content is given by the
sequence x and that the next instruction to be executed by the machine is P.i. The empty
queue is represented by the empty sequence ε, and for every sequence x ∈ Σ∗, the first element
of x corresponds to the element that has been first enqueued (i.e., the queue is fed at the
right-end side and consumed at the left-end side). The operational semantics is defined by the
following rules:

(i, x) with P.i = halt → halted
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(i, x) with P.i = enqueue a → (i+ 1, x · a)

(i, ε) with P.i = dequeue → halted

(i, a · x) with P.i = dequeue → (i+ 1, x)

(i, ε) with P.i = goto l if first = a → (i+ 1, ε)

(i, b · x) with a 6= b and P.i = goto l if first = a → (i+ 1, b · x)

(i, a · x) with P.i = goto l if first = a → (l, a · x) .

We write →∗ to denote the reflexive transitive closure of →.
The Queue-Halting problem (“Given a Queue program, will it halt eventually?”) is

undecidable. This is because Post’s Tag Systems, which are Turing complete [CM64], can be
simulated [Min67] in Queue.

Encoding Queue-Halting in safe PCF Given a Queue program P with n instructions,
we construct a safe PCF term `s MP : exp that simulates P in the sense that P ⇓ if and only
if MP →

∗ halted.
Queue encoding: We fix a distinguished element ⊥ denoting the end of the queue. Let

Σ⊥ = Σ ∪ {⊥}. We identify each queue content s ∈ Σ∗ with the infinite sequence s⊥ω ∈ Σω.
We assume that an injective encoding function Σ⊥ −→ N is given and we write a to denote the
encoding of an element in Σ⊥. (For instance take ⊥ = 0 and ak = k for 1 ≤ k ≤ p.)

We say that a PCF term M computes the queue content s if and only if M k ⇓ sk for every
k ∈ N. For every queue-content s ∈ Σ∗ we define the safe PCF term

`s s ≡ λi
exp.match i with 0→ s0 | . . . | n→ s|s|−1 | → ⊥ : exp→ exp

which clearly computes s. The length |s| of the queue can then by computed by the term

`s length ≡ Y (λfexp→(exp→exp)→exp kexp xexp→exp .

ifx k = ⊥then k else f (k + 1)x) 0 : (exp→ exp)→ exp

satisfying length s ⇓ |s| for all s ∈ Σ∗.
Instruction encoding: We assume an injective function I → N encoding each instruction c of

I as a natural number c. An example is the following function defined for 1 ≤ i ≤ p, 1 ≤ l ≤ n:

c ∈ I halt dequeue enqueue ai goto l if first= ai
c ∈ N 0 1 1 + i 1 + p+ n.l + i

A Queue program P is then compiled to the safe PCF term:

`s P ≡ λi
exp.match i with 0→ P.0 | . . . | n→ P.n| → halt : exp→ exp

so that for all i ∈ N, P i evaluates to the encoding of the ith instruction of P . We can now define
an interpreter SimP for Queue-programs given in compiled form P :

`s SimP ≡Y (λf (exp,(exp,exp),exp) iexp x(exp,exp).

match P i with

halt → 0
| dequeue → f(i+ 1)(λjexp.x(j + 1))
| enqueue a1 → f(i+ 1)(λjexp.if j = length x thena1 elsex j)
. . .
| enqueue ap → f(i+ 1)(λjexp.if j = length x thenap elsex j)

| goto l if first = a1 → if length x = 0 then f (i+ 1)x
elseif a1 = x 0 then f l x
else f (i+ 1)x

. . .

| goto l if first = ap → if length x = 0 then f (i+ 1)x
elseif ap = x 0 then f l x
else f (i+ 1)x
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) 0 ε : exp .

Clearly the term SimP is safe and simulates the Queue program P in the sense that SimP ⇓
if and only if P →∗ halted. Hence

Theorem 3.5.1. The Halting problem for (the 2nd order fragment of) safe PCF is undecid-
able.

Since the Halting is reducible to the observational equivalence problem, this also implies
that observational equivalence for the 2nd-order fragment of safe PCF (with Y1 recursion and
unbounded base types) is undecidable. This result is not surprising: it is easy to see that the
partial recursive functions are computable in the order 2 fragment of safe PCF, and hence safe
PCF is Turing complete. (This can also be proved by simulating Turing machines in safe PCF
using an encoding similar to the one used above.)

The reason why these encodings work is because unsafety only appears at order 3 in PCF,
and the 2nd order fragment of PCF is already Turing complete.

Loader has shown [Loa01] that observational equivalence for finitary PCF (the fragment with
no recursion and finite base types) is already undecidable at order 5. It is unknown whether
this result still holds for finitary safe PCF.

3.5.2 Idealized Algol

In this section we present two possible approaches to extend the safety restriction to a language
featuring block-variable constructs such as Idealized Algol. This gives rise to two different
versions of “Safe Idealized Algol”. In the first version, all free variables are required to satisfy
the safety constraint whereas in the second version, variables declared with a block-allocated
construct are not required to satisfy the safety constraint. We then show that the good properties
of the safe lambda calculus remain in these two extensions of the safe lambda calculus.

3.5.2.1 Strongly Safe IA

The most immediate way to introduce the safety constraint for IA terms consists in adding the
typing rules for IA constants to the typing system of the safe lambda calculus. Equivalently,
this means taking the system of rules of IA and replacing the application and abstraction rules
by those of the safe lambda calculus. We refer to this language as strongly safe IA. The rules
are formally given in Table 3.7. The rules circled in the table are those that differ from their IA
counterpart.

This language satisfies the basic property of the safe lambda calculus: Free variables have
order greater or equal to the order of the term. It is interesting to note that the typing rules of
IA do not need to be modified for this property to hold. In particular, the rule (new) allows one
to “abstract” variables without having to satisfy any side-condition, contrary to the lambda-
abstraction rule (abs). Such side-condition is unnecessary because the block-allocation construct
produces a term with the same type as the term in the premise of the rule. Therefore the basic
property trivially holds.

On the other hand, this ability to “abstract” variables without increasing the order of the
term as a downside: the No-variable-capture result—that it is no necessary to rename variables
afresh when performing substitution—does not hold anymore, at least in its original formulation.
Take for instance the following strongly-safe term-in-context:

x : var `ss (λyexp.new x in y)(deref x) ≡M1 : exp .

Then we have:
M1 →β (new x in y) [(deref x)/y] .
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Functional part

(var)
Γ `ss x : A

x : A ∈ Γ (wk)
Γ `ss s : A

∆ `ss s : A
Γ ⊂ ∆ (δ)

Γ `ss M : A

Γ `̀ app M : A'

&

$

%

(appas)
Γ `ss s : (A1, . . . , An, B) Γ `ss t1 : A1 . . . Γ `ss tn : An

Γ `̀ app s t1 . . . tn : B

(app)
Γ `ss s : (A1, . . . , An, B) Γ `ss t1 : A1 . . . Γ `ss tn : An

Γ `s s t1 . . . tn : B
ordB ≤ ord Γ

(abs)
Γ, x1 : A1, . . . , xn : An `̀ app s : B

Γ `ss λx1 . . . xn.s : (A1, . . . , An, B)
ord (A1, . . . , An, B) ≤ ord Γ

Arithmetic and recursion

(const)
`ss n : exp

(succ)
Γ `ss M : exp

Γ `ss succ M : exp
(pred)

Γ `ss M : exp

Γ `ss pred M : exp

(cond)
Γ `ss M : exp Γ `ss N1 : exp Γ `ss N2 : exp

Γ `ss cond M N1 N2
(rec)

Γ `ss M : A→ A

Γ `ss YAM : A

Imperative constructs

(seq)
Γ `ss M : com Γ `ss N : A

Γ `ss seqA M N : A
A ∈ {com, exp}

(assign)
Γ `ss M : var Γ `ss N : exp

Γ `ss assign M N : com
(deref)

Γ `ss M : var

Γ `ss deref M : exp

(new)
Γ, x : var `ss M : A

Γ `ss new x in M : A
A ∈ {com, exp}

(mkvar)
Γ `ss M1 : exp→ com Γ `ss M2 : exp

Γ `ss mkvar M1 M2 : var

Table 3.6: Formation rules for strongly safe IA.
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Performing the substitution without renaming variables afresh causes the variable x to get
captured by the innermost new x giving new x in deref x. On the other hand the standard
substitution gives new z in deref x. These two terms are clearly not observationally equivalent.
Conclusion: it is not “safe” to use capture-permitting substitution on strongly-safe IA terms!

A weaker version of the No-variable-capture lemma can be stated though. We can defined
an alternative notion of capture-permitting substitution, called semi-capture permitting sub-
stitution, that behaves like the usual capture-permitting substitution except that it renames
block-allocated variables afresh upon performing substitution. The No-variable-capture lemma
for strongly safe IA then becomes: “Substitution can be safely implemented by semi-capture
permitting substitution”.

3.5.2.2 Safe IA

It turns out that the definition of strongly safe IA is too restrictive and we can identify a larger
fragment in which the so-called “No-variable-capture” lemma holds. Consider the following IA
term:

` new x in λzexp.derefx : exp→ exp .

It is not strongly safe since the variables x : var and z : exp have the same order but they are not
abstracted together. However x is a block-allocated variable so no term can ever be substituted
for such variable when performing reduction: morally this term should be considered safe. We
thus observe that there is no gain in constraining occurrences of block-allocated variables.

We will therefore distinguish two kinds of variables in a closed term: the “standard ones”—
those that are bound by λ-abstractions—and the “imperative” ones—those that are declared
by a block-allocation construct—and we will change the side-condition of the abstraction rule
so that only variables of the first kind are constrained.

It is also possible to relax the safety constraint for another class of variables. Among the
lambda-bound variables, we consider the subclass of variables that are bound by a lambda node
λxexp inside a term of the form mkvar(λxexp.M)N . We call these variables mkvar-bound variables.
It turns out that it is also possible to relax the safety constraint for this class of variables. To
see why this is the case, we need to redefine the typing rules for the mkvar construct: we replace
the typing in two steps (first abstracting x in M and then constructing mkvar(λxexp.M)N) by a
single typing rule forming mkvar(λxexp.M)N directly from M and N . These two ways of typing
the mkvar construct are semantically equivalent because it is always possible to eta-expand the
first argument of mkvar into a term of the form λxexp.M .

The small step semantics is then redefined by replacing the rule

assign (mkvarMN) n→Mn

by
assign (mkvar(λxexp.M)N) n→M [n/x] . (3.4)

This change ensures that no substitution will ever be done on the term λx.M . There is therefore
no need for the term λx.M to be safe: it is sufficient to have that M is safe.

These remarks lead us a more general notion of safety for IA. We consider new judgments
of the form Γ|Ξ `s M : A, called split terms-in-context (this terminology is borrowed from
Abramsky and McCusker’s tutorial on game semantics [AM98b]), where the context is parti-
tioned into two disjoint components: The first component Γ contains the lambda-bound variables
that are constrained by the safety restriction; the second component contains block-declared
variables as well as mkvar-bound variables. The component Ξ contains variables of type var

and exp only, while the other component may contain variables of any type including var. It is
straightforward to redefine the typing rule of IA in such a way that these two distinct contexts
are maintained appropriately. In particular:
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(i) The abstraction rules can only abstract variables from the first component of the context;

(ii) The new and mkvar constructs can only bind variables from the second context component;

(iii) The side-condition in the abstraction rules constrains only variables from the first context
component.

The typing system for this new judgement is given in Table 3.7; the circled rules highlight the
important changes from the rules of Table 3.6. A split-term with an empty context Ξ is called
a semi-closed split-term. We define safe IA to be the set of semi-closed split-terms typable
with the system of rules of Table 3.7. For convenience we introduce the additional rule

Γ | ∅ `s M : A

Γ `s M : A

so that safe IA is equivalently given by the set of terms-in-context Γ `s M : A.

Example 3.5.2. Strongly safe IA is a subset of safe IA. The following example shows that the
inclusion is strict:

`s λf
(exp→com)→exp. new i in f(λxexp.assign i x) : exp

but 6`ss λf
(exp→com)→exp. new i in f(λxexp.assign i x) : exp .

It is not strongly safe because the variables i and x are of the same order but only x is
abstracted by the lambda. It is safe because unsafe occurrences of block-allocated variables
such as i are tolerated in safe IA.

Example 3.5.3. The following term is a safe IA beta-normal term:

f : ((exp→ exp)→ com) `s mkvar (λxexp.f(λyexp.x)) 0 : comω × exp .

Observe that the unsafe occurrence of the variable x is tolerated because it is a mkvar-bound
variable.

Since in split safe IA terms, only the variables from the left context component are con-
strained by the safety restriction, thus the basic property of the safe lambda calculus (Lemma
3.1.2) becomes:

Lemma 3.5.1. Suppose Γ|Ξ `s M : A. Then

∀z : A ∈ Γ.z ∈ FV (M) =⇒ ord z ≥ ordA .

The small-step reduction semantics of safe IA is defined similarly as in Sec. 2.1.10 except
that β-reduction is replaced by safe β-reduction and the rules for mkvar are redefined according
to (3.4). Again it is easy to see that safety is preserved by the small-step reduction of IA:

Lemma 3.5.2 (Reduction preserves safety). Let M be an IA term and→ denotes the small-step
reduction of safe IA. Then Γ |Ξ `s M : A ∧M → N =⇒ Γ |Ξ `s N : A .

The proof is by an easy induction.
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Functional part

(varvar)
∅|Ξ `s x : var

x : var ∈ Ξ (varexp)
∅|Ξ `s x : exp

x : exp ∈ Ξ

(var)
Γ|∅ `s x : A

x : A ∈ Γ

�
�

�
(wk)

Γ|Ξ `s s : A

Γ′|Ξ `s s : A
Γ ⊂ Γ′ ∧ dom(Γ′) ∩ dom(Ξ) = ∅

(δ)
Γ `s M : A

Γ `̀ app M : A
(appas)

Γ|Ξ `s s : (A1, . . . , An, B) Γ|Ξ `s t1 : A1 . . . Γ|Ξ `s tn : An
Γ|Ξ `̀ app st1 . . . tn : B#

"

 

!

(app)
Γ|Ξ `s s : (A1, . . . , An, B) Γ|Ξ `s t1 : A1 . . . Γ|Ξ `s tn : An

Γ|Ξ `s st1 . . . tn : B
ordB ≤ ordΓ

(abs)
Γ, x1 : A1, . . . , xn : An|Ξ `̀ app s : B

Γ|Ξ `s λx1 . . . xn.s : (A1, . . . , An, B)
ord (A1, . . . , An, B) ≤ ord Γ

Arithmetic and recursion

(const)
∅|∅ `s n : exp

(succ)
Γ|Ξ `s M : exp

Γ|Ξ `s succ M : exp
(pred)

Γ|Ξ `s M : exp

Γ|Ξ `s pred M : exp

(cond)
Γ|Ξ `s M : exp Γ|Ξ `s N1 : exp Γ|Ξ `s N2 : exp

Γ|Ξ `s cond M N1 N2
(rec)

Γ|Ξ `s M : A→ A

Γ|Ξ `s YAM : A

Imperative constructs

(seq)
Γ|Ξ `s M : com Γ|Ξ `s N : A

Γ|Ξ `s seqA M N : A
A ∈ {com, exp}

(assign)
Γ|Ξ `s M : var Γ|Ξ `s N : exp

Γ|Ξ `s assign M N : com
(deref)

Γ|Ξ `s M : var

Γ|Ξ `s deref M : exp#

"

 

!

(new)
Γ|Ξ, x : var `s M : A

Γ|Ξ `s new x in M : A
A ∈ {com, exp}

(mkvar)
Γ|Ξ, x : exp `s M1 : exp→ com Γ|Ξ `s M2 : exp

Γ|Ξ `s mkvar (λxexp.M1) M2 : var

Table 3.7: Formation rules for safe IA.
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3.5.2.3 No-variable capture lemma

In which sense are the two calculi above-defined “safe”? In the lambda calculus frag-
ment, the term “safe” refers to the fact that under the safe typing convention, substitution can
be performed capture-permitting. Unfortunately, as we have observed before, in the presence
of block-allocation constructs this lemma does not hold anymore because the block-allocation
construct new does not increase the order of the term that is being formed contrary to λ-
abstractions—a property that is crucially used in the proof of the No-variable-capture lemma.
The following examples illustrate this. Consider the terms:

M1 ≡ new x in seq (assign x 1) ((λy0.new x in y)(deref x))

M2 ≡ λx
1.(λy1.(new x in y 0))x

M3 ≡ λf
2.new x in (λy1.f(λx0.y))(λz0.deref x)

M4 ≡ λx
com.(λycom.mkvar (λxexp.y) 0)x

where the type n, for n ∈ N, is an abbreviation for nexp.
All these terms are safe IA terms (but only M1 and M2 are strongly safe) and contracting

the redexes in those terms using capture-permitting substitution causes problematic variable
captures:

(i) For M1, performing the substitution without renaming variables afresh causes the capture
of x by the innermost new x, giving new x in seq (assign x 1) (new x in deref x) which is
observationally equivalent to 0 (since block-allocated variables are initialized with 0). On
the other hand standard substitution gives new x in seq (assign x 1) (new z in deref x)
which is observationally equivalent to 1.

(ii) For M2, the capture-permitting substitution gives λx1.(new x in x 0) which is not even
typable in IA;

(iii) For M3, capture-permitting substitution gives λf2.new x in λy1.f(λx0.(λx0.derefx))
which is not a typable IA term;

(iv) Finally for M4, capture-permitting substitution gives (λycom.mkvar (λxexp.x) 0) which is
not a typable IA term because the subterm λxexp.x is of type exp → exp instead of the
required type exp→ com.

To deal with the first two examples, we have no other choice than renaming block-declared
variables afresh upon substitution. For the last two kinds of variable capture (which only happen
for safe terms that are not strongly safe) we can resolve the problem by adopting the following
convention:

Convention 3.5.1 The set of names used for block-declared and mkvar-bound variables is
disjoint from the set of names used for lambda-abstracted variables. This convention can be
enforced by tagging each variable occurrence to indicate whether it is a block-allocated variable
or a lambda-abstracted variable, thus permitting one to resolve any binding ambiguity. Observe
that this convention is stronger than requiring that the sets of names of the two context com-
ponents of a split-term are disjoint because this only constrains the free variables of the term
whereas what we are requiring here is a global constraint on all variables names occurring in
the term including the bound ones.

This leads us to the following notion of substitution which performs variable renaming only
for block-allocated variables and mkvar-bound variables:

Definition 3.5.1. The semi-capture-permitting substitution of the term-in-context Γ|Ξ `
N : A for x in the term-in-context Γ, x : A|Ξ ` M : B is given by Γ|Ξ ` M [{N/x}] where the
operation [{N/x}] is defined inductively on M as follows:

x [{N/x}] = N
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y [{N/x}] = y y 6= x;

(λxτ .M) [{N/x}] = λxτ .M

(λyτ .M) [{N/x}] = λyτ .M [{N/x}] where y 6= x;

(new x in M) [{N/x}] = new x in M

(new y in M) [{N/x}] = new z in M [{z/y}] [{N/x}] if x 6= y, z fresh;

(mkvar (λxτ .M1)M2) [{N/x}] = mkvar (λxτ .M1)M2 [{N/x}]

(mkvar (λyτ .M1)M2) [{N/x}] = mkvar (λzτ .M1 [{z/y}] [{N/x}])M2 [{N/x}] if x 6= y, z fresh.

The other constants and application cases are defined inductively in the standard way.

It is now possible to state a version of the No-variable capture lemma for safe IA:

Lemma 3.5.3 (No-variable capture). Suppose that Γ|Ξ `s N : A and Γ, x : A|Ξ `s M : B.
Then the substitution M [N/x] can be performed semi-capture-permitting:

M [N/x] ≡M [{N/x}] ,

provided that either

(i) convention 3.1.2 and 3.5.1 are taken;

(ii) or convention 3.5.1 is taken and Γ|Ξ ` M {N/x} : B is a valid (not-necessarily safe) IA
judgement.

The proof is a trivial extension of Lemma 3.1.4 and 3.1.5.

Corollary 3.5.2. Let Γ `s N : A and Γ, x : A `s M : B be safe IA terms-in-context.

(i) If convention 3.1.2 is adopted then M [N/x] ≡M [{N/x}];

(ii) If Γ `M {N/x} : B is typable in IA then M [N/x] ≡M [{N/x}].

3.5.3 Generalization to other applied lambda calculi

In this section, we define the notion of safety for every given applied lambda calculus extended
with a stock of interpreted constants Σ but without recursion. The syntax of the language is
given by some system of rules producing split-term of the form

Γ |Ξ `M : T

for some simple-type T , where variables in the context Γ and Ξ are called the Γ-variables and
Ξ-variables respectively. The calculus must satisfy the following prerequisites:

(i) The abstraction rule can only abstract Γ-variables;
(ii) The terms of the languages are given by the semi-closed split-terms Γ|∅ `M : T abbre-

viated as Γ `M : T .
Consequently, a Ξ-variable can only be “bound” by some constant construct of the language but
not by a lambda-abstraction.

Definition 3.5.2. Consider an applied lambda calculus as defined above. Its safe fragment is
defined as the system obtained by restricting the pure lambda calculus fragment of the language
in such a way that:

(i) The restriction of the system to its pure simply-typed fragment coincides with the defi-
nition of the safe lambda calculus;

(ii) The side-condition of the abstraction and application rules constrains only Γ-variables.
Terms-in-context thus generated are written Γ `s M : T .
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An immediate consequence is that terms-in-context of the safe fragment satisfy the basic
property of the safe lambda calculus:

Γ `s M : T =⇒ ∀z : A ∈ Γ.z ∈ FV (M) =⇒ ordA ≥ ordT .

Further, in order for this language to be of any use, it must satisfy the subject reduction lemma
(i.e., the small-step reduction semantics must preserve safety).

The results of the previous sections show that IA and the recursion-free fragments of PCF
both fit in this setting.

3.6 Related work

The safety condition for higher-order grammars

We have mentioned the result of Knapik et al. [KNU02] that infinite trees generated by safe
higher-order recursion schemes have decidable MSO theories. A natural question is whether
the safety condition is really necessary. This has been partially answered by Aehlig et al.
[AdMO05a] where it was shown that unrestricted order-2 recursion schemes have decidable
MSO theories. Concerning word languages, the same authors have shown [AdMO05b] that level
2 safe higher-order grammars are as expressive as (non-deterministic) unsafe ones. De Miranda’s
thesis [dM06] proposes a unified framework for the study of higher-order grammars and gives a
detailed analysis of the safety constraint at level 2.

More recently, Ong obtained a more general result and showed that the MSO theory of
infinite trees generated by higher-order grammars of any level, whether safe or not, is decidable
[Ong06a]. Using an argument based on innocent game semantics, he establishes a correspondence
between the computation tree of a higher-order grammar and the value tree that it generates:
Paths in the value tree correspond to P-views of traversals of the computation tree. Decidability
is then obtained by reducing the problem to the acceptance of the (annotated) computation tree
by a certain alternating parity tree automaton.

The equivalence of safe higher-order grammars and higher-order deterministic pushdown
automata for the purpose of generating infinite trees [KNU02] has its counterpart in the general
(not necessarily safe) case: Hague et al. [HMOS08] established the equivalence of order-n higher-
order grammars and order-n collapsible pushdown automata. Those automata form a new kind
of pushdown systems in which every stack symbol has a link to a stack situated somewhere
below it and with an additional stack operation whose effect is to “collapse” a stack s to the
state indicated by the link from the top stack symbol.



Chapter 4

A Concrete Presentation of Game

Semantics

Analyzing the effect that a syntactic restriction (such as safety) has on the game-semantic model
is a difficult task since the main feature of game semantics is precisely to be syntax-independent.
The aim of this chapter is to establish an explicit correspondence between the game denotation
of a term and its syntax. This will be used in the next chapter to give a characterization of the
game semantics of the safe lambda calculus.

Our approach follows ideas recently introduced by Ong [Ong06a], namely the notion of
computation tree of a simply-typed lambda-term and traversals over the computation tree. A
computation tree is just an abstract syntax tree (AST) representation of the η-long normal form
of a term. Traversals are justified sequences of nodes of the computation tree respecting some
formation rules. They are meant to describe the computation of the term, but at the same
time they carry information about the syntax of the term in the following sense: the P-view
of a traversal (computed in the same way as P-view of plays in game semantics) is a path in
the computation tree. Traversals provide a way to perform local computation of β-reductions as
opposed to a global approach where β-redexes are contracted using substitution.

The culmination of this chapter is the Correspondence Theorem (Theorem 4.2.2). It states
that traversals over the computation tree are just representations of the uncovering of plays
in the strategy-denotation of the term. Hence there is an isomorphism between the strategy
denotation of a term and its revealed game denotation. In a nutshell, the revealed denotation
is computed similarly to the standard strategy denotation except that internal moves are not
hidden after composition. In order to make a connection with the standard game denotation, we
define an operation that extracts the core of a traversal by eliminating occurrences of “internal
nodes”. These node occurrences are the counterparts of internal moves that are hidden when
performing strategy composition in game semantics. This leads to a correspondence between
the standard game denotation of a term and the set traversal cores over its computation tree.

Using this correspondence, it possible to analyze the effect that a syntactic restriction has
on the strategy denotation of a term. This is illustrated in the next chapter where we rely on
the Correspondence Theorem to analyze the game semantics of the safety restriction.

Related works: The useful transference technique between plays and traversals was originally
introduced by Ong for studying the decidability of monadic second-order theories of infinite
structures generated by higher-order grammars [Ong06a]. In this setting, the Σ-constants or
terminal symbols are at most order 1, and are uninterpreted. Here we present an extension of
this framework to the general case of the simply-typed lambda calculus with free variables of
any order. Further the term considered is not required to be of ground type contrary to higher-
order grammars. This requires us to add new traversal rules to handle variables whose value is
undetermined (i.e., those that cannot be resolved through redex-contraction). We also extend
computation trees with additional nodes accounting for answer moves of game semantics. This
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enables our framework to be extended to languages with interpreted constants such as PCF and
Idealized Algol.

A notion of local computation of β-reduction has also been investigated through the use of
special graphs called “virtual nets” that embed the lambda calculus [DR93].

Asperti et al. introduced [ADLR94] a syntactic representation of lambda-terms based on
Lamping’s graphs [Lam90]. They unified various notions of paths (regular, legal, consistent
and persistent paths) that have appeared in the literature as ways to implement graph-based
reduction of lambda-expressions. We can regard a traversal as an alternative notion of path
adapted to the graph representation of lambda-expressions given by computation trees.

4.1 Computation tree

We work in the general setting of the simply-typed lambda calculus extended with a fixed set
Σ of higher-order uninterpreted constants.1 We fix a simply-typed term-in-context Γ ` M : T
for the rest of the section.

4.1.1 Definition

We define the computation tree of a simply-typed lambda-term as an abstract syntax tree rep-
resentation of its η-long normal form (Def. 3.1.7). Our definition generalizes the notion of
computation tree for higher-order recursion schemes [Ong06a].

We recall that a term M in η-long normal form is of the form λx.s0s1 . . . sm where x =
x1 . . . xn for n ≥ 0 and s0s1 . . . sm is of ground type, each sj for j ∈ 1..m is in η-long nf, and
either s0 is a variable or a constant and m ≥ 0; or s0 is an abstraction λy.s and m ≥ 1 where s
is in η-long nf. If M is of ground type then its η-long nf is of the form λ.N ; although the symbol
’λ’ does not correspond to a real lambda-abstraction—we call it ‘dummy lambda’—it will still
be convenient to keep it in expressions representing eta-long normal forms.

Definition 4.1.1. Let Γ `st M : T be a simply-typed term with variable names from V and
constants from Σ. The pre-computation tree τ−(M) with labels taken from {@} ∪ Σ ∪ V ∪
{λx1 . . . xn | x1, . . . , xn ∈ V, n ∈ N}, is defined inductively on its η-long normal form as follows.

For m ≥ 0, z ∈ V ∪ Σ: τ−(λx.zs1 . . . sm : o) = λx〈z〈τ−(s1), . . . , τ
−(sm)〉〉

for m ≥ 1: τ−(λx.(λy.t)s1 . . . sm : o) = λx〈@〈τ−(λy.t), τ−(s1), . . . , τ
−(sm)〉〉 ,

where we write l〈t1, . . . , tn〉 for n ≥ 0 to denote the ordered tree whose root is labelled l and has
n child-subtrees t1, . . . , tn. The trees from the equations above are illustrated in Table 4.1.

By convention the first level of a tree (where the root lies) is numbered 0. In the tree τ−(M),
nodes at odd-levels are variable, constant or application nodes; and at even-levels lies the λ-
nodes. A single λ-node can represent several consecutive abstractions or it can just be a dummy
lambda (if the corresponding subterm is of ground type).

Definition 4.1.2. Let M be a simply-typed term not necessarily in η-long normal form. Let
D denote the set of values of base type o. The computation tree of M , written τ(M) is
the tree obtained from τ−(dMe) by attaching leaves to each node as follows: for every node
n ∈ τ−(M), the corresponding node in τ(dMe) has a child leaf labelled vn, called value-leaf,
for every possible value v ∈ D.

Inner nodes of the tree are thus of three kinds:

1A constant c ∈ Σ is uninterpreted if the small-step semantics of the language does not contain any rule of
the form c M1 . . .Mk · · · → fc(M1, . . . ,Mk) for some function fc over closed normal terms M1, . . . ,Mk. Think of
such constant as a data constructor.
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λx

z

τ−(s1)

. . .

τ−(sm)

λx

@

τ−(λy.t)
τ−(s1)

. . .

τ−(sm)

τ−(λx.zs1 . . . sm : o) τ−(λx.(λy.t)s1 . . . sm : o)
m ≥ 0 and z ∈ V ∪Σ m ≥ 1

Table 4.1: The tree τ−(M).

• λ-nodes labelled λx for some list of variables x (Note that a λ-node represents several
consecutive variable abstractions),

• application nodes labelled @,

• variable or constant nodes with labels in Σ ∪ V.

A node is said to be prime if it is the 0thl child of an @-node. An inner node whose parent is
a @-node or a Σ-node is called a spawn node.

Example 4.1.1.

• The computation tree of a ground type variable or constant α is λ

α

;

• The computation tree of a higher-order variable or constant α : (A1, . . . , Ap, o) has the

following form: λ
α

λξ1
. . .

. . . λξp
. . .

;

Example 4.1.2. Take `st λf
o→o.(λuo→o.u)f : (o→ o)→ o→ o.

Its η-long normal form is: Its computation tree is:

`st λf
o→ozo.

(λuo→ovo.u(λ.v))
(λyo.fy)
(λ.z)

: (o→ o)→ o→ o

λfz

@

λuv

u

λ

v

λy

f

λ

y

λ

z

Example 4.1.3. Take `st λu
ov((o→o)→o).(λxo.v(λzo.x))u : o→ ((o→ o)→ o)→ o.
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Its η-long normal form is: Its computation tree is:

`st λu
ov((o→o)→o).

(λxo.v(λzo.x))u
: o→ ((o→ o)→ o)→ o

λuv

@

λx

v

λz

x

λ

u

Notations 4.1.1 We write ~ to denote the root of τ(M). We write E to denote the parent-
child relation of the tree, V for the set of vertices (i.e., leaves and inner nodes) of the tree, N
for the set of inner nodes and L for the set of value-leaves. Thus V = N ∪ L.

We write NΣ for the set of Σ-labelled nodes, N@ for the set of @-labelled nodes, Nvar for the
set of variable nodes, Nfv for the subset of Nvar consisting of free-variable nodes, Nprime for the
set of prime nodes and Nspawn for the set of spawn nodes (= N ∩E(|N@ ∪NΣ|)).

For $ ranging over {@, λ, var, fv}, we write L$ to denote the set of value-leaves which are
children of nodes from N$; formally L$ = {vn | n ∈ N$, v ∈ D}. We write V$ for N$ ∪ L$.

For every lambda node n in Nλ we write M (n) for the subterm rooted at n and V (n) for the
set of vertices of the sub-computation tree τ(M (n)); formally V (n) = E∗({n}) where E∗ denotes
the transitive, reflexive closure of the parent-child relation E.

Each subtree of the computation tree τ(M) represents a subterm of dMe. We define the
function κ : N → ΛCh

→ (where ΛCh
→ denotes the set of Church typed lambda-terms) that maps

a node n ∈ N to the subterm of dMe corresponding to the subtree of τ(M) rooted at n. In
particular κ(~) = dMe.

Remark 4.1.1 Since the computation tree is computed from the eta-long normal form, for
every subtree of τ(M) of the form λϕ

n

λξ1
. . .

. . . λξp
. . .

, we have ordκ(n) = 0.

Definition 4.1.3 (Type and order of a node). Suppose Γ `M : T . The type of an inner-node
n ∈ N of τ(M) written type(n) is defined as follows:

type(~) = Γ→ T,

for n ∈ (Nλ ∪N@) \ {~}: type(n) = type of the term κ(n),

for n ∈ Nvar ∪NΣ: type(n) = type of the variable labelling n.

where the notation Γ → T is an abbreviation for (A1, . . . , Ap, T ) and A1, . . . , Ap are the types
of the variables in the context Γ.

The order of a node n, written ordn, is defined as follows: a value-leaf v ∈ L has order 0
and the order of an inner node n ∈ N is defined as the order of its type. In particular, the type
of a lambda node different from the root is the type of the term represented by the sub-tree
rooted at that node, and the type of a variable-node is the type of the variable labelling it.

Since the computation tree is calculated from the η-long normal form, all the @-nodes have
order 0 (ord @ = 0); for every lambda node λξ 6= ~ we have ordλξ = 1 + maxz∈ξ ord z; and if

the root ~ is labelled λξ then ord ~ = 1 + maxz∈ξ∪Γ ord z with the convention max ∅ = −1.

Definition 4.1.4 (Binder). We say that a variable node n labelled x is bound by a node m,
and m is called the binder of n, if m is the closest node in the path from n to the root such
that m is labelled λξ with x ∈ ξ.
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4.1.2 Pointers and justified sequence of nodes

4.1.2.1 Definitions

Definition 4.1.5 (Enabling). The enabling relation ` is defined on the set of nodes of the
computation tree as follows. We write m ` n and we say that m enables n if and only if
m ∈ L ∪Nλ ∪Nvar and one of the following conditions holds:

• n ∈ Nfv and m is the root ~;

• n ∈ Nvar \Nfv and m is n’s binder, in which case we write m `i n to precise that n is the
ith variable bound by m;

• n ∈ Nλ and m is n’s parent;

• n ∈ L and m is n’s parent (i.e., n = vm for some v ∈ D).

Formally:
` = {(~, n) |n ∈ Nfv}

∪ {(λx, x) |x ∈ Nvar \Nfv ∧ λx is x’s binder}
∪ {(m,λη) | m is λη’s parent and λη ∈ Nλ}
∪ {(m, vm) | v ∈ D,m ∈ N}

Note that in particular, free variable nodes are enabled by the root. Table 4.2 recapitulates the
possible node types for the enabler node depending on the type of n.

If n ∈ then m ∈
Nλ Nvar ∪NΣ ∪N@

Lvar Nvar

L@ N@

LΣ NΣ

Nvar Nλ

NΣ n.a.
N@ n.a.
Lλ Nλ

Table 4.2: Type of the enabler node in “m ` n”.

We say that a node n0 of the computation tree is hereditarily enabled by np ∈ N if there
are nodes n1, . . . , np−1 ∈ N such that ni+1 enables ni for all i ∈ 0..p− 1.

For every sets of nodes S,H ⊆ N we write SH` to denote the subset S∩ `∗ (H) of S
consisting of nodes hereditarily enabled by some node in H. Formally:

SH` = {n ∈ S |∃n0 ∈ H s.t. n0 `
∗ n} .

If H is a singleton {n0} then we abbreviate S{n0}` into Sn0`.
We have V ~`

var = V \ (V N@`
var ∪ V NΣ`

var ). The elements of N~`
var (i.e., variable nodes that are

hereditarily enabled by the root of τ(M)) are called input-variables nodes.

We use the following numbering conventions: The first child of a @-node—a prime node—is
numbered 0; the first child of a variable or constant node is numbered 1; and variables in ξ are
numbered from 1 onward (ξ = ξ1 . . . ξn). We write n.i to denote the ith child of node n.

Definition 4.1.6 (Justified sequence of nodes). A justified sequence of nodes is a sequence
of nodes s of the computation tree τ(M) with pointers. Each occurrence in s of a node n in
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L ∪Nλ ∪ Nvar has a link pointing to some preceding occurrence of a node m satisfying m ` n;
and occurrences of nodes in N@ ∪NΣ do not have pointer.

If an occurrence n points to an occurrence m in s then we say that m justifies n. If n is an
inner node then we represent this pointer in the sequence as m. . . n

i

where the label indicates
that either n is labelled with the ith variable abstracted by the λ-node m or that n is the ith

child of m. The pointer associated to a leaf vm, for some value v ∈ D and internal node m ∈ N ,

is represented as m · . . . · vm

v

.

To sum-up, a pointer in a justified sequence of nodes has one of the following forms:

r · . . . · z for some occurrences r of τ(M)’s root and z ∈ Nfv ;

or λξ · . . . · ξi

i

for some variable ξi bound by λξ, i ∈ 1..|ξ| ;

or @ · . . . · λη

j

j ∈ {1..(arity(@) − 1)} ;

or α · . . . · λη

k

, for α ∈ NΣ ∪Nvar, k ∈ {1..arity(α)} ;

or m · . . . · vm

v

for some value v ∈ D and internal node m ∈ N .

We say that an inner node n in of a justified sequence of nodes is answered2 by the value-leaf
vn if there is an occurrence of vn for some value v in the sequence that points to n, otherwise we
say that n is unanswered. The last unanswered node is called the pending node. A justified
sequence of nodes is well-bracketed if each value-leaf occurring in it is justified by the pending
node at that point.

For every justified sequence of nodes t we write ?(t) to denote the subsequence of t consisting
only of unanswered nodes. Formally:

?(u1 · n · u2 · vn) =?(u1 · n · u2) \ {n} for some value v ∈ D ,

?(u · n) =?(u) · n for n 6∈ L ,

where u \ {n} denotes the subsequence of u obtained by removing the occurrence n.
If u is a well-bracketed sequences then ?(u) can be defined as follows:

?(u · n . . . vn) =?(u) for some value v ∈ D ,

?(u · n) =?(u) · n where n 6∈ L .

Notations 4.1.2 We write s = t to denote that the justified sequences s and t have same nodes
and pointers. Justified sequence of nodes can be ordered using the prefix ordering: t 6 t′ if and
only if t = t′ or the sequence of nodes t is a finite prefix of t′ (and the pointers of t are the
same as the pointers of the corresponding prefix of t′). Note that with this definition, infinite
justified sequences can also be compared. This ordering gives rise to a complete partial order.
We say that a node n0 of a justified sequence is hereditarily justified by np if there are nodes
n1, n2, . . . np−1 in the sequence such that ni points to ni+1 for all i ∈ {0..p− 1}. We write tω to
denote the last element of the sequence t.

4.1.2.2 Projection

We define two different projection operations on justified sequences of nodes.

Definition 4.1.7 (Projection on a set of nodes). Let A be a subset of V , the set of vertices
of τ(M), and t be a justified sequence of nodes then we write t � A for the subsequence of t
consisting of nodes in A. This operation can cause a node n to lose its pointer. In that case we

2This terminology is deliberately suggestive of the correspondence with game-semantics.
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reassign the target of the pointer to the last node in t6n � A that hereditarily justifies n (This
node can be found by following the pointers from n until reaching a node appearing in A); if
there is no such node then n just loses its pointer.

Definition 4.1.8 (Hereditary projection). Let t be a justified sequence of nodes of T rav(M)
and n be some occurrence in t. We define the justified sequence t � n as the subsequence of t
consisting of nodes hereditarily justified by n in t.

Lemma 4.1.1. The projection function � n defined on the cpo of justified sequences ordered
by the prefix ordering is continuous.

Proof. Clearly � n is monotonous. Suppose that (ti)i∈ω is a chain of justified sequences. Let u
be a finite prefix of (

∨
ti) � n. Then u = s � n for some finite prefix s of

∨
ti. Since s is finite

we must have s 6 tj for some j ∈ ω. Therefore u 6 tj � n 6
∨

(tj � n). This is valid for every
finite prefix u of (

∨
ti) � n thus (

∨
ti) � n 6

∨
(tj � n).

The nodes occurrences that do not have pointers in a justified sequence are called initial

occurrences. An initial occurrence is either the root of the computation tree, an @-node or a
Σ-node. Let n be occurrence in a justified sequence of nodes t. The subsequence of t consisting
of occurrences that are hereditarily justified by the same initial occurrence as n is called thread

of n. Thus each thread in a traversal contains a single initial occurrence. The thread of n is
given by n � i where i is the first node in t hereditarily justifying n; i is called the initial

occurrence of the thread of n.

4.1.2.3 Views

The notion of P-view ptq of a justified sequence of nodes t is defined the same way as the P-view
of a justified sequences of moves in Game Semantics:

Definition 4.1.9 (P-view of justified sequence of nodes). The P-view of a justified sequence of
nodes t of τ(M), written ptq, is defined as follows:

pεq = ε
ps · nq = psq · n for n ∈ Nvar ∪NΣ ∪N@ ∪ Lλ ;

ps ·m · . . . · nq = psq ·m · n for n ∈ Lvar ∪ LΣ ∪ L@ ∪Nλ ;
ps · rq = r if r is an occurrence of ~ (τ(M)’s root) .

The equalities in the definition determine pointers implicitly. For instance in the second clause,
if in the left-hand side, n points to some node in s that is also present in psq then in the
right-hand side, n points to that occurrence of the node in psq.

The O-view of s, written xsy, is defined dually.

Definition 4.1.10 (O-view of justified sequence of nodes). The O-view of a justified sequence
of nodes t of τ(M), written xty, is defined as follows:

xεy = ε
xs · ny = xsy · n for n ∈ Lvar ∪ LΣ ∪ L@ ∪Nλ ;

xs ·m · . . . · ny = xsy ·m · n for n ∈ Nvar ∪ Lλ ;
xs · ny = n for n ∈ N@ ∪NΣ .

We borrow some terminology from game semantics:

Definition 4.1.11. A justified sequence of nodes s satisfies:

- Alternation if for every two consecutive nodes in s, one is in Vλ and not the other one;
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- P-visibility if for every occurrence in s of a node in Nvar∪Lλ, its justifier occur in the P-view
a that point;

- O-visibility if the justifier of each lambda node in s occurs in the O-view a that point.

We then have the same basic property as in game semantics: The P-view (resp. O-view) of
a justified sequence satisfying P-visibility (resp. O-visibility) is a well-formed justified sequence
satisfying P-visibility (resp. P-visibility). (This property follows by an easy induction.)

4.1.3 Traversal of the computation tree

We now define the notion of traversal over the computation tree τ(M). We first consider the
simply-typed lambda calculus without interpreted constants; everything remains valid in the
presence of uninterpreted constants as we can just consider them as free variables. In the second
section, we extend the notion of traversal to a more general setting with interpreted constants.

4.1.3.1 Traversals for simply-typed λ-terms

Informally, a traversal is a justified sequence of nodes of the computation tree where each node
indicates a step that is taken during the evaluation of the term.

Definition 4.1.12 (Traversals for simply-typed lambda-terms). The set T rav(M) of traversals
over τ(M) is defined by induction over the rules of Table 4.3. A traversal that cannot be extended
by any rule is said to be maximal.

Example 4.1.4. The following justified sequence is a traversal of the computation tree from
Example 4.1.2:

t = λfz ·@ · λuv · u · λy · f · λ · y · λ · v · λ · z .

Remark 4.1.2

1. The rule (Value) from Table 4.3 can be equivalently reformulated into four distinct rules
(Valueλ7→@), (Value@ 7→λ), (Valueλ7→var) and (Valuevar 7→λ), each one dealing with a different
possible category for the nodes n and m:

(Valueλ7→@) If t ·@ · λz
0

. . . v

v

λz is a traversal then so is t ·@ · λz . . . v
v

λz · v

v

@.

(Value@ 7→λ) If t · λξ ·@ . . . v@

v

is a traversal then so is t · λξ ·@ . . . v
v

@ · v

v

λξ.

(Valueλ7→var) If t · y · λξ . . . vλξ

v

is a traversal with y ∈ N@`
var then so is t · y · λξ . . . v

v

λξ · v

v

y.

(Valuevar 7→λ) If t · λξ · x . . . v
v

x is a traversal where x ∈ Nvar then so is t · λξ · x . . . v
v

x · v

v

λξ.

In the rest of this chapter we will prove various resulting by induction on the structure of
a traversal and by case analysis on the last rule used to form it. Some of these proofs will
rely on the above-defined reformulation of (Value) instead of its original definition.

2. In the rule (InputValue), the last node in the traversal t1 · x · t2 necessarily belongs to
Nvar ∪Lλ. Indeed, since the pending node x is a variable node, the traversal is of the form

. . . · x · λη1 . . . v
1
λη1
λη2 . . . v

2
λη2

. . . ληk . . . v
k
ληk

for some nodes ληk, values vk ∈ D and k ≥ 0; thus the last occurrence belongs to Nvar if
k = 0 and to Lλ if k ≥ 1.
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Initialization rules

(Empty) ε ∈ T rav(M).

(Root) The sequence consisting of a single occurrence of τ(M)’s root is a traversal.

Structural rules

(Lam) If t · λξ is a traversal then so is t · λξ · n where n denotes λξ’s child and:

– If n ∈ N@ ∪NΣ then it has no justifier;
– if n ∈ Nvar \Nfv then it points to the only occurrencea of its binder in pt · λξq;
– if n ∈ Nfv then it points to the only occurrence of the root ~ in pt · λξq.

(App) If t ·@ is a traversal then so is t ·@ · n
0

.

Input-variable rules

(InputVar) If t is a traversal where tω ∈ N~`
var ∪L

~`
λ and x is an occurrence of a variable node

in xty then so is t · n for every child λ-node n of x, n pointing to x.

(InputValue) If t1 ·x · t2 is a traversal with pending node x ∈ N~`
var then so is t1 · x · t2 · vx

v

for
all v ∈ D.

Copy-cat rules

(Var) If t · n · λx . . . xi

i

is a traversal where xi ∈ N
@`
var then so is t · n · λx . . . xi

i

· ληi

i

.

(Value) If t ·m · n . . . v
v

n is a traversal where n ∈ N then so is t ·m · n . . . v
v

n · v

v

m.

Table 4.3: Traversal rules for the simply-typed lambda calculus.

aProp. 4.1.1 will show that P-views are paths in the tree thus n’s enabler occurs exactly once in the P-view.
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Furthermore, the pending node appears necessarily in the O-view.

These two observations show that the rule (InputValue) is essentially a specialization of
(InputVar) to value-leaves. The only difference is that (InputVar) allows the visited node to
be justified by any variable node occurring in the O-view whereas (InputValue) constrains
the node to be justified by the pending node (which necessarily occurs in the O-view).
This restriction is here to ensure that traversals are well-bracketed.

3. In the rule (Value), it is possible to replace the condition “n ∈ N” by the stronger “n ∈
N \ N~`

λ ”. Indeed a later result (Lemma 4.1.6) will show that if n belongs to N~`
λ

then the preceding occurrence m is necessarily an input-variable. Furthermore, another
result (Prop. 4.1.1) shows that traversals are well-bracketed, therefore m is necessarily the
pending node. Hence the rule (InputValue) can be use in place of (Value) to visit vm.

The advantage of this alternative formulation is that the traversal rules have disjoint
domains of definition.

A traversal always starts with the root node and mainly follows the structure of the tree.
The exception is the (Var) rule which permits the traversal to jump across the computation tree.
The idea is that after visiting a non-input variable node x, a jump can be made to the node
corresponding to the subterm that would be substituted for x if all the β-redexes occurring in
the term were to be reduced. Let λx be x’s binder and suppose x is the ith variable in x. The
binding node necessarily occurs previously in the traversal (This will be proved in Prop. 4.1.1).
Since x is not hereditarily justified by the root, λx is not the root of the tree and therefore it is
not the first node of the traversal. We do a case analysis on the node preceding λx:

• If it is an @-node then λx is necessarily the first child node of that node and it has exactly
|x| siblings:

@

λx

x

0

λη1

1

ληi

i

λη|x|

|x|

In that case, the next step of the traversal is a jump to ληi—the ith child of @—which
corresponds to the subterm that would be substituted for x if the β-reduction was per-
formed:

t′ ·@ · λx · . . . · x

i

· ληi

i

· . . . ∈ T rav(M) .

• If it is a variable node y, then the node λx was necessarily added to the traversal t≤y using
the (Var) rule. (Indeed, if it was visited using (InputVar) then λx would be hereditarily
justified by the root, but this is not possible since xi, bound by λx, is not an input-variable.)
Therefore y is substituted by the term κ(λx) during the evaluation of the term.

Consequently, during reduction, the variable x will be substituted by the subterm repre-
sented by the ith child node of y. Hence the following justified sequence is also a traversal:

t′ · y · λx · . . . · x

i

· ληi

i

· . . .
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Remark 4.1.3 Our notions of computation tree and traversal differ slightly from the original
definitions by Ong [Ong06a]. In his setting:

- computation trees contain (uninterpreted first-order) constants. Here we have not accounted
for constants but as previously observed, uninterpreted constants can just be regarded as free
variables, thus we do not lose any expressivity here.

- constants are restricted to order one at most. (Terms are used as generators of trees where
first-order constants act as tree-node constructors). Here we do not need this restriction: as
long as constants are uninterpreted we can regard them as free variables, even at higher-orders.

- one rule ((Sig)) suffices to model the first-order constants. In contrast our setting accounts
for higher-order variables, thus the more complicated rules (InputValue) and (InputVar) are
required.

- computation trees do not have value-leaves. These are not necessary to model the pure simply-
typed lambda calculus. There will be necessary, however, when it comes to model interpreted
constants such as those of PCF or IA.

Example 4.1.5. Consider the following computation tree:

λ

@

λy

y

λη1

1

ληi

i

ληn

n

0
λx

xi

1

An example of traversal of this tree is:

λ ·@ · λy · . . . · y

1

· λx

1

· . . . · xi

i

· ληi

i

· . . .

Lemma 4.1.2. Take a traversal t ending with an inner node hereditarily justified by an appli-
cation node @. Then if we represent only the nodes appearing in the O-view, the thread of tω

has the following shape:

@ · λξ0 . . . x1 · λξ1 . . . x2 · λξ2 . . . x3 · λξ3 . . . x4 . . . xk−1λξk−1 . . . xkλξk .

Suppose that the initial node @ occurs in the computation as follows:

. . .

@

λη1
. . . ληq

Let τi denote the sub-tree rooted at ληi for i ∈ {1..q}. Then for every j ∈ {1..k}, xj and λξj
must belong to two different subtrees τi and τi′ . Furthermore, xj is hereditarily justified by some
occurrence of ληi in t and λξj is hereditarily justified by some occurrence of ληi′ in t (and

therefore λξj ∈ V
ληi` and xj ∈ V

ληi′`).

Proof. The proof is by an easy induction.
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4.1.3.2 Traversal rules for interpreted constants

The framework that we have established up to now aims at providing a computation model of
simply-typed lambda-terms. It is possible to extend it to other extensions of the simply-typed
lambda calculus. This is done by completing the traversal rules from Table 4.3 with new rules
describing the behaviour of the interpreted constants of the language considered. For instance
in the case of PCF, we need to define rules for the interpreted constant cond that replicate the
behaviour of the conditional operation. (In a forthcoming section of this chapter we will give a
complete definition of the constant traversal rules for PCF and IA.)

We mentioned before that uninterpreted constants can be regarded as free variables. In
the same way, we can consider interpreted constants as a generalization of free variables: for
both of them, the “code” describing their computational behaviour is not defined within the
scope of the term, it is instead assumed that the environment knows how to interpret them.
Free variables, however, are more restricted than interpreted constants: When evaluating an
applicative term with a free variable in head position, the evaluation of the head variable does
not depend on the result of the evaluation of its parameters; whereas for applicative term with
an interpreted constant in head position, the outcome of the evaluation may depend on the
result of the evaluation of its parameters (e.g., the PCF constant cond branches between two
control points depending on the result of the evaluation of its first parameter).

We can thus derive a prototype for constant traversal rules by generalizing the input-variable
rules (InputValue) and (InputVar):

Definition 4.1.13 (Constant traversal rule). A constant traversal has one of the following
two forms:

(Σ-Value)
t = t1 · α · t2 ∈ T rav(M) α ∈ NΣ ∪N

NΣ`
var ?(t)ω = α P (t)

t′ = t1 · α · t2 · v(t) ∈ T rav(M)

or

(Σ)/(Σ-Var)
t ∈ T rav(M) tω ∈ NΣ ∪N

NΣ` ∪ Lλ P (t)

t · n(t) ∈ T rav(M)

where:
• P (t) is a predicate expressing some condition on t;
• v(t) is a value-leaf of the node α that is determined by the traversal t;
• n(t) is a lambda-node determined by t, and its link—also determined by t—points to some

occurrence of its parent node in xty.
Clearly, such rules preserve well-bracketing, alternation and visibility.

Remark 4.1.4 The extra power of the constant rules over the input-variable rules (InputValue)
and (InputVar) comes from their ability to base their choice of next visited node on the shape
of the traversal t.

From now on, to make our argument as general as possible, we consider a simply-typed
lambda calculus language extended with higher-order interpreted constants for which some con-
stant traversal rules have been defined (in the sense of Def. 4.1.13). Furthermore, we complete
the set of rules with the following additional copy-cat rule:

(ValueΣ 7→λ) t · λξ · c . . . v
v

c ∈ T rav(M) ∧ c ∈ Σ =⇒ t · λξ · c . . . v
v

c · v

v

λξ ∈ T rav(M) .

Definition 4.1.14. A constant traversal rules is well-behaved if for every traversal t · α · u · n
formed with the rule we have ?(u) = ε.

An example is the rule (Σ-Value) which is well-behaved due to the fact that traversals are
well-bracketed. The rule (Σ)/(Σ-Var), however, is not well-behaved since the node n(t) does not
necessarily points to the pending node in t.
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Lemma 4.1.3. If Σ-constants have order 1 at most, then constant rules are necessarily all
well-behaved.

Proof. In the computation tree, an order-1 constant hereditarily enables only its immediate chil-
dren (which are all dummy lambda nodes λ). Hence a traversal formed with the rule (Σ)/(Σ-Var)
is of the form:

t = . . . · α · u · λ

where α appears in xty.
If u = ε then the result trivially holds. Otherwise, u’s first node has necessarily been visited

with the rule (Σ)/(Σ-Var) thus u’s first node is a dummy lambda node λ′ pointing to α. Since
α occurs in xty and since the node λ′ enables only its value-leaf in the computation tree, t must
be of the following shape:

t = . . . ·α · λ′ . . . vλ′ . . .︸ ︷︷ ︸
u

λ

for some value leaf vλ′ of λ′.
Again, the node following vλ′ must be a dummy lambda node pointing to α. By iterating the

same argument we obtain that the segment u is a repetition of segments of the form λ′ · . . . vλ′ .
Hence ?(u) = ε.

4.1.3.3 Property of traversals

Proposition 4.1.1. Let t be a traversal. Then:

(i) t is a well-defined justified sequence satisfying alternation, well-bracketing, P-visibility and
O-visibility;

(ii) If the last element of t is not a value-leaf whose parent-node is a lambda node (i.e., tω 6∈ Lλ)
then ptq is the path in the computation tree going from the root to the node tω.

Proof. This is the counterpart of another result proved by Ong in the paper where he intro-
duces the theory of traversals [Ong06b, proposition 6]. The original proof—an induction on
the traversal rules—can be adapted to take into account the constant rules and the presence of
value-leaves in the traversal. We detail the case (Lam) only. We need to show that n’s binder
occurs only once in the P-view at that point. By the induction hypothesis (ii) we have that
pt · λξq is a path in the computation tree from the root to λξ. But n’s binder occurs only once
in this path, therefore the traversal t · λξ · n is well-defined and satisfies P-visibility. Thus (i) is
satisfied. Furthermore n is a child of λξ therefore (ii) also holds.

Lemma 4.1.4. If t · n is a traversal with n ∈ Nvar ∪ NΣ ∪N@ then t 6= ε and tω is n’s parent
in τ(M) (and is thus a lambda node).

Proof. By inspecting the traversal rules, we observe that (Lam) is the only rule which can visit
a node in Nvar ∪NΣ ∪N@. Hence t is not empty and tω is n’s parent in τ(M).

Lemma 4.1.5. Suppose that M is β-normal. Let t be a traversal of τ(M) and n be a node
occurring in t. Then the root ~ does not hereditarily enable n if and only if n is hereditarily
enabled by some node in NΣ. Formally:

n 6∈ N~` ⇐⇒ n ∈ NNΣ` .

Proof. In a computation tree, the only nodes that do not have justification pointer are: the root
~, @-nodes and Σ-constant nodes. But since M is in β-normal form, there is no @-node in the
computation tree. Hence nodes are either hereditarily enabled by ~ or hereditarily enabled by
some node in NΣ. Moreover ~ is not in NΣ therefore the “or” is exclusive: a node cannot be
both hereditarily enabled by ~ and by some node in NΣ.
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Lemma 4.1.6 (The O-view is contained in a single thread). Let t ∈ T rav(M).

(a) If t = . . . ·m · n where m ∈ Nvar ∪NΣ ∪N@ ∪Lλ and n ∈ Nλ ∪Lvar ∪LΣ ∪L@ then m and
n are in the same thread in t: they are hereditarily justified by the same initial occurrence
(which is either τ(M)’s root, a Σ-constant or an @-node);

(b) All the nodes in xty belong to the same thread.

Proof. Clearly (b) follows immediately from (a) due to the way the O-view is computed. We
show (a) by induction on the last traversal rule used to form t. The results trivially hold for the
base cases (Empty) and (Root). Step case: Take t = t′ · n. If n ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@ then we
do not need to show (a). Otherwise n ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@. By O-visibility, n points in xt′y,
thus by the I.H., it must belong to the same thread as all the nodes in xt′y and in particular to
the thread of t′ω. Therefore both (i) and (ii) hold.

4.1.3.4 Traversal core

Occurrences of input-variable nodes correspond to point of the computation at which the term
interacts with its context. At these points, a traversal can be extended in a non-deterministic
way. In contrast, after a node that is hereditarily enabled by an @-node or by a constant
node, the next visited node is uniquely determined. We can therefore think of such nodes as
being “internal” to the computation: their semantics is predefined and cannot be altered by the
context in which the term appears. If we want to extract the essence of the computation from a
traversal, a natural way to proceed thus consists in keeping only occurrences of nodes that are
hereditarily enabled by the root:

Definition 4.1.15. The core of a traversal t, written t � ~, is defined as t � V ~` (i.e., the
subsequence of t consisting of the occurrences of nodes that are hereditarily enabled by the root
~ of the computation tree). The set of traversal cores of M is denoted by T rav(M)�~:

T rav(M)�~
def
= {t � ~ : t ∈ T rav(M)} .

Example 4.1.6. The core of the traversal given in example 4.1.4 is:

t � λfz = λfz · f · λ · z .

Remark 4.1.5

• The root occurs at most once in a traversal, therefore if t is a non-empty traversal then
its core is given by t � r where r denotes the only occurrence of ~ in t. Thus we have:

T rav(M)�~ = {t � r : t ∈ T rav(M) and r is the only occurrence of ~ in t} .

• Since @-nodes and Σ-constants do not have pointers, the traversal cores contains only
nodes in Vλ ∪ Vvar.

4.1.3.5 Removing @-nodes and Σ-nodes from traversals

Application nodes are essential in the definition of computation trees: they are necessary to
connect together the operator and operands of an application. They also have another advan-
tage: they ensure that the lambda-nodes are all at even level in the computation tree, which
subsequently guarantees that traversals respect a certain form of alternation between lambda
nodes and non-lambda nodes. Application nodes are however redundant in the sense that they
do not play any role in the computation of the term. In fact it will be necessary to filter them
out in order to establish the correspondence with interaction game semantics.
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Definition 4.1.16 (@-free traversal). Let t be a traversal of τ(M). We write t − @ for the
sequence of nodes-with-pointers obtained by

• removing from t all occurrences of @-nodes and their children value-leaves;

• replacing any link pointing to an @-node by a link pointing to the immediate predecessor
of @ in t.

Suppose u = t − @ is a sequence of nodes obtained by applying the previously defined
transformation on the traversal t, then t can be partially recovered from u by reinserting the
@-nodes as follows. For each @-node in the computation tree with parent node denoted by p,
we perform the following operations:

1. replace every occurrence of the pattern p · n for some λ-node n, by p ·@ · n;

2. replace any link in u starting from a λ-node and pointing to p by a link pointing to the
inserted @-node;

3. for each occurrence in u of a value-leaf vp pointing to p, insert the value-leaf v@ immediately
before vp and make it point to the immediate successor of p (which is precisely the @-node
inserted in step 1.).

We write u+ @ for this second transformation.

These transformations are well-defined because in a traversal, an @-node is always immedi-
ately preceded by its parent node n1, and immediately followed by its first child n2:

n1

@

n2

Example 4.1.7. Let f be a Σ-constant and t = λξ ·@ · λx · f · λ · x. Then

t−@ = λξ · λx · f · λ · x .

Example 4.1.8. Let t be the traversal given in example 4.1.4, we have:

t−@ = λfz · λuv · u · λy f · λ · y · λ · v · λ · z .

We also want to remove Σ-nodes form the traversals. To that end we define the operation −Σ
and +Σ in the exact same way as −@ and +@. Again these transformations are well-defined
since in a traversal, a Σ-node f is always immediately preceded by its parent node p, and a
value-node vp is always immediately preceded by a value-node vf .

Note that the operations −@ and −Σ are commutative: (t−@)− Σ = (t− Σ)−@.

Lemma 4.1.7. For every non-empty traversal t = t′ · tω in T rav(M):

(t−@) + @ =

{
t, if tω 6∈ V@ ;
t′, if tω ∈ V@ ;

(t− Σ) + Σ =

{
t, if tω 6∈ VΣ ;
t′, if tω ∈ VΣ .

Proof. The result follows immediately from the definition of the operation -@ and +@ (resp.
−Σ and +Σ ).



108 Chapter 4. A Concrete Presentation of Game Semantics

Remark 4.1.6 Sequences of the form t−@ (resp. t−Σ) are not, strictly speaking, proper justified
sequences of nodes since after removing @-nodes, all the prime λ-nodes become justified by their
parent’s parent which are also λ-nodes! Moreover, these sequences do not respect alternation
since two λ-nodes may become adjacent after removing a @-node.

We write t? to denote the sequence obtained from t by removing all the @-nodes as well as
the constant nodes together with their associated value-leaves:

t?
def
= t−@− Σ .

Example 4.1.9. Let f be a Σ-constant. We have

(
λξ ·@ · λx · f · λ · x

)?
= λξ · λx · λ · x .

We introduce the set
T rav(M)? = {t? | t ∈ T rav(M)} .

Remark 4.1.7 If M is a β-normal term and if it contains no Σ-constant (as for pure simply-
typed terms) then τ(M) does not contain any @-node or Σ-node, thus all nodes are hereditarily
enabled by ~ and we have T rav(M) = T rav(M)�~ = T rav(M)?.

Lemma 4.1.8. For every traversal t we have t? � V ~` = t � ~.

Proof. This is because nodes removed by the operation ? are not hereditarily enabled by the
root of the tree.

The notion of P-view extends naturally to sequences of the form t?: it is defined by the same
induction as for P-views of traversals. It is then easy to check that if tω is not in L@ ∪LΣ then
the P-view of t? is obtained from ptq by keeping only the non @/Σ-nodes:

pt?q = ptq \ (V@ ∪ VΣ) . (4.1)

We define a projection operation for sequences of the form t? as follows:

Definition 4.1.17. Let t be a traversal such that tω 6∈ L@∪LΣ and r0 be an occurrence of some
lambda-node n. Then the projection t? � V (n) is defined as the subsequence of t? consisting of
nodes of V (n) only. If a variable node loses its pointer in t? � V (n) then its justifier is reassigned
to the only occurrence of n in pt?q.

Note that this operation is well-defined. Indeed if a variable x loses its pointer in t? � V (n)

then it means that x is free in M (n). But then n must occur in the path to the root ~ which is
precisely pt6xq. Thus by (4.1), n must occur in pt6x

?q.

4.1.3.6 Subterm projection (with respect to a node occurrence)

Let n0 be a node-occurrence in a traversal t. The subterm projection t �� n0 is defined as the
subsequence of t consisting of the occurrences whose P-view at that point contain the node n0.
Formally:

Definition 4.1.18. Let t ∈ T rav(M) and n0 be an occurrence in t. The subsequence t �� n0 of
t is defined inductively on t as follows:
• (t · n0) �� n0 = n0 ;
• If n ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@ and n 6= n0 then

(t · n) �� n0 =

{
(t �� n0) · n, if n’s justifier appears in t �� n0 ;
t �� n0, otherwise ;
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• If n ∈ Nvar ∪NΣ ∪N@ ∪ Lλ and n 6= n0 then

(t · n) �� n0 =

{
(t �� n0) · n, if tω’s appears in t �� n0 ;
t �� n0, otherwise ;

where in the first subcase, if n loses its justifier in t �� r0 then it is reassigned to r0.

We call this transformation the subterm projection with respect to a node occurrence because
it keeps only nodes that appear in the sub-tree rooted at some reference node. If n0 is an occur-
rence of a lambda node n ∈ Nλ then we say that t �� n0 a sub-traversal of the computation

tree τ(M). This name is suggestive of the forthcoming Proposition 4.1.5 stating that t �� n0 is
a traversal of the sub-computation tree of τ(M) rooted at n.

Remark 4.1.8 There is an alternative way to define t �� r0: For every traversal t we write t+

to denote the sequence-with-pointers obtained from t by adding pointers as follows: For every
occurrence of a @ or Σ-node m in t we add a pointer going from m to its predecessor in t
(which is necessarily an occurrence of its parent node). Further, for every variable node x we
add auxiliary pointers going to each lambda node occurring in the P-view at that point after x’s
binder. Conversely, for every sequence-with-pointers u we define u− as the sequence obtained
from u by removing the links associated to @ and Σ-nodes and where for each occurrence of a
variable node, only the “longest” link is preserved. (The length of a link being defined as the
distance between the source and the target occurrence.) Clearly the operation − is the inverse
of +: For every traversal t we have t = (t+)−. Then it can be easily shown that the sequence
t �� n is precisely the subsequence of t consisting of nodes hereditarily justified by n with respect
to the justification pointers of t+:

t �� n = (t+ � n)− .

(Note that since the operation + changes the justification pointers, the hereditary justification
relation in a traversal t is different from the hereditary justification relation in t+ and therefore
we have (t � n)+ v t+ � n but (t � n)+ 6= t+ � n.) End of remark.

The following lemmas follow directly from the definition of t �� r0:

Lemma 4.1.9. Let t be a traversal and r0 be an occurrence of a lambda node r′ in t.

(a) Suppose that t = . . .m . . . n with n ∈ Nλ ∪ L@ ∪ LΣ ∪ Lvar and n 6= r0. Then n appears in
t �� r0 if and only if m appears in t �� r0.

(b) Suppose that t = . . . · n where n ∈ Nvar ∪ N@ ∪ NΣ ∪ Lλ. Then n appears in t �� r0 if and
only if the last lambda node in ptq does.

(c) Suppose that t = . . . m . . . vm with vm ∈ L = Lλ∪L@∪LΣ∪Lvar. Then vm appears in t �� r0
if and only if m does.

Proof. (a) holds by definition of t �� r0. (b) is proved by induction on t: It follows easily from
the fact that in the definition of t �� r0, the inductive cases follow those from the definition of
traversal P-views. (c) If vm ∈ L@ ∪ LΣ ∪ Lvar then it falls back to (a). Otherwise vm ∈ Lλ and
by (b), vm appears in t �� r0 if and only if the last lambda node in ptq does. But the last node
in ptq is necessarily m (since vm is necessarily visited with a copy-cat rule).

Lemma 4.1.10. Let t ∈ T rav(M) and r0 be the occurrence in t of a λ-node. We have:

?(t �� r0) = ?(t) �� r0 .

Proof. Take a prefix u of t ending with a value-leaf vn of an occurrence n. By Lemma 4.1.9(c),
the operation �� r0 removes vn from t if and only if it also removes n.
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4.1.3.7 O-view and P-view of the subterm projection

P-view projection

Lemma 4.1.11 (P-view Projection for traversals). Let t be a traversal and r0 be an occurrence
in t of a lambda node r′ ∈ Nλ. Then:

(i) If tω appears in t �� r0 then:

a. r0 appears in ptq, all the nodes occurring after r0 in ptq appear in t �� r0 and all the
nodes occurring before r0 in ptq do not appear in t �� r0;

b. pt �� r0q
M (r′)

= ptqM>r0 = r0 · . . .;

c. if tω also appears in t �� r1 for some occurrence r1 r
′ then r0 = r1;

d. if t = . . . m . . . n and m does not appear in t �� r0 then r0 occurs after m in t and m
is a free variable node in the sub-computation tree τ(M (r′)).

(ii) Suppose t = . . . r0 . . .m . . . n. Then the node n appears in t �� r0 if and only if m does.

Proof. (i) A trivial induction shows both a. and b.(̇The inductive steps in the definition of the
projection operation �� r0 correspond precisely to those from the definition of P-views.)

c. By a., both r0 and r1 appears in the P-view. But the P-view is the path from tω to the
root, hence it cannot contain two different occurrences of the same node r′.

d. Since tω appears in t �� r0 and its justifier m is not in t �� r0, by a., the justifier m
necessarily precedes r0 in t, and by Lemma 4.1.9, n is necessarily a variable node. Thus m
occurs before r0 in the P-view ptq. In other words, r0 lies in the path from n to its binder m.
Consequently, n is a free variable node in τ(M (r′)).

(ii) The case n 6∈ Nvar is handled by Lemma 4.1.9(a) and (c).
Suppose that n ∈ Nvar. If n appears in t �� r0 then by (i) all the nodes occurring in ptq up

to r0 appear in t �� r0. By P-visibility, m appears in ptq and since r0 precedes it by assumption,
m also appears in t �� r0. If m appears in t �� r0 then since m appears in the P-view at x, by
definition of t �� r0, x must also appear in t �� r0.

Lemma 4.1.12. Let t ∈ T rav(M) such that tω 6∈ Lλ. Let r′ be some lambda node in Nλ.
The node tω belongs to the subtree of τ(M) rooted at r′ (i.e., tω ∈ V (r′)) if and only if tω

appears in t �� r0 for some occurrence r0 of r′ in t.

Proof. Only if part: Since t’s last move in not a lambda leaf, by Proposition 4.1.1, the P-view
ptq is the path to the root ~. Hence since tω belongs to the subtree of τ(M) rooted at r′, ptq
must contain (exactly) one occurrence r0 of r′. But then by definition of t �� r0, all the nodes
following r0 occurring in the P-view must also belong to t �� r0, so in particular, tω does.

If part: By Lemma 4.1.11(i), r0 must occur in ptq and therefore r0 lies in the path from tω to
the root ~ of the computation tree τ(M). Consequently, tω necessarily belongs to the subtree
of τ(M) rooted at r′.

Lemma 4.1.13. Let t be a traversal and r0 be an occurrence in t of some lambda node r′. Then
an occurrence n 6∈ V@∪VΣ of t is hereditarily justified by n0 in t? � V (r′) if and only if n appears
in t �� r0.

Proof. We proceed by induction on t6n. If n = r0 or if r0 does not occur in t6n then the result
holds trivially. Suppose that r0 occurs in t<n. Let m be n’s justifier in t. We do a case analysis
on n. The case n ∈ L@ ∪ LΣ ∪N@ ∪NΣ is excluded by assumption.

Suppose n ∈ Lλ ∪ Lvar ∪Nλ then

n appears in t �� r0 ⇐⇒ m appears in t �� r0 by Lemma 4.1.9(a)

⇐⇒ m her. just. by n0 in t? � V (r′) by I.H. on t6m
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⇐⇒ n her. just. by n0 in t? � V (r′) since m is n’s parent in τ(M (r′)).

Suppose that n ∈ Nvar then

n appears in t �� r0 ⇐⇒ r0 appears in ptq by Lemma 4.1.12 and 4.1.11(i)

⇐⇒

{
r0 precedes m in ptq, and thus n is a bound variable in M (r′)

or r0 appears strictly after m in ptq and n is free in M (r′)

⇐⇒

{
m appears in t �� r0 by Lemma 4.1.11(i)

or n points to r0 in t? � V (r′) by def. of � V (r′)

⇐⇒

{
m her. just. by n0 in t? � V (r′) by I.H. on t6m
or n points to r0 in t? � V (r′)

⇐⇒

{
n her. just. by n0 in t? � V (r′) n is in V (r′) iff its binder m is
or n points to r0 in t? � V (r′)

⇐⇒ n is her. just. by n0 in t? � V (r′) .

Lemma 4.1.14. Take a traversal t. Let r′ be a node in Nλ and r0 an occurrence of r′ in t.
Suppose that tω appears in t �� r0 and that the thread of tω is initiated by α ∈ N@ ∪NΣ.

(i) If r0 precedes α in t then all the nodes occurring in the thread appear in t �� r0.
(ii) If α precedes r0 in t then tω is hereditarily enabled by r′ in τ(M (r′)).

Proof. (i) By definition of a thread, the nodes occurring in the thread are all hereditarily justified
by α. Since r0 precedes α and tω appears in t �� r0, by Lemma 4.1.11(ii) all the nodes in the
thread must also appear in t �� r0.

(ii) Let q be the first node in t that hereditarily justifies tω in t and that appears in t �� r0.
If q ∈ Nλ then necessarily q = r0. Otherwise by definition of �� r0, q’s justifier also appears

in t �� r0 which contradicts the definition of q. Hence the result holds trivially.
If q ∈ N@∪NΣ then necessarily q = α, since links always point inside the current thread and

since a thread contains by definition only one node in N@ ∪NΣ. But α precedes r0 therefore α
cannot be hereditarily justified by r0 hence this case is not possible.

If q ∈ Nvar then by Lemma 4.1.11(i.d), q is an free variable in τ(M (r′)) and therefore it is
enabled by r′ in τ(M (r′)). Hence since tω is hereditarily justified by r0, it must be hereditarily
enabled by r′ in τ(M (r′)).

O-view projection In this paragraph we will spend some time proving the following Propo-
sition:

Proposition 4.1.2 (O-view projection for traversals). Let t be a traversal of T rav(M) such
that its last node appears in t �� r0 for some occurrence r0 in t of a lambda node r′ in Nλ. Then
xtyM �� r0 v xt �� r0yM (r′) .

One may recognize that this result bears resemblance with another non trivial result of game
semantics from the seminal paper by Hyland and Ong on full abstraction of PCF [HO00]:

Proposition 4.1.3 (P-view projection in game semantics). [HO00, Prop.4.3] Let s be a legal
position of a game A→ B. If sω is in B then psqA→B � B v ps � BqB.

Since such result is relatively hard to prove, it would be nice if we could just reuse the above
proposition to show our result. Unfortunately, the two settings are not exactly analogues of
each other so we cannot immediately deduce one proposition from the other. Indeed, the proof
of the previous proposition relies on several properties of a legal position s [HO00]:

• (w1) Initial question to start: The first move played in s is an initial move and there is no
other occurrence of initial moves in the rest of s;
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• (w2) Alternation: P-moves and O-moves alternate in s;

• (w3) Explicit justification: every move, except the first one, has a pointer to a preceding
move,

• (w4) Well-bracketing: The pending question is answered first;

• (w5) Visibility: s satisfies P-visibility and O-visibility.

Also, further assumptions are made on the legal positions of the game A→ B:

• (w6) For every occurrence n in the position, n ∈ A ⇐⇒ n 6∈ B;

• (w7) Switching condition: The Proponent is the only player who can switch from game A
to B or from B to A.

• (w8) Justification in A→ B: Suppose m justifies n in s. Then

– n ∈ B implies m ∈ B;

– if n is a non-initial move in A the n ∈ A;

– if n is an initial move in A the n ∈ B.

Most of these requirements coincide with properties that we have already shown for traversals.
However traversals do not strictly satisfy explicit justification since there are some nodes—the
@-nodes and Σ-nodes—that do not have justification pointers. The solution to this problem is
simple: we just add justification pointers to @-nodes and Σ-nodes!

Take a justified sequence of nodes t. We define ext(t), the extension of t, to be the sequence
of nodes-with-pointers obtained from � · t (where � is a dummy node) by adding justification
pointers going from occurrences of the root ~, @-nodes and Σ-nodes to their immediate prede-
cessor in t.

Example 4.1.10. Let f ∈ Σ. We have ext(λξ ·@ · λx · f · λ · x) = � · λξ ·@ · λx · f · λ · x.

It is an immediate fact that for every two justified sequences t1 and t2 we have:

ext(t1) v ext(t2) ⇐⇒ t1 v t2 (4.2)

and for every justified sequence t:

ext(t) �� r0 = ext(t �� r0) . (4.3)

Since a traversal extension ext(t) may contain @/Σ-nodes with pointers, it is not a proper
justified sequence of nodes as defined in Def. 4.1.6. Nevertheless, the basic transformations that
we have defined for justified sequences—such as hereditary projection, P-view and O-view—
apply naturally to traversal extensions (without any modification in their definition). The views
of a traversal extension can be expressed in term of the traversal’s views as follows:

xext(t)y = xty (4.4)

pext(t)q =

{
ε, if t = ε ;
� · ext(ptq), otherwise.

(4.5)

The transformations p q and x y, however, do not convey the appropriate notion of view
for extended traversals. We define an alternative notion of view more appropriate to traversal
extensions, called O-e-view and P-e-view, as follows:



Chapter 4. A Concrete Presentation of Game Semantics 113

Definition 4.1.19. The O-e-view of a traversal extension ext(t), written, xext(t)ye is defined as

xext(t)ye
def
= pext(t)q .

The P-e-view of ext(t), written, xext(t)ye is defined by induction:

pεqe = ε
pu · nqe = puqe · n for n ∈ Lvar ∪ LΣ ∪ L@ ∪Nλ ;

pu ·m · . . . · nqe = puqe ·m · n for n ∈ Nvar ∪ Lλ ∪N@ ∪NΣ .

Inserting a dummy node � at the beginning of the traversal changes the parity of the alter-
nation between nodes in Nvar ∪Lλ ∪N@ ∪NΣ and Nλ ∪Lvar ∪LΣ ∪L@. Thus the role of O and
P is interchanged for traversal extensions. This explains why the O-e-view is calculated from
the P-view.

For the P-e-view, the definition is almost the same as the traversal O-view x y except that
the computation does not stop when reaching a node in N@∪NΣ—this is sometimes referred as
the long O-view [Har05]. (The O-view contains only one thread whereas the long-O-view may
contain several; the O-view is a suffix of the long O-view.) This is possible because occurrences
of nodes from N@ ∪NΣ in a traversal extension all have a justification pointer. The O-view of
t is a suffix of its P-e-view:

ptqe = w · xty for some sequence w. (4.6)

We are now fully equipped to establish an analogy between the traversal extension setting
and the game-semantic setting. The reason why we make this analogy is purely to reuse the
proof of Proposition 4.1.3 [HO00, Prop. 4.3]. The reader must not confuse it with another
correspondence that we will establish in a forthcoming section, between plays of game semantics
and traversals of the computation tree. (In particular the colouring of nodes used here in term of
P-move/O-move is the opposite of the one used in the Correspondence Theorem.) The following
analogy is made:

Traversal setting Game-semantic setting

Extended traversal ext(t) Play s
Nodes in n ∈ Nvar ∪ Lλ ∪N@ ∪NΣ ∪ {�} O-moves  

Nodes in n ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@ P-moves #

P-view pext(t)qe P-view psq
O-view xext(t)ye O-view xsy

Occurrence n appearing in t �� r0 Occurrence n ∈ B
Occurrence n not appearing in t �� r0 Occurrence n ∈ A

No notion of initiality (All nodes
are considered to be non-initial).

Distinction between initial and non-
initial move.

Clearly sequences of the form ext(t) satisfy the requirements (w1) to (w5): For (w1), the
initial node becomes �. Explicit justification (w4) holds since we have added pointers to @/Σ-
nodes. Finally, alternation (w3), well-bracketing (w4) and visibility (w5) of the traversal t
(Prop. 4.1.1) are preserved by the extension operation (where visibility is defined with respect
to the appropriate notion of P-view and O-view).

The property (w6) trivially holds: n ∈ t �� r0 iff ¬(n 6∈ t �� r0). So does the switching
condition (w7): if t = . . . ·m · n where n ∈ Nvar ∪ Lλ ∪N@ ∪NΣ and m ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@

then, by definition of t �� r0, m appears in t �� r0 if and only if n does. For (w8): Using the
analogy of the preceding table and since all nodes are considered “non-initial” in ext(t), this
condition can be stated as:

(w8) Suppose m justifies n in ext(t). Then n ∈ t �� r0 if and only if m ∈ t �� r0.
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Unfortunately, as we have seen previously, the direct implication does not hold in general!
(Indeed, a variable node can very well appear in t �� r0 even though its justifier does not.)
Consequently, the proof of Proposition 4.1.3 cannot be directly reused in our setting. A weaker
version of condition (w8) holds however: if r0 occurs before n’s justifier then, by Lemma 4.1.11(i),
n appears in t �� r0 if and only if its justifier does; this condition turns out to be sufficient to
reuse most of the proof of Proposition 4.1.3 [HO00].

We reproduce here some definition used in this proof. Let s be a position of the game A→ B.

A bounded segment is a segment θ of s of the form
x
# . . .

y
 . If x is in A, and hence so does y, then

θ is an A-bounded segment. Respectively if x and y are in B then it is a B-bounded segment.
By an abuse of notation we define pθ � Bq to be the subsequence of ps6y � Bq consisting only
of moves in θ appearing after (and not including) x.

We then have:

Lemma 4.1.15. [HO00, Lemma A.3] Let θ be an A-bounded segment in s with end-moves x
and y.

(i) pθ � Bq =
pr
# ·

qr
 . . .

p1
# ·

q1
 for some r ≥ 0. Note that each segment pi . . . qi is B-bounded in

s, for 1 ≤ i ≤ r.

(ii) For every P-move m in θ which appears in xs<yy, m does not belong to any of the B-
bounded segments pi . . . qi for 1 ≤ i ≤ r.

This lemma assumes that the segment θ satisfies the assumptions (w1) to (w8). As we have
seen, (w8) does not always hold for extended traversals. But using our analogy with extended
traversals, a segment θ is “A-bounded” if θ is bounded by two nodes appearing in t �� r0. This
can only happen if r0 occurs before θ in t or if θ’s left bound is r0. Thus the condition (w8)
holds at least for the nodes of the segment θ. The previous lemma thus translates into:

Lemma 4.1.16. Let t be a traversal and θ be a segment of ext(t) bounded by nodes x and y
appearing in t �� r0.

(i) pθ �� r0q
e = pr · qr . . . p1 · q1 for some r ≥ 0 where pi ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@ and qi ∈

Nvar ∪ Lλ ∪N@ ∪NΣ, for 1 ≤ i ≤ r.

(ii) For every node m in Nλ ∪ Lvar ∪ LΣ ∪ L@ occurring in θ and appearing in xext(t)<yye, m
does not belong to any of the segments pi . . . qi for 1 ≤ i ≤ r.

We now show the analogue of Proposition 4.1.3 in the context of extended traversals:

Proposition 4.1.4. Let t be a traversal and r0 be an occurrence of some lambda node r′. If
ext(t)’s last node appears in t �� r0 then pext(t)qe �� r0 v pext(t �� r0)q

e.

Proof. By (4.3) we can equivalently show that: pext(t)qe �� r0 v pext(t) �� r0q
e. By induction on

the length of t. The base case is immediate. For the inductive case, we do a case analysis:

• t = t′ · r0. We have ext(t) �� r0 = r0 and pext(t)qe �� r0 = r0 = pext(t) �� r0q
e.

• t = t′ · n with n ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@ where n is not the occurrence r0.

There are two cases.

– Suppose that the last node in t′ appears in t �� r0. Then by the I.H. we have pext(t′)qe �

� r0 v pext(t′) �� r0q
e thus

pext(t)qe �� r0 = pext(t′)qe �� r0 · n (P-view for extended justified
sequences of nodes of M)

v pext(t′) �� r0q
e · n (induction hypothesis)
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= pext(t′) �� r0 · nqe (P-view for extended justified sequences

of nodes of M (r′), n belongs to V (r′) by
Lemma 4.1.12)

= pext(t′ · n) �� r0q
e (n occurs in t �� r0)

= pext(t) �� r0q
e (definition of t).

– Suppose that the last node y1 in t′ does not appear in t �� r0. Let m be the last node
preceding m in pext(t)qe that appears in t �� r0. Then for some q ≥ 0 we have

pext(t)qe = pext(t)6mqe · xq · yq . . . x1 · y1︸ ︷︷ ︸
all appear in t �� r0 ·m

where the xis are in Nλ ∪ Lvar ∪ LΣ ∪ L@ and the yis are in Nvar ∪NΣ ∪N@ ∪ Lλ.

Therefore the sequence ext(t) must be of the following form:

ext(t)6m · xq . . . yq︸ ︷︷ ︸
θq

· · · x1 · · · y1︸ ︷︷ ︸
θ1

· m

where each segment θi is bounded by nodes appearing in t �� r0. By Lemma 4.1.16,
when computing the P-view of ext(t), pointers going from a segment θ to a node
outside the segment are never followed! In other words:

pext(t) �� r0q
e = pext(t)6m �� r0q

e · pθq �� r0q
e · · · · · pθ1 �� r0q

e ·m .

Hence:

pext(t)qe �� r0 = pext(t)6mqe �� r0 · n

v pext(t)6m �� r0q
e · n (I.H.)

v pext(t)6m �� r0q
e · pθq �� r0q

e · · · · · pθ1 �� r0q
e · n

= pext(t) �� r0q
e (by the previous equation).

• t = t′ ·m · u · n where n ∈ Nvar ∪NΣ ∪N@ ∪ Lλ. We have m ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@.

Suppose that r0 appears in t′ ·m, then since n appears in t �� r0, by Lemma 4.1.11(i) so
does m. Thus we can apply the I.H. on t′ ·m:

pext(t)qe �� r0 = pext(t′) ·m · u · nqe
M �� r0 (definition of t)

= (pext(t′) ·mqe · n) �� r0 (P-eview computation in M )

= pext(t′ ·m)qe �� r0 · n (n appears in t �� r0)

v p(ext(t′ ·m)) �� r0q
e · n (induction hypothesis on t′ ·m)

= pext(t′) �� r0 ·mqe · n (m appears in t �� r0)

= pext(t′) �� r0 ·m · (ext(u) �� r0) · nqe (P-eview in M (r′), nodes in

m · (ext(u) �� r0) · n are all in V (r′))

= p(ext(t′) ·m · ext(u) · n) �� r0q
e (m and n both appear in t �� r0)

= pext(t) �� r0q
e (definition of t).

Suppose that r0 appears in u then:

pext(t)qe �� r0 = pext(t′ ·m)qe �� r0 · n

= n (r0 occurs after m)

v p(ext(t′ ·m)) �� r0q
e · n

= pext(t) �� r0q
e .
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We can now prove Proposition 4.1.2:

Proof of Proposition 4.1.2. We have:

xty �� r0 = xext(t)y �� r0 by (4.4)

v pext(t)qe �� r0 by (4.6)

v pext(t �� r0)q
e by Proposition 4.1.4

= w · xext(t �� r0)y for some w, by (4.6)

= w · xt �� r0y by (4.4).

Thus xty �� r0 v w · xt �� r0y. But by definition of the operator ��, both xty �� r0 and xt �� r0y
start with the occurrence r0, we thus have xty �� r0 v xt �� r0y.

Example 4.1.11. Take ϕ : 2, e : o ` ϕ(λx.(λψ.ϕ(λx′.(λy.ψ(λz.z))(ϕ(λx′′ .x′))))(λu.ue)). The
computation tree is represented below together with an example of traversal t:

λ

ϕ

λx

@

λψ

ϕ

λx′

@

λy

ψ

λz

z

λ

ϕ

λx′′

x′

λu

u

λ

e

t = λ ϕ λx @ λψ ϕ λx′ @ λy ψ λu u λz z λ

xty = @ λψ ψ λu u λz z λ

xty �� r0 = λψ ψ λz z

t �� r0 = λψ ϕ λx′ @ λy ψ λz z

xt �� r0y = λψ ψ λz z .

Example 4.1.12. Take the term-in-context:

e : o ` (λfg.f(λb.f(λb′.b)(λa′.a′e))(λa.ae))(λxy.y(λh.x(he))e)e .

Take the traversal:

t = λ @ λfg f λxy y λa a λh x λb f λxy y λa′ a′ λh x λb′ b λ h

then we have the following relations:

λ

@

λfg

f

λb

f

λb′

b

λa′

a′

λ

e

λa

a

λ

e

λxy

y

λh

x

λ

h

λ

e

λ

e

λ

e

xty = @ λfg f λxy y λa a λh h

xty �� r0 = λfg f λa a

t �� r0 = λfg f λa a λb f λa′ a′ λb′ b

xt �� r0y = λfg f λa a λb b .
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4.1.3.8 Subterm projections are sub-traversals

We now show an important result that relies on all the lemmas and propositions from the
previous two sections:

Proposition 4.1.5 (Subterm projections are sub-traversals). Let t ∈ T rav(M). For every
occurrence r0 in t of some lambda node r′ ∈ Nλ we have t �� r0 ∈ T rav(M

(r′)).

Proof. We proceed by induction on the traversal rules. The base cases (Empty) and (Root) are
trivial. Step case: Take a traversal t ∈ T rav(M) and suppose that the result holds for every
traversal shorter than t.

Suppose that tω does not appear in t �� r0 then the result follows by applying the induction
hypothesis on the immediate prefix of t. Suppose that tω appears in t �� r0 then we do a case
analysis on the last traversal rule used to form t:
• (Lam) We have t = t′ · n with t′ = . . . · λξ. By the induction hypothesis, t′ �� r0 ∈

T rav(M (r′)).
Since n is a variable node appearing in t �� r0, by definition of t �� r0 its immediate predecessor
λξ must occur in t �� r0 and therefore must be the last occurrence in t′ �� r0. Thus we can use
the rule (Lam) in τ(M (r′)) to produce the traversal u = (t′ �� r0) · n of M (r′).
We have t �� r0 = (t′ �� r0) · n, but in order to state that u = t �� r0 it remains to prove that n
has the same link in t �� r0 and in u.
Suppose n ∈ N@ ∪ NΣ then n has no justifier in both u and t �� r0. Otherwise n ∈ Nvar. Let
mu denote the occurrence in t of n’s justifier in u, mt for the occurrence in t of n’s justifier in t,
and m for the occurrence in t of n’s justifier in t �� r0. We want to show that mu = m. By the
rule (Var), mu is defined as the only occurrence of n’s enabler in pt′ �� r0q and mt is the only
occurrence of n’s enabler in pt′q.
If r0 occurs before mt then by Lemma 4.1.11(ii), mt appears in t �� r0 thus by definition of ��

we have m = mt. Moreover, since mt appears in t �� r0, it must appear after r0 by Lemma
4.1.11(i.a), thus since it is in the P-view at t′, it must be in ptq>r0 which is equal to pt′ �� r0q by
Lemma 4.1.11(i.b). Hence we necessarily have mu = mt (since r′ occurs only once in the P-view
pt′ �� r0q).
If r0 occurs after mt then mt does not appear in t �� r0 thus m = r0 by definition of ��.
Moreover by Lemma 4.1.11(i), n’s binder occurs in the path from r′ to the root ~. Thus n
is a free variable in τ(M (r′)) and consequently the only enabler of n occurring in pt′ �� r0q is
necessarily r0: mu = r0.
This proves the equality t �� r0 = u and thus t �� r0 is a valid traversal of M (r′).
• (App) t = . . . ·λξ ·@ ·n. Since n appears in t �� r0, so does @ (by definition of t �� r0). Hence

@ is the last occurrence in t′ �� r0. By the induction hypothesis, t′ �� r0 is a traversal of τ(M (r′))
therefore we can use the rule (App) in τ(M (r′)) to produce the traversal (t′ �� r0) · n = t �� r0 of
M (r′).

• (Value@ 7→λ) Take t = t′ · λξ ·@ . . . v
v

@ · v

v

λξ.

The occurrence vλξ appears t �� r0 therefore since r0 is not a lambda node, its justifier λξ also

appears in t �� r0. Moreover since @ and v@ are hereditarily justified by λξ, they must also
appear in t �� r0.
By the induction hypothesis t′ �� r0 is a traversal of τ(M (r′)) therefore since the occurrence λξ,
@, v@, vλξ all appear in t �� r0 we can use the rule (Value@ 7→λ) in M (r′) to form the traversal

(t′ �� r0) · n = t �� r0 of M (r′).

• (Valueλ7→@) Take t = t′ ·@ · λz . . . v
v

λz · v

v

@. Again, since v@ appears in t �� r0, necessarily
the occurrences @, λz, vλz and v@ must all appear in t �� r0. Hence using the induction hypothesis
and the rule (Valueλ7→@) in M (r′) we obtain that t �� r0 is a traversal of M (r′).

• (Valuevar7→λ) Take t = t′ · λξ · x . . . v
v

x · v

v

λξ. Since vλξ is in t �� r0, so must be x, vx and λξ,

by definition of t �� r0. Hence we can use the I.H. to form the traversal t �� r0 of M (r′).
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• (InputValue) Take t = t1 · x · t2 · vx
v

for some v ∈ D where x is the pending node in t1 ·x · t2
and x ∈ N~`

var . Since vx appears in t �� r0, so does x hence by Lemma 4.1.10, x is also the
pending node in (t1 · x · t2) �� r0. Furthermore since M (r′) is a subterm of M , x is necessarily an
input-variable node in τ(M (r′)). Hence we can conclude using the I.H. and the rule (InputValue).
• (InputVar) Take t = t′ · n where n ∈ Nλ points to an occurrence of its parent node

y ∈ N~`
var in xty. By Lemma 4.1.9(a), y must also appear in t �� r0, therefore y also occurs in

xt �� r0y v xty �� r0. Hence we can conclude using the rule (InputVar) in M (r′).

• (Var) Take t = t′ · p · λx . . . xi
i

· ληi

i

for some variable xi in N@`
var . If ληi is the occurrence r0

then the traversal t �� r0 = r0 can be formed using the rule (Root).
Suppose that ληi is not the occurrence r0. Then both ληi and its justifier p must appear in
t �� r0. The nodes λx and xi, however, do not necessarily appear in t �� r0.
Consider the node @ that initiates the thread of ληi.

– Suppose that r0 precedes @ in t then by Lemma 4.1.14(i), the nodes ληi, p, λx and xi as
well as @ all appear in t �� r0. Moreover since @ appear in t �� r0, it must be an occurrence
of an application node that appear in the subtree rooted at r′ thus @ ∈ N r′`

var . Hence we
can use the use the rule (Var) in M (r′) to form the traversal t �� r0 of M (r′).

– Suppose that @ precedes r0 in t then by Lemma 4.1.14(ii), p is necessarily an input variable
node in τ(M (r′)). We have p ∈ xty �� r0 v xt �� r0y by Proposition 4.1.2. Furthermore we
can easily check (by alternation and using the fact that if an occurrence in Nλ∪Lvar∪L@∪
LΣ∪N@∪NΣ appears in t �� r0 then so does its immediate successor) that the penultimate
node in t �� r0 is necessarily in Nvar ∪ Lλ. Hence we can make use of the rule (InputVar) in
M (r′) (in its alternative form) to produce the traversal t �� r0 of M (r′).

• (Valueλ7→var) Take t = t′ · y · λξ . . . v
v

λξ · v

v

y for some variable y in N@`
var . The proof is similar

to the previous case using the rule (InputValue) instead of (InputVar) in the second subcase.
• (Σ)/(Σ-var) The proof is similar to the case (App) and (Var).
• (Σ-Value) The proof is similar to the case (Valueλ7→var).

The following Lemma will be useful to prove the Correspondence Theorem:

Lemma 4.1.17. Let t be a traversal and r0 be an occurrence of a lambda node r′. We have

(t �� r0)
? = t? � V (r′) � r0 .

Proof. By the previous Lemma, t �� r0 is indeed a traversal (of τ(M (r′))) thus the expression
“(t �� r0)

?” is well-defined. We show the result by induction on t: It is true for the empty
traversal. Take t = t′ · n.

If n belongs to V@ ∪ VΣ then

((t′ · n) �� n0)
? = (t′ �� n0)

? ·

{
n, if n appears in t �� n0;
ε, otherwise.

and ((t′ · n)? � V (r′)) � n0 = (t′? � V (r′)) � n0 ·

{
n, if n is her. just. by n0 in t? � V (r′);
ε, otherwise.

Since tω 6∈ V@ ∪ VΣ, by Lemma 4.1.13 we have that n is hereditarily justified by n0 in t? � V (r′)

if and only if n appears in t �� n0. Hence we can conclude using the I.H. on t′.
If n does not belong to V@ ∪ VΣ then

((t′ · n) �� n0)
? = (t′ �� n0)

?

= (t′? � V (r′)) � n0 by the I.H. on t′

= ((t′ · n)? � V (r′)) � n0

Consequently, by Lemma 4.1.7, if tω 6∈ V@ ∪ VΣ then t �� r0 = (t? � r0) + Σ + @.
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4.1.3.9 O-view and P-view projection with respect to root

Lemma 4.1.18 (O-view projection with respect to the root). Let t be a non-empty traversal of
M and r denote the only occurrence of τ(M)’s root in t. If tω appears in t � r then:

xt � ry = xty � r = xty .

Proof. It follows immediately from the fact that, by Lemma 4.1.6, all the occurrences in xty
belong to the same thread and therefore are all hereditarily justified by r.

Lemma 4.1.19 (P-view projection with respect to the root). Let t be a non-empty traversal of
M and r denote the only occurrence of τ(M)’s root in t. If tω appears in t � r then:

ptq � r v pt � rq .

Proof. We just sketch the proof. We proceed exactly in the same way as for the proof of
Proposition 4.1.2. Again we establish an analogy between traversals and plays of game semantics:

Traversal setting Game-semantic setting

Traversal t Play s
Nodes in n ∈ Nλ ∪ Lvar ∪ LΣ ∪ L@ O-moves  

Nodes in n ∈ Nvar ∪ Lλ ∪N@ ∪NΣ ∪ {�} P-moves #

P-view ptq P-view psq
O-view xty O-view xsy

Occurrence n her. just. by r in t Occurrence n ∈ B
Occurrence n not her. just. by r in t Occurrence n ∈ A

No notion of initiality (all nodes
are considered to be non-initial).

Distinction between initial and non-
initial move.

Clearly the conditions (w1) to (w8) hold. Hence we can reuse Proposition 4.3 form [HO00] which
gives the desired result.

The previous result gives us only an inequality. In the particular case where interpreted
constants are well-behaved, however, and if we consider the subsequence of a traversal consisting
of unanswered nodes only, then we obtain an equality:

Lemma 4.1.20. Suppose that M is in β-normal form and all the Σ-constants are well-behaved.
Let t be a non-empty traversal of M and r denote the only occurrence in t of τ(M)’s root.

(a) If t’s last occurrence is not a leaf then ptq � r = p?(t) � rq = p?(t � r)q =?(pt � rq);

(b) If t’s last occurrence is not a leaf and is hereditarily justified by r then ptq � r = pt � rq.

Proof. (a) It is easy to show that ?(t) � r = ?(t � r). This implies the second equality. The third
equality can be shown by an easy induction and by observing that in a traversal core, variable
occurrences are always immediately preceded by a lambda node (and not by a leaf). We show
the first equality by induction. The base case t = ε is trivial. Consider a traversal t and suppose
that the property is satisfied for all traversals shorter than t. Observe that since t contains at
most a single occurrence r of the root ~, an occurrence n in t is hereditarily justified by r if and
only if the corresponding node in τ(M) is hereditarily enabled by ~. Thus t � r = t � N~`. We
do a case analysis on t’s last node:

• tω ∈ N@. This case does not happen since M is β-normal.

• t = t′ · n with n ∈ Nvar ∪ NΣ then t′ω is not a leaf (otherwise n would also be a leaf by
rule (Value)) thus we can use the I.H. on t′ which, by an easy calculation, gives the desired
equality.



120 Chapter 4. A Concrete Presentation of Game Semantics

Suppose that tω is a lambda node. There are three subcases:

• tω ∈ N@`
λ . Since the term is in β-normal form, there is no @-node in τ(M) so the rules

(App) and (Var) are unused, hence this case does not happen.

• tω ∈ NNΣ`
λ . We have t = t′ ·m · u · n with n ∈ NNΣ`

λ and m ∈ Nvar ∪NΣ. The occurrence
n is necessarily visited with a (Σ)-rule. Since, by assumption, these rules are well-behaved
we have ?(u) = ε. Hence:

ptq � r = pt′ ·m · u · nq � r (def. of t)

= (pt′q ·m · n) � r (P-view computation)

= pt′q � r (m,n 6∈ N~`)

= p?(t′) � rq (induction hypothesis)

= p?(t′ ·m · n) � rq (m,n 6∈ N~`)

= p?(t′ ·m · u · n) � rq (?(u) = ε)

= p?(t) � rq (since u = ε).

• tω ∈ N~`
λ . If t = r then the result holds trivially. Otherwise t = t′ ·m · u · n for some

n ∈ N~`
λ . An easy calculation using the induction hypothesis on t′ ·m shows the desired

equality.

(b) If t’s last occurrence is hereditarily justified by r then the last occurrence of t � r
is precisely the last occurrence of t and is therefore not a leaf. In a traversal core, variable
nodes are immediately preceded by lambda nodes thus since the last node in t � r is not
a leaf, an easy induction shows that all the nodes in pt � rq are not leaves. Consequently
?(pt � rq) = pt � rq.

The hypothesis that the term is beta-normal is crucial in this Lemma. Take for instance the
term λxo f (o,o).(λyo.f y)x. A possible traversal is

t = λxf ·@ · λy · f · λ · y · λ · x .

But ptq � r = λxf · x is only a strict subsequence of pt � rq = λxf · f · λ · x.

4.2 Game semantics correspondence

We work in the general setting of an applied simply-typed lambda calculus with a given set
of higher-order constants Σ. The operational semantics of these constants is given by certain
reduction rules. We assume that a fully abstract model of the calculus is provided by means
of a category of well-bracketed games. For instance, if Σ consists of the PCF constants then
we work in the category of games and innocent well-bracketed strategies [HO00, AMJ94]. A
strategy is commonly defined in the literature as a set of plays closed by even-length prefixing.
For our purpose, however, it is more convenient to represent strategies using prefix-closed set
of plays. This will spare us some considerations on the parity of traversal length when showing
the correspondence between traversals and game semantics. For the rest of the section we fix
a simply-typed term Γ ` M : T . We write [[Γ `M : T ]] for its strategy denotation (in the
standard cartesian closed category of games and innocent strategies [AMJ94, HO00]). We use
the notation Pref(S) to denote the prefix-closure of the set S.
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4.2.1 Revealed game semantics

In standard game semantics, terms are denoted by strategies that are computed inductively on
the structure of the term: calculating the denotation of a term boils down to performing the
composition of strategies denoting some of its subterms. Strategy composition is the CSP-like
“composition + hiding” operation where all the internal moves are hidden.

It is possible to use an alternative notion of composition where the internal moves are not
hidden. Game model based on such notion of composition have appeared in the literature
under the name revealed semantics [Gre04] and interaction semantics [DGL05]. In such game
models, the denotation is computed inductively on the syntax of the term as in the standard
game semantics, but certain internal moves may be uncovered after composition. There is not
just one revealed semantics as one may desire to hide/uncover different internal moves. Such
semantics will help to establish a correspondence between the game semantics of a term and the
traversals of its computation tree.

This section presents a general setting in which revealed semantics can be defined. At the
end of the section we will provide an example of such an revealed semantics that is calculated
inductively on the syntax of the η-long normal form of the term.

4.2.1.1 Revealed strategies

Definition 4.2.1. We consider ordered trees whose leaves are labelled with PCF simple types
and inner nodes are labelled with symbols in {; , 〈 , 〉,Λ} where ‘;’ and ‘〈 , 〉’ are of arity 2
and ‘Λ’ is of arity one. We write 〈T1, T2〉 for the tree obtained by attaching T1 and T2 to a
〈 , 〉-node, and similarly we use the notations T1;T2 and Λ(T1).

The set of interaction type trees, or just interaction types, is defined inductively as
follows:

• Leaf : If T is a leaf annotated by a type A then T is an interaction type, and we define
type(T ) to be A;

• Currying : If T is an interaction type with type(T ) = A × B → C then Λ(T ) is also an
interaction type and type(Λ(T )) = A→ (B → C);

• Pairing : If T1 and T2 are interaction types with type(T1) = C → A and type(T2) = C →
B then 〈T1, T2〉 is also an interaction type and type(〈T1, T2〉) = C → A × B (Pairing
generalizes straightforwardly to a p-tuple operator 〈Σ1, . . . ,Σp〉 for p ≥ 2, in which case
the tree has p child subtrees.);

• Composition: If T1 and T2 are interaction types with type(T1) = A → B and type(T2) =
B → C then T1;T2 is also an interaction type and type(T1;T2) = A→ C.

We call type(T ) the underlying type (or just type) of the interaction type T . We sometimes
write TA to indicate that type(T ) = A.

Let T be an interaction type tree. Each node of type A in T can be mapped to the (standard)
game [[A]]. By taking the image of T across this mapping we obtain a tree whose leaves and nodes
are labelled by games. This tree, written 〈〈T 〉〉, is called an interaction game. A revealed

strategy Σ on the interaction game 〈〈T 〉〉 is a compositions of several standard strategies in
which certain internal moves are not hidden. Formally:

Definition 4.2.2. A revealed strategy Σ on an interaction game 〈〈T 〉〉, written Σ : 〈〈T 〉〉, is an
annotated interaction type tree T where

• each leaf [[A]] of T is annotated with a (standard) strategy σ on the game [[A]];

• each ;-node is annotated with two sets of indices S,P ⊆ N called respectively the superficial
and profound uncovering indices.
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The intuition behind this definition is that if a ;-node has children Σ1 : 〈〈A→ B〉〉 and
Σ2 : 〈〈B → C〉〉 then the two sets of indices S,P indicate which components of B should be
uncovered when performing composition. The set S indicates which superficial internal moves
(i.e., those that are created by the top-level composition between Σ1 and Σ2) to uncover; whereas
the set P indicates the profound internal moves (i.e., those that are already present in the
revealed strategies Σ1 and Σ2) to uncover. This notion of uncovering is made concrete in the
next paragraph where we define revealed strategies by means of uncovered positions.

Example 4.2.1. The diagrams below represent an interaction type tree T (left), the corre-
sponding interaction game 〈〈T 〉〉 (middle) and a revealed strategy Σ (right):

;

;

A→ B B → C

C → D

;

;

[[A→ B]] [[B → C]]

[[C → D]]

;{0},{0}

;∅,{0}

(A→ B)σ1 (B → C)σ2

(C → D)σ3

For convenience, a revealed strategy will be written as an expression in infix form: for
instance the strategy of the example above is written Σ = (σ1;

∅,{0} σ2);
{0},{0} σ3.

A revealed strategy induces a strategy in the usual sense: the standard strategy σ : A
induced by a reveled strategy Σ : TA is obtained by replacing each occurrence of the operator
‘;S,P ’ for some S,P by ‘;∅,∅’ (also abbreviated ‘;’) in the expression of Σ. For instance the strategy
Σ from the example above induces the strategy (σ1;σ2);σ3 : A→ D.

4.2.1.2 Uncovered play

The analogue of a play in the revealed semantics is called an uncovered play or uncovered position;
it is a play whose moves are interleaved with internal moves. Each move in such a play may
belong to multiple games from different nodes of the interaction game; they are thus implicitly
tagged so that one can retrieve the components of the node-games to which the move belongs.

Definition 4.2.3. The set of possible moves MT of an interaction game 〈〈T 〉〉 is defined as
MT /∼T , the quotient of the set MT by the equivalence relation ∼T⊆ MT ×MT defined as
follows: For a single leaf tree T labelled by a type A we define MT = MA and ∼T= idMA

; for
other cases:

MΛ(TA×B→C) =MT +MA→B→C

∼Λ(TA×B→C) = (∼T ∪ ((A×B → C)↔ (A→ (B → C))))=

M
〈TC1→A1

1 ,TC2→B2
2 〉

=MT1 +MT2 +MC→(A×B)

∼
〈TC1→A1

1 ,TC2→B2
2 〉

=
(
∼T1 ∪ ∼T2 ∪(C1 ↔ C) ∪ (C2 ↔ C) ∪ (A1 ↔ A) ∪ (B2 ↔ B)

)=

MTA→B
1 ;TB→C

2
=MT1 +MT2 +MA→C

∼
TA1→B1
1 ;TB2→C2

2
=

(
∼T1 ∪ ∼T2 ∪(A1 ↔ A) ∪ (B1 ↔ B2) ∪ (C ↔ C2)

)=

where A ↔ B denotes the canonical bijection between MA and MB for two isomorphic games
A and B; and R= denotes the smallest equivalence relation containing R.

It is easy to check that for every sub-type tree T ′ of T , the equivalence classes of MT ′ are
subsets of equivalence classes of MT . Thus MT ′ can be viewed as a subset of MT .

We call internal move of the game 〈〈T 〉〉, any ∼-class from MT that does not contain any
move from Mtype(T ). We denote the set of all internal moves by M int

T . The complement of M int
T
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in MT , called the set of external moves, is denoted by M ext
T . For every subgame A occurring

in some node of the interaction game T , we write M int
T,A (resp. M ext

T,A) for the subset of moves of

M int
T (resp. M ext

T ) consisting of ∼-classes containing some move in MA.

A justified interaction sequence of moves on the interaction game 〈〈T 〉〉 is a sequence of
moves from MT together with pointers where each move in the sequence except the first one has
a link attached to it pointing to some preceding move in the sequence. We write JT to denote
the set of justified interaction sequences over 〈〈T 〉〉.

Definition 4.2.4 (Projection). Let s ∈ JT for some interaction game T . We define the following
projection operations:

(a) LetM ′ be a subset ofMT . The projection s � M ′ is defined as the subsequence of s consisting
of ∼-equivalence classes from M ′;

(b) Let A be a sub-game of [[type(T )]]. We define the projection operator s � A to be the
subsequence of s consisting of the ∼-classes that contain some move in MA. Formally
s � A

def
= s � {[m] |m ∈MA} where [m] denotes the ∼-equivalence class of m.

(c) Let m be a [[type(T )]]-initial move occurring in s. We define s � m as the subsequence of s
consisting of moves that are hereditarily justified by that occurrence of m in s � [[type(T )]].

(d) Let T ′ be an immediate subtree of T . The projection s � T ′ is defined as follows:

(i) the sequence s � T ′ viewed as a sequence of moves without pointers is defined as s � MT ′

(i.e., the subsequence of s consisting of the ∼-equivalence classes that contain some
equivalence class of MT ′ ; see (a));

(ii) the justification pointers of s � T ′ are those of s except that if an element m loses its
pointer (i.e., if its justifier does not appear in s � T ′) then its justifier is redefined as
the only occurrence of an initial [[type(T ′)]]-move in ps � MT ′ � [[type(T ′)]]q (cf. (a) and
(b)).

(e) Let T ′ be a non-immediate subtree of T . We define the projection s � T ′ as (. . . (s � T 0) �

. . . � T k−1) � T k where T 0, . . . , T k is the uniquely defined sequence of subtrees of T satisfying
T = T 0, T ′ = T k and such that for every 1 ≤ l ≤ k, T l is an immediate subtree of T l−1.

(f) Let T ′ be some subtree of T and A be a sub-game of [[type(T ′)]]. Then we write s � A for
s � T ′ � A.

By extension, we also define these operations on sets of justified interaction sequences.

We now characterize revealed strategies by means of sets of justified sequences of moves called
uncovered positions or uncovered plays. This set is calculated by a bottom-up computation on
the strategy tree. At each ;-node, we apply the composition operation of game semantics. In
accordance with standard game semantics, justification pointers are adjusted when composing
two interaction strategies Σl : TA→B

l and Σr : TB→C
r : if an initial A-move a is justified by an

initial B-move itself justified by an initial C-move c then a’s justifier is set to c (see definition
of the projection � A,C [AM98b]). This guarantees that for every interaction position u of
Σl; Σr, the subsequence consisting of moves in A and C only—filtering out B-moves as well
as the internal moves coming from compositions taking place at deeper level in the revealed
semantics—is a valid position of the standard strategy underlying Σl; Σr. In contrast with the
standard game semantics, however, not all internal moves are hidden during composition.

Definition 4.2.5. A revealed strategy Σ (defined by means of an annotated type tree) is char-
acterized by its set of uncovered positions defined inductively as follows:

- Leaf labelled with type A and annotated by the strategy σ: The set of positions of the revealed
strategy is precisely the set of positions of the standard strategy σ.
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- Currying : Let Σ : 〈〈T 〉〉.
Λ(Σ) = {u ∈ JΛ(T ) | ρ(u) ∈ Σ} ,

where ρ denotes the canonical bijection from MΛ(T ) to MT .

- Pairing : Let Σ1 : 〈〈T1〉〉 and Σ2 : 〈〈T2〉〉.

〈Σ1,Σ2〉 = {u ∈ J〈T1,T2〉 | (u � T1 ∈ Σ1 ∧ u � T2 = ε)

∨ (u � T1 = ε ∧ u � T2 ∈ Σ2)} .

- Uncovered composition: Let Σ1 : 〈〈T1〉〉 and Σ2 : 〈〈T2〉〉 where type(T1) = A → B0 × . . . × Bl
and type(T2) = B0 × . . .×Bl → C.

Σ1‖Σ2 = {u ∈ JT1;T2 | u � T2 ∈ Σ2

∧ for all occurrence b in u of an initial [[type(T1)]]-
move, u � T1 � b ∈ Σ1

∧ for every initial A-move a justified in u � T1 by
b ∈ Bj , itself justified by c ∈ C in u � T2, we have
that m is justified by c in u. } .

- Partially covered composition: Let Σ1 : 〈〈T1〉〉 and Σ2 : 〈〈T2〉〉 where type(T1) = A→ B0× . . .×
Bl and type(T2) = B0 × . . .×Bl → C.

Σ1 ;S,P Σ2 = {hide(u, {0..l} \ S, {0..l} \ P ) | u ∈ Σ1‖Σ2}

where hide(u, S, P ) = u � (MT \H(S,P ))

H(S,P ) =
⋃

j∈S

M ext
T1,Bj

∪M ext
T2,Bj︸ ︷︷ ︸

superficial Bj-moves

∪
⋃

j∈P

M int
T1,Bj

∪M int
T2,Bj︸ ︷︷ ︸

profound Bj-moves

.

Observe that in particular Σ1‖Σ2 = Σ1;
{0..l},{0..l} Σ2.

In words, the uncovered composition of Σ1‖ Σ2 is the set of uncovered plays obtained by
performing the usual composition of the standard strategies underlying Σ1 and Σ2 while pre-
serving the internal moves already in Σ1 and Σ2 as well as the internal movea produced by the
composition.

On the other hand, given a product game B = B0×. . .×Bl, the partially covered composition
Σ1;

S,P Σ2 keeps only the superficial internal moves from the component Bk for k ∈ S as well as
the profound internal moves from the component Bk for k ∈ P .

As expected, this notion of set of uncovered positions is coherent with the usual notion of
positions of a standard strategy:

Lemma 4.2.1. Let Σ : T be a revealed strategy inducing the standard strategy σ : [[type(T )]].
Then for all u ∈ Σ, u � [[type(T )]] ∈ σ.

Proof. The proof is by induction on the structure of Σ. It follows from the fact that the
operations on revealed strategies from Def. 4.2.5 are defined identically to their counterparts in
the standard game semantics.

4.2.1.3 Fully-revealed and syntactically-revealed semantics

We call revealed semantics any game model of a language in which a term is denoted by some
revealed strategy as defined in the previous section. As we have already observed, depending
on the internal moves that we wish to hide, we obtain different possible revealed strategies for
a given term. Thus there is not a unique way to define a revealed semantics. In this section we
give two examples of such semantics.

Let πi denote the ith projection strategy πi : [[X1 × . . .×Xl]]→ [[Xi]].
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Definition 4.2.6 (The fully-revealed semantics). The fully-revealed game denotation of M
written 〈〈Γ `M : A〉〉 is defined by structural induction on the η-long normal form of M :

〈〈Γ ` α : o〉〉 = [[Γ ` α : o]] where α ∈ Γ ∪ Σ,

〈〈Γ ` λξ.M : A〉〉 = Λ|ξ|(〈〈Γ, ξ `M : o〉〉)

〈〈Γ ` xiN1 . . . Np : o〉〉 = 〈πi, 〈〈Γ ` N1 : A1〉〉, . . . , 〈〈Γ ` Np : Ap〉〉〉‖ev
p, Xi = A0

〈〈Γ ` fN1 . . . Np : o〉〉 = 〈〈〈Γ ` N1 : A1〉〉, . . . , 〈〈Γ ` Np : Ap〉〉〉 ‖ [[f ]], f : A0 ∈ Σ

〈〈Γ ` N0 . . . Np : o〉〉 = 〈〈〈Γ ` N0 : A0〉〉, . . . , 〈〈Γ ` Np : Ap〉〉〉 ‖ ev
p

where Γ = x1 : X1 . . . xl : Xl, A0 = (A1, . . . , Ap, o) and evp denotes the evaluation strategy with
p parameters where p ≥ 1.

Fig. 4.1 shows tree representations of the interaction games involved in the revealed strategy
〈〈Γ `M : A〉〉 for the two application cases. These trees give us information about the constituent
strategies involved in 〈〈M〉〉. For instance the revealed strategy 〈〈N0〉〉 is defined on the interaction
game 〈〈T 00〉〉 whose root game is A→ B0, and the strategy ev is defined on the interaction game
〈〈T 1〉〉 whose underlying tree is constituted of a single game-node B0 × . . . ×Bp → o.

Example 4.2.2. Take the term λx.(λf.fx)(λy.y). Its fully-revealed denotation is

Λ(〈[[x : X ` λf.fx : (o→ o)→ o]], [[x : X ` λy.y : o→ o]]〉‖ev2) .

Note that the set of fully-revealed strategies does not give rise to a category because strategy
composition is not associative and there is no identity interaction strategy.

Definition 4.2.7 (Syntactically-revealed semantics). The syntactically-revealed game de-

notation of M written 〈〈Γ `M : A〉〉s is defined by structural induction on the η-long normal
form of M . The equations are the same as in Def. 4.2.6 except for the third case:

〈〈Γ ` xiN1 . . . Np : o〉〉
s

= 〈πi, 〈〈Γ ` N1 : A1〉〉s, . . . , 〈〈Γ ` Np : Ap〉〉s〉;
∅,{1..p} evp, Xi = A0 .

The syntactically-revealed denotation differs from the fully-revealed one in that only cer-
tain internal moves are preserved during composition: when computing the denotation of an
application (joint by an @-node) in the computation tree, all the internal moves are preserved.
However when computing the denotation of 〈〈yiN1 . . . Np〉〉s for some variable yi, we only preserve
the internal moves of N1, . . . , Np while omitting the internal moves produced by the copy-cat
projection strategy denoting yi.

4.2.1.4 Relating the two revealed denotations

As one would expect, the two revealed denotations that we have just introduced are in fact
equivalent. We now show how 〈〈Γ `M : A〉〉 can be obtained from 〈〈Γ `M : A〉〉s and conversely.

Fully-uncovered composition versus partially-uncovered composition In this para-
graph we relate the fully-uncovered composition ‘‖’ with the partially-uncovered composition
‘;∅,{1..p}’ used in the definition of the syntactically-revealed semantics. Take a term M ≡
xiN1 . . . Np. Its revealed denotation is given by 〈〈Γ `M : o〉〉s = Σs;

∅,{1..p} ev where Σs =
〈πi, 〈〈Γ ` N1 : B1〉〉s, . . . , 〈〈Γ ` Np : Bp〉〉s〉. We use the notations introduced in Fig. 4.1: the com-
position takes place on the game

X1 × . . .

Xi︷ ︸︸ ︷
((B′′

1 × . . . ×B
′′
p )→ o′′) . . . ×Xn

Σ
−→

B0︷ ︸︸ ︷
((B′

1 × . . .×B
′
p)→ o′)×B1 × . . .×Bp

ev
−→ o

where the dashed-line frame contains the internal components of the game.
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〈〈N0N1 . . . Np : o〉〉 : T [A→ o]

〈〈〈N0〉〉, . . . , 〈〈Np〉〉〉 : T 0[A→ B0 × . . .×Bp]

〈〈N0〉〉 : T
00[A→ B0] . . . 〈〈Np〉〉 : T 0p[A→ Bp]

ev : T 1[B0 × . . .×Bp → o]

Tree-representation of the revealed strategy 〈〈Γ ` N0N1 . . . Np : o〉〉.

〈〈xiN1 . . . Np : o〉〉 : T [A→ o]

〈〈〈N0〉〉, . . . , 〈〈Np〉〉〉 : T 0[A→ B0 × . . .×Bp]

πi : T 00[A→ B0] 〈〈N1〉〉 : T 01[A→ B1] . . . 〈〈Np〉〉 : T
0p[A→ Bp]

ev : T 1[B0 × . . .×Bp → o]

Tree-representation of the revealed strategy 〈〈x : X ` xiN1 . . . Np : o〉〉.

A node label ‘Π : T [G]’ indicates that Π is a revealed strategy on the interaction game T whose top-level
game (at the root of the tree underlying T ) is G. Each game is annotated with a string s ∈ {0..p}∗ in
the exponent to indicate the path from the root to the corresponding node in the tree. (The digits in s
tell the direction to take at each branch of the tree.)
The games A and B are given by:

A = X1 × . . .×Xn

B = ((B′

1
× . . .×B′

p)→ o′)
︸ ︷︷ ︸

B0

×B1 × . . .×Bp .

Figure 4.1: Tree-representation of the revealed strategy in the application case.
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In Σs‖ev, all the internal moves from Bk for k ∈ {0..p} are preserved, whereas in 〈〈M〉〉s, the
internal B0-moves as well as the superficial internal Bk-moves for k ∈ {1..p} are hidden. By
definition of the composition operator ‘;∅,{1..p}’, the set 〈〈Γ `M : o〉〉s is obtained from Σs‖ev by
eliminating the internal B-moves appropriately:

〈〈Γ `M : o〉〉s = Σs;
∅,{1..p} ev = {hide(u, ∅, {1..p}) | u ∈ Σs‖ev} .

We now show that conversely, there exists a transformation mapping the set 〈〈Γ `M : o〉〉s
to Σs‖ev. More precisely we show that for every u ∈ 〈〈Γ `M : o〉〉s, there is a unique play v of
Σs‖ev ending with an external move such that eliminating the superficial internal moves from
it gives us back u.

Let us look at the structure of an interaction play of Σ‖ev. The state-diagram in Fig. 4.2
describes precisely the flow of an interaction play. A node of the diagram indicates the last
move that was played. Its label is of the form ‘A,α’ where A is the game in which the move was
played, and α ∈ {  , #, H#, G#} specifies the player that made the move. We use the symbols G#,
H#,  , # for OP-move, PO-move, O-move and P-move respectively. We use the notation ‘Xi.B

′′
k ’

to denote the sub-component B′′
k of the game Xi.

An edge from node S1 to node S2 in the diagram indicates that the move S2 can be played
if S1 was the last moved played. It is labelled by the name of the strategy that is responsible of
making the move or by ‘Env.’ to denote a move played by the environment (i.e., the opponent
in the overall game [[Γ→ o]]). For instance the edge Bk, H#

ev
−→ B0, G# tells us that if Bk, H# is

the last move played then the evaluation strategy can respond with the move Bk, H#. The game
starts at node C,  which corresponds to the initial move of the overall game. The dashed-edges
correspond to moves played by the copy-cat strategies πi and ev.

We observe that every (superficial) internal move played in some component Bk for k ∈ {0..p}
is either a copy of a previous external move, or it is subsequently copied to a external component
by the copy-cat strategy ev or πi: G#-moves from B0 are copies by ev of O-moves from C and
H#-moves from Bk, k ∈ {1..p}; H#-moves from B0 are copies by πi of O-moves from Xi; G#-moves
from Bk, k ∈ {1..p} are copies by ev of H#-moves from the components B′

k of B0; and finally
H#-moves from Bk, k ∈ {1..p} are copied into B0.

Moreover, each move on the diagram of Fig. 4.2 has either a single outgoing copy-cat edge—
in which case the following move is uniquely determined—or it has multiple out-going edges
all labelled by Σ—in which case the strategy Σ determines which moves will be played next.
Hence for every two consecutive moves in a play of 〈〈Γ `M : o〉〉s we can uniquely recover all the
internal moves occurring between the two moves in the corresponding play of Σs‖ev by following
the arrows of the flow diagram. This transformation is called the syntactical uncovering

function with respect to Σs and ev and is denoted gΣ,ev : Σs;
∅,{1..p} ev → Σs‖ev. By definition

it satisfies the following property:

hide(gΣ,ev(u), ∅, {1..p}) = u

for all u ∈ Σs;
∅,{1..p} ev whose last occurrence is an external move (i.e., in C or Xi for i ∈ {1..n}).

Recovering the fully-revealed semantics from the syntactically-revealed semantics
Given a term-in-context Γ ` M : A, its syntactically-revealed denotation 〈〈Γ `M : A〉〉s can be
obtained from 〈〈Γ `M : A〉〉 by recursively hiding the appropriate internal moves. Conversely,
the fully-revealed denotation 〈〈Γ `M : A〉〉 can be obtained from 〈〈Γ `M : A〉〉s by recursively
applying the syntactical-uncovering transformation described in the previous paragraph for every
subterm of the form yiN1 . . . Np.

4.2.1.5 Revealed semantics versus standard game semantics

In the standard semantics, given two strategies σ : A→ B, τ : B → C and a sequence s ∈ σ; τ ,
it is possible to (uniquely) recover from the sequence s the internal moves that were hidden
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B0, G# C,  
Env.
←−−−−

Xi, #

Xi.B
′′
k ,  Xi.o

′′,  

B0.B
′
k, H# B0.o

′, H# C, #

Bk, G#

Xjj 6=i, #

Xjj 6=i,  

Bk, H#

ev

πi

πi πi
ev

evev

Σ

Σ

Env.Σ

Σ

Env.

Env.
Env.

Σ

Σ
Env.

where k ∈ {1..p}, i, j ∈ {1..n} and p ≥ 1.

Figure 4.2: Flow-diagram for interaction plays of 〈〈Γ ` xiN1 . . . Np〉〉.

during composition [HO00, part II]. The revealed denotation of a term can be recovered from
its standard game denotation by recursively uncovering the internal moves for every application
occurring in the term.

Conversely, the standard denotation can be obtained from the revealed denotation by filtering
out all the internal moves:

[[Γ `M : T ]] = 〈〈Γ `M : T 〉〉 � [[Γ→ T ]] . (4.7)

This equality remains valid if we replace the fully revealed denotation by the syntactically-
revealed denotation.

Observe that the two sets of plays 〈〈Γ `M : T 〉〉 and [[Γ `M : T ]] are not in bijection. Indeed,
by definition the revealed denotation is prefix-closed therefore it also contains plays ending
with an internal move. Thus the revealed denotation contains more plays than the standard
denotation. What we can say, however, is that the set of plays [[Γ `M : T ]] is in bijection with
the subset of 〈〈Γ `M : T 〉〉 consisting of plays ending with an external move. Furthermore the
set of complete plays of [[Γ `M : T ]] is in bijection with the set of complete interaction plays of
〈〈Γ `M : T 〉〉.

4.2.1.6 Projection

The projection operation for justified sequences of moves of an interaction strategies (Def. 4.2.4)
proceeds by eliminating some of the moves from the sequence. In general when projecting a
sequence s ∈ Σ on a subtree T ′, for some subtree Σ′ : T ′ of Σ : T , the resulting sequence is not
necessarily an interaction position of Σ′ because some internal moves may be missing from s.
The following lemma shows that for strategies that are fully-revealed denotations the projection
operation generates valid positions of its sub-interaction strategies.

Lemma 4.2.2 (Projection for fully-revealed denotations). Let Σ : T be a fully-revealed de-
notation (i.e., Σ = 〈〈M〉〉 for some term M). Then for every sub-tree Σ′ : T ′ of Σ : T and
u ∈ Σ:
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• if T ′ is the first subtree of a ‘;’-node in T then for every initial [[type(T ′)]]-move b occurring
in u we have u � T ′ � b ∈ Σ′;

• otherwise (T ′ is the subtree of a ‘Λ’-node, ‘〈 , 〉’-node or the lth subtree of a ‘;’-node for
l > 1) then u � T ′ ∈ Σ′.

Proof. The proof is by induction on the distance between T ′ and T ’s root. The sequence u � T ′

equals u � T0 � . . . � Tk for some k ≥ 0 where the Tis are the unique subtrees of T such that
T0 = T , Tk = T ′, and Ti is an immediate subtree of Ti−1 for 1 ≤ i ≤ k. Let Σi : Ti denote the
strategy corresponding to each subtree Ti of T . We proceed by induction on k ≥ 0. The base
case is trivial. Step case: Suppose that v = u � Tk−1 ∈ Σk−1. We do a case analysis on the
type of the root node of Σk−1. The cases ‘Λ’ and ‘〈 , 〉’ are trivial. The only other possible case
is ‘‖’ (since Σ is a fully-revealed denotation). The result then follows by definition of ‖ with a
subtlety in the case l = 1: we have Σk−1 = Σ′‖Σr, Σ′ : T ′A→B for some strategy Σr : TB→C

r .
When calculating the positions of the composition Σ′‖Σr, links going from initial A-moves to
initial B-moves in the positions of Σ′ are changed into links pointing to initial C-moves in Σ′‖Σr.
Thus in order to obtain a valid position of Σ′ from v we need to recover the pointers accordingly.
This is precisely what the filtering operation � T ′ does (see Def. 4.2.4): if a move in v loses
its pointer in v � MT ′ then its justifier in v � T ′ is set to the only initial move occurring in
the P-view pv � MT ′ � [[type(T ′)]]q, which is necessarily b. Hence the justification pointers are
properly restored and v � T ′ � b is indeed an uncovered position of Σ′.

Together with Lemma 4.2.1 this further implies:

Lemma 4.2.3. Let Σ = 〈〈M〉〉 : T . For every u ∈ Σ and sub-tree Σ′ : T ′ of Σ : T inducing a
standard strategy σ′ : [[type(T ′)]]:

• if T ′ is the first subtree of a ‘;’-node in T then for every initial D-move b occurring in u
we have u � [[type(T ′)]] � b ∈ σ′;

• otherwise (T ′ is the subtree of a ‘Λ’-node, ‘〈 , 〉’-node or the lth subtree of a ‘;’-node for
l > 1) then u � [[type(T ′)]] ∈ σ′.

Proof. Follows immediately from Lemma 4.2.2 and 4.2.1.

Lemma 4.2.4 (Well-bracketing). Let Σ : T be the fully-revealed denotation of some term M .
Then for every sub-revealed strategies Σ′ : T ′ of Σ : T , the standard strategy σ′ : [[type(T ′)]]
induced by Σ′ is well-bracketed.

Proof. The leaves of a fully-revealed denotation are annotated by well-bracketed strategies there-
fore since well-bracketing is preserved by pairing, currying and composition, all the standard
strategies induced by the sub-revealed strategies of Σ are also well-bracketed.

Lemma 4.2.5 (Complete interaction play). Let Σ : T and Σs : T denote respectively the
fully-revealed strategy and syntactically-revealed denotation of some term (i.e., Σ = 〈〈M〉〉 and
Σs = 〈〈M〉〉s for some term M). Then:

(i) For every u ∈ Σ, if u � [[type(T )]] is complete (i.e., maximal and all question moves are
answered) then so is u.

(ii) For every u ∈ Σs, if u � [[type(T )]] is complete then so is u.

Proof. (i) We show the contrapositive. If u is not complete then it contains an answered move b.
If b is not internal then it appears in u � [[type(T )]] and therefore u � [[type(T )]] is not complete.
Otherwise, let Σ′ : T ′ be the subtree of Σ where the internal move b is uncovered: Σ′ is of the
form Σ1;

S,P Σ2 for some S,P ⊆ N with Σ1 : 〈〈TA→B
1 〉〉 and Σ2 : 〈〈TB→C

2 〉〉, and b belongs to some
uncovered component of B (i.e., whose index is in S).
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Since b is unanswered in u, it is not answered in u � A,B and u � B,C either; thus the
sequences u � A,B and u � B,C are not complete. This further implies that u � A,C is not
complete (By contradiction: otherwise we would have u � A → C = q u′ a for some initial
question q and answer a; but since q and a both belong to C this implies u � B → C = q . . . a).
By Lemma 4.2.3, u � B → C belongs to the standard strategy induced by Σ2, and by Lemma
4.2.4 this strategy is well-bracketed, thus u � B → C is well-bracketed; so since its first question
is answered it is necessarily complete.

We have shown that u � [[A→ C]] = u � [[type(T ′)]] is not complete. We then conclude by
observing that if u � [[type(T ′)]] is not complete for some sub-tree T ′ of T then u � [[type(T )]] is
not complete either. This can be shown by an easy induction on the distance between the root
of T ′ and T : The currying and pairing cases are trivial; for the composition case, the argument
is similar to the one used in the previous paragraph.

(ii) By applying the syntactical uncovering function on u we obtain a position v of Σ satisfying
u � [[type(T )]] = v � [[type(T )]]. Hence by (i), v is complete, and therefore so is u (since u is the
subsequence of v obtained by recursively hiding internal moves).

4.2.2 Relating computation trees and games

In this paragraph we relate nodes of the computation tree to moves of the game arena. First we
use an example to explain the insight before giving the formal definition.

4.2.2.1 Example

Consider the following term M ≡ λfz.(λgx.f(fx))(λy.y)z of type (o→ o)→ o→ o. Its η-long
normal form is λfz.(λgx.f(fx))(λy.y)(λ.z). The following figure represents side-by-side the
computation tree of M (left) and the arena of the game [[(o→ o)→ o→ o]] (right):

λfz

@

λgx

f

λ

f

λ

x

λy

y

λ

z

q1

q3

q4

a4
1

. . .

a3
1

. . .

q2

a2
1 a2

2
. . .

a1 a2 . . .

Now consider the following partial mapping ψ (represented by a dashed line in the diagram
below) from the set of nodes of the computation tree to the set of moves in the arena: (For
simplicity, we now omit answer moves when representing arenas.)



Chapter 4. A Concrete Presentation of Game Semantics 131

λfz[1]

@[2]

λgx[3]

f [6]

λ[7]

f [8]

λ[9]

x[10]

λy[4]

y

λ[5]

z

q1

q3

q4

q2

ψ

Consider the justified sequence of moves:

s = q1 q3 q4 q3 q4 q2 ∈ [[M ]] .

Its image by ψ(ri) gives a justified sequence of nodes of the computation tree:

r = λfz · f [6] · λ[7] · f [8] · λ[9] · z

where si = ψ(ri) for all i < |s|.
The sequence r is in fact the core of the following traversal:

t = λfz ·@[2] · λgx[3] · f [6] · λ[7] · f [8] · λ[9] · x[10] · λ[5] · z .

This example motivates the next section where we formally define the mapping ψ for any
given simply-typed term.

4.2.2.2 Formal definition

We now establish formally the relationship between games and computation trees. We assume
that a term Γ `M : T in η-long normal form is given.

Notations 4.2.1 We suppose that computation tree τ(M) is given by a pair (V,E) where V
is the set of vertices and E ⊆ V × V is the parent-child relation. We have V = N ∪ L where N
and L are the set of nodes and value-leaves respectively. Let D be the set of values of the base
type o. If n is a node in N then the value-leaves attached to the node n are written vn where v
ranges in D. Similarly, if q is a question in A then the answer moves enabled by q are written
vq where v ranges in D.

Definition 4.2.8 (Mapping from nodes to moves of the standard game semantics).

• Let n be a node in Nλ ∪Nvar and q be a question move of some game A such that n and
q are of type (A1, . . . , Ap, o) for some p ≥ 0. Let {q1, . . . , qp} (resp. {vq | v ∈ D}) be the
set of question-moves (resp. answer-moves) enabled by q in A (each qi being of type Ai).

We define the function ψn,qA from V n`— nodes that are hereditarily enabled by n—to
moves of A as:

ψn,qA = {n 7→ q} ∪ {vn 7→ vq | v ∈ D}

∪

{ ⋃
m∈Nvar |n`im

ψm,q
i

A , if n ∈ Nλ ;
⋃
i=1..p ψ

n.i,qi

A , if n ∈ Nvar .
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• Suppose Γ = x1 : X1, . . . , xk : Xk. Let q0 denote [[Γ→ T ]]’s initial move3 and suppose that
the set of moves enabled by q0 in [[Γ→ T ]] is {qx1 , . . . , qxk

, q1, . . . , qp}∪{vq | v ∈ D} where
each qi is of type Ai and qxj

of type Xj .

We define ψM : V ~` → [[Γ→ T ]] (or just ψ if there is no ambiguity) as:

ψM = {r 7→ q0} ∪ {vr 7→ vq0 | v ∈ D}

∪
⋃

n∈Nvar|~`in

ψn,q
i

[[Γ→T ]]

∪
⋃

n∈Nfv|n labelled xj ,j∈{1..k}

ψ
n,qxj

[[Γ→T ]] .

It can easily be checked that the domain of definition of ψn,qA is indeed the set of nodes
that are hereditarily enabled by n and similarly, the domain of ψM is the set of nodes that are
hereditarily enabled by the root (this includes free variable nodes and nodes that are hereditarily
enabled by free variable nodes). Also, if M is closed then we have ψM = ψ~,q0

[[→T ]].

The construction of the function ψn,qA , defined above, goes as follows. Let p be the arity of
the type of n and q.

• If p = 0 then n is a dummy λ-node or a ground type variable: ψn,qA maps n to the initial
move q.

• If p ≥ 1 and n ∈ Nλ with n labelled λξ = λξ1 . . . ξp then the sub-computation tree rooted
at n and the arena A have the following forms (value-leaves and answer moves are not
represented for simplicity):

λξ
[n]

α

. . .

q

q1 q2 . . . qp

ψn,qA

For each abstracted variable ξi there exists a corresponding question move qi of the same
order in the arena. The function ψn,qA maps each free occurrence of ξi in the computation
tree to the move qi.

• If p ≥ 1 and n ∈ Nvar then n is labelled with a variable x : (A1, . . . , Ap, o) with children
nodes λη1, . . . , ληp. The computation tree τ(M) rooted at n and the arena A have the
following forms:

x[n]

λη1
. . . ληp

q

q1 q2 . . . qp

ψn,qA

and ψn,qA maps each node ληi to the question move qi.

Example 4.2.3. For each of the following examples of term-in-context Γ `M : T , we represent
the computation tree τ(M), the arena of the game [[Γ→ T ]], and the function ψM (in dashed
lines):

3Arenas involved in the game semantics of simply-typed lambda calculus are trees: they have a single initial
move.
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• M = λxo.x
λx

x

qλx

qx

ψM

• M = λf (o,o,o).fxy
λf

f

λ

x

λ

y

qλf

qf

qf1 qf2

qx qy

ψM

• M = λf (o,o).(λg(o,o,o).g(fx)z)(λyowo.y)
λf

@

λg

g

λ

f

λ

x

λ

z

λyw

y

qλf

qf

qf1

qz qx

ψM

Lemma 4.2.6.

(i) ψM maps λ-nodes to O-questions, variable nodes to P-questions, value-leaves of λ-nodes
to P-answers and value-leaves of variable nodes to O-answers;

(ii) ψM preserves hereditary enabling: a node n ∈ V ~` is hereditarily enabled by some node
n′ ∈ V ~` in τ(M) if and only if the move ψM (n) is hereditarily enabled by ψM (n′) in
[[Γ→ T ]];

(iii) ψM maps a node of a given order to a move of the same order;

(iv) Let s ∈ T rav(M)�~. The P-view (resp. O-view) of ψM (s) and s are computed identically
(i.e., the set of positions of occurrences that need to be deleted in order to obtain the P-view
(resp. O-view) is the same for both sequences).

Proof. (i), (ii) and (iii) are direct consequences of the definition. (iv): Because of (i) and since t
and ψM (t) have the same pointers, the computations of the views of the sequence of moves and
the views of the sequence of nodes follow the same steps.

The convention chosen to define the order of the root node (see Def. 4.1.3) permits us to
have property (iii). This explains why the order of the root node was defined differently from
other lambda nodes.

By extension, we can define the function ψM on T rav(M)�~, the set of traversal cores, as
follows:

Definition 4.2.9 (Mapping traversal cores to sequences of moves). The function ψM maps
any traversal core u = u0u1 . . . ∈ T rav(M)�~ to the following justified sequence of moves of
the arena [[Γ→ T ]]: ψM (u) = ψM (u0) ψM (u1) ψM (u2) . . . where ψM (u) is equipped with u’s
pointers.

The pointer-free function underlying ψM is thus a monoid homomorphism.
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4.2.3 Mapping traversals to interaction plays

Let I be the interaction game of the revealed strategy 〈〈Γ `M : T 〉〉s and MI be the set of
equivalence classes of moves from MI .

Let r′ be a lambda node in Nspawn (the children nodes of @/Σ-nodes). We write Γ(r′) `
κ(r′) : T (r′) to denote the subterm of dMe rooted at r′ (thus Γ(r′) ⊆ Γ). We consider the
function ψκ(r′) which maps nodes of V r′` to moves of [[Γ(r′)→ T (r′)]]. Since MI contains the

moves from the standard game [[Γ(r′)→ A(r′)]], we can consider ψκ(r′) as a function from V r′`

to MI .
Every node in n ∈ V \ (V@∪VΣ) is either hereditarily enabled by the root or by some λ-node

in Nspawn. Therefore we can define the following relation ψ∗
M from V \ (V@ ∪ VΣ) to MI :

ψ∗
M = ψM ∪

⋃

r′∈Nspawn

ψκ(r′) .

This relation is totally defined on V \(V@∪VΣ) since those nodes are either hereditarily justified
by the root, by an @-node or by a Σ-node. Moreover it is a relation and not a function since
for a given variable node x, for every spawn node r′ occurring in the path from x to ~, x is
hereditarily enabled by r′ with respect to the computation tree τ(κ(r′)). Thus the domains of
definition of the relations ψκ(r′) for such nodes r′ overlap. It can be easily check, however, that
for every node n ∈ V \ (V@ ∪ VΣ), the moves in ψ∗

M (n) are all ∼-equivalent, which leads us to
the following definition:

Definition 4.2.10 (Mapping from nodes to moves of the syntactically-revealed semantics). We
define the function ϕM : V \(V@∪VΣ)→MI as follows: For n ∈ V \(V@∪VΣ), ϕM (n) is defined
as the ∼-equivalence class containing the set ψ∗

M (n). We omit the subscript in ϕM if there is no
ambiguity.

Definition 4.2.11 (Mapping sequences of nodes to sequences of moves). We define the function
ϕM from T rav(M)? to justified sequence of moves in MI as follows. If u = u0u1 . . . ∈ T rav(M)?

then:
ϕM (s) = ϕM (u0) ϕM (u1) ϕM (u2) . . .

where ϕM (u) is equipped with u’s pointers.

Example 4.2.4. Take M = λxo.(λg(o,o).gxz)(λyo.y). The diagram below represents the com-
putation tree (middle) and the relation ψ∗

M = ψλx ∪ ψλg.gx ∪ ψλy.y (dashed-lines).

λx

@

λg

g

λ

x

λ

z

λy

y

qλx

qx qzqλy

qy

qλg

q′x q′z qg

qg1

ψM

ψλy.y
ψλg.gx

where q′x ∼ qx, q
′
z ∼ qz, qg ∼ qλy, qg1 ∼ qy and qλg ∼ qλx.

Lemma 4.2.7 (Traversal projection lemma). Let ∆ ` Q : A be a subterm of dMe and ~Q denote
the root lambda node of the subtree of τ(M) corresponding to the term Q. Let t ∈ T rav(M), r0
be an occurrence of ~Q in t and m0 be the occurrence of the initial A-move ϕM (r0) in ϕM (t?).
Then:

ϕQ(t? � V (~Q) � r0) = ϕM (t?) � 〈〈∆→ A〉〉 � m0 .
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Proof. Firstly we observe that the expression “ϕQ(t? � V (~Q) � r0)” is well-defined. Indeed, by
Proposition 4.1.5 t �� r0 is a traversal of T rav(Q) therefore the sequence t? � V (~Q) � r0, which
is equal to (t �� r0)

? by Lemma 4.1.17, does belong to T rav(Q)?.
We now make the assumption that ~Q is a level-2 lambda nodes (i.e., a grand-child of the

root ~). The proof easily generalizes to other lambda nodes by iterating the argument at every
lambda nodes occurring in the path from ~Q to ~.

Claim: (i) The set of occurrence positions of t? that are removed by the operation � V (~Q)

is the same as the set of positions of ϕM (t?) removed by the operation � 〈〈∆→ A〉〉. (ii) The
justification pointers in the sequences of nodes t? � V (~Q) are the same as those of the sequence
of moves ϕM (t?) � 〈〈∆→ A〉〉.

Indeed: (i) follows from the fact that, by definition, the range of the function ϕM restricted
to V (~Q) is included in M〈〈∆→A〉〉 (the set of moves of the interaction game of Q).

(ii) By Def. 4.2.11, the sequences ϕM (t?) and t? have the same justification pointers. The
projections � V (~Q) and � 〈〈∆→ A〉〉 both alter the pointers in the sequences ϕM (t?) and t?,
but they do so identically: the operation � V (~Q) (Def. 4.1.17) alters pointers only for variable
nodes that are free in V (~Q); it makes them point to the only occurrence of ~Q in the P-view at
that point (which is also the only occurrence of a level-2 lambda node in the P-view). Similarly,
the operation � 〈〈∆→ A〉〉 (Def. 4.2.4) alters pointers only for initial A-moves: it makes them
point to the only occurrence of an initial B-move in the P-view at that point. Further ϕM maps
free variables in V (~Q) to initial A-moves, and level-2 lambda nodes to initial B-moves.

Hence the claim holds which subsequently implies ϕM (t?) � 〈〈∆→ A〉〉 = ϕM (t? � V (~Q)).
Thus ϕM (t?) � 〈〈∆→ A〉〉 � m0 = ϕM (t? � V (~Q)) � m0 = ϕM (t? � V (~Q) � r0). Finally, since the
function ϕ is defined inductively on the structure of the computation tree, the restriction of ϕM
to V ~Q coincides with ϕQ.

The following lemma states that projecting the image of a traversal by ϕ gives the image of
the traversal’s core:

Lemma 4.2.8 (Core projection lemma).

ϕM (T rav(M)?) � [[Γ→ T ]] = ψM (T rav(M)�~) .

Proof. Let H be the set of nodes of τ(M) which are mapped by ψ∗(M) to moves that are
∼-equivalent to moves in [[Γ→ T ]]. We need to show that H = V ~`.

Since ψM ⊆ ψ
∗(M) and the image of ψ(M) is [[Γ→ T ]], H must contain the domain of ψ(M)

which is precisely V ~`. Conversely, suppose that a node n ∈ V \ (V@∪VΣ) is mapped by ϕ∗(M)
to some move m ∈ MI which is ∼-equivalent to some move in [[Γ→ T ]]. If m = ψM (n) then
n ∈ V ~`. Otherwise, m = ψκ(�)(n) for some � ∈ Nspawn. There may be several node � such
that n belongs to the domain of definition of ψκ(�), w.l.o.g. we can take � to be the one which
is closest to the root. Let Γ(�) ` κ(�) : T (�). Suppose that m is ∼-equivalent to a move from
- the subgame [[Γ]] of [[Γ→ T ]], then this means that n is hereditarily justified by a free variable

node in M and therefore n ∈ V ~`.
- the subgame [[T ]] of [[Γ→ T ]] then m must belong to the subgame Γ(�) of [[Γ(�)→ T (�)]].

Indeed, since �’s parent node is an application node, moves in the subgame [[T (�)]] correspond
to internal moves of the application. By definition of the interaction strategy for the applica-
tion case, such moves can only be ∼-equivalent to other internal moves and thus cannot be
equivalent to a move from [[T ]].
Consequently, n is hereditarily justified by a free variable node z in κ(�). By assumption, �
is the closest node to the root ~ (excluding ~ itself) for which n belongs to V �` (the domain
of definition of ψκ(�)). Hence z is not bound by any λ-node occurring in the path to the root.

Thus z ∈ V ~` and therefore n ∈ V ~`.
Hence H = V ~`. Consequently, for every traversal t we have ϕM (t?) � [[Γ→ T ]] = ϕM (t? � V ~`)
which equals ϕM (t � ~) by Lemma 4.1.8.
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4.2.4 The correspondence theorem for the pure simply-typed lambda calcu-

lus

In this section, we establish a connection between the revealed semantics of a simply-typed
term without interpreted constants (i.e., Σ = ∅) and the traversals of its computation tree: we
show that the set T rav(M) of traversals of the computation tree is isomorphic to the set of
uncovered plays of the strategy denotation (this is the counterpart of Ong’s “Path-Traversal
Correspondence” Theorem [Ong06a]), and that the set of traversal cores is isomorphic to the
strategy denotation.

Preliminary lemmas

Notation 4.2.2 For every node occurrence n in a justified sequence (of nodes or of moves) u
we write ptrdistu(n), or just ptrdist(n) if there is no ambiguity, to denote the distance between
n and its justifier in u if it has one, and 0 otherwise.

Lemma 4.2.9.
(
t · n1, t · n2 ∈ T rav(M)
∧ n1 6= n2

)
=⇒ n1, n2 ∈ V

~`
λ ∧ (ψ(n1) 6= ψ(n2) ∨ ptrdist(n1) 6= ptrdist(n2)) .

Proof. Take t · n1, t · n2 ∈ T rav(M). Suppose that n1 and n2 belong to two distinct categories
of nodes (Nvar, N@, Nλ, NΣ, Lvar, L@, Lλ, or LΣ) then necessarily one must be visited with the
rule (InputVar) and the other by (InputVal)—they are the only rules with a common domain of
definition—thus one is a leaf-node and the other is an inner node which implies that ψ(n1) 6=
ψ(n2).

Otherwise n1 and n2 belong to the same category of nodes and we proceed by case analysis:
• If n1, n2 ∈ N@ then t · n1 and t · n2 are formed using the (App) rule. Since this rule is

deterministic we must have n1 = n2 which violates the second hypothesis.
• If n1, n2 ∈ L@ then the traversals are formed using the deterministic rule (Value@ 7→λ)

which again violates the second hypothesis.
• If n1, n2 ∈ NΣ then they are formed using a deterministic constant rule (see Def. 4.1.13).
• If n1, n2 ∈ LΣ then they are formed using a deterministic value-constant rule.
• If n1, n2 ∈ Nvar then t · n1 and t · n2 were formed using either rule (Lam) or (App). But

these two rules are deterministic and their domains of definition are disjoint. Hence again
the second hypothesis is violated.

• If n1, n2 ∈ Lvar then either the traversals were both formed using the deterministic rule
(Valuevar7→λ) in which case the second hypothesis is violated; or they were formed with
(InputValue) in which case n1 and n2 are two different value leaves belonging to V ~`

λ and
justified by the same input variable node. Thus by definition of ψ, ψ(n1) 6= ψ(n2).

• If n1, n2 ∈ Nλ then the traversals t · n1 and t · n2 must have been formed using either rule
(Root), (App), (Var) or (InputVar). Since all these rules have disjoint domains of definition,
the same rule must have been use to form t · n1 and t · n2. But since the rules (Root),
(App) and (Var) are all deterministic, the rule used is necessarily (InputVar).
By definition of (InputVar), n1, n2 ∈ N

~`
λ , the parent node of n1 and the parent node of

n2 all occur in xt6xy where x ∈ N~`
var denotes the pending node at t. If n1 and n2 have

the same parent node in τ(M) then since n1 6= n2, by definition of ψ, ψ(n1) 6= ψ(n2).
If their parent node is different, then n1 and n2 are necessarily justified by two different
occurrences in t therefore ptrdist(n1) 6= ptrdist(n2).

• If n1, n2 ∈ Lλ then either the traversals t · n1 and t · n2 were formed using (Valueλ7→var)
or they were formed with (Valueλ7→@) but this is impossible since these two rules are
deterministic and n1 6= n2.

The function ϕM regarded as a function from the set of vertices V \V@ of the computation tree
to moves in arenas is not injective. (For instance the two occurrences of x in the computation
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tree of λfx.fxx are mapped to the same question move.) However the function ϕM defined
on the set of @-free traversals is injective, and similarly the function ψM defined on the set of
traversal cores is injective as the following lemma shows:

Lemma 4.2.10 (ψM and ϕM are injective). For every two traversals t1 and t2:

(i) If ϕ(t?1) = ϕ(t?2) then t?1 = t?2 ;

(ii) if ψ(t1 � ~) = ψ(t2 � ~) then t1 � ~ = t2 � ~ .

Proof. (i) The result is trivial if either t1 or t2 is empty. Otherwise, suppose that t?1 6= t?2 then
necessarily t1 6= t2. W.l.o.g. we can assume that the two traversals differ only by their last node
(or last node’s pointer). Thus we have t1 = t · n1 and t2 = t · n2 for some sequence t and some
occurrences n1, n2 where either n1 and n2 are two distinct nodes in the computation tree or
ptrdist(n1) 6= ptrdist(n2).

If n1 = n2 and ptrdist(n1) 6= ptrdist(n2) then n1, n2 are not @-nodes nor Σ-nodes (since for
such nodes we would have ptrdist(n1) = 0 = ptrdist(n2)). By definition of the sequence ϕ(t1)
we have ptrdist(ϕ(n1)) = ptrdist(n1) and similarly ptrdist(ϕ(n2)) = ptrdist(n2) thus ϕ(t′ · n1) 6=
ϕ(t′ · n2). Finally since n1, n2 6∈ (N@ ∪ NΣ) we also have ϕ((t′ · n1)

?) 6= ϕ((t′ · n2)
?). Hence

ϕ(t?1) 6= ϕ(t?2).
If n1 6= n2 then by Lemma 4.2.9 n1, n2 are not @-nodes or Σ-nodes (since such nodes are

not hereditarily justified by the root) and we have either ptrdist(n1) 6= ptrdist(n2) or ϕ(n1) =
ψ(n1) 6= ψ(n2) = ϕ(n2). Hence ϕ(t?1) 6= ϕ(t?2).

(ii) Suppose that t1 � ~ 6= t2 � ~ then necessarily t1 6= t2. W.l.o.g. we can assume that the two
sequences differ only by their last occurrence. Hence we have t1 = t · n1, t2 = t′ · n2 for some
sequence t and some nodes n1, n2 where either n1 6= n2 or ptrdist(n1) 6= ptrdist(n2).

If n1 6= n2 then Lemma 4.2.9 gives ψ(t1 � ~) 6= ψ(t2 � ~). Otherwise n1 = n2 and
ptrdist(n1) 6= ptrdist(n2). The only rules that can visit the same node with two different pointers
are (InputVar) and (InputValue), thus n1 and n2 must be in V ~`

λ . Hence:

ψ(ti � ~) = ψ(t � ~) · ψ(ni) for i ∈ {1..2}

where ptrdistψ(ti�r)(ψ(ni)) = ptrdistti�r(ni).
Furthermore, since ptrdist(n1) 6= ptrdist(n2) and t1<n1

= t2<n2
we have ptrdistt1�~(n1) 6=

ptrdistt2�~(n2). Thus ψ(t1 � ~) 6= ψ(t2 � ~).

Corollary 4.2.1.

(i) ϕ defines a bijection from T rav(M)? to ϕ(T rav(M)?) ;

(ii) ψ defines a bijection from T rav(M)�~ to ψ(T rav(M)�~) .

The following lemma says that extending a traversal locally also extends the traversal glob-
ally: the traversal t of M can be extended by extending a sub-traversal t′ of some subterm of
M . This is not obvious since t′ is a subsequence of t which means that the nodes in t′ are also
present in t with the same pointers but with some other nodes interleaved in between. However
these interleaved nodes are inserted in a way that allows us to apply on t the rule that was used
to extend the sub-traversal t′:

Lemma 4.2.11 (Sub-traversal progression). Let ~j be a lambda node in τ(M), t = t′ · tω be a
justified sequence of nodes of τ(M), and rj be an occurrence of ~j in t different from tω. If

1. t′ is a traversal of τ(M),

2. tω appears in t �� rj,
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3. t �� rj is a traversal of τ(M (~j)) and its last node is visited using a rule different from
(InputVar) and (InputVarval),

then t is a traversal of τ(M).

Proof. Let tj = t �� rj . Since t′ is a traversal of M , by Prop. 4.1.5 the sequence t′ �� rj (which is
also the immediate prefix of tj) is a traversal of τ(M (~j )). We proceed by case analysis on the
last rule used to produce the traversal tj and we show that t is a traversal of M :
• (Empty), (Root). These cases do not occur since |tj | ≥ 2. Indeed, tj contains at least tω

and rj which are two different occurrences.
• (Lam) We have tj = . . . · λξ · n. Since tj v t, the node λξ also occurs in t. Therefore using

the rule (Lam) in M we can form the traversal t
6λξ ·n. But then we have (t

6λξ ·n) �� rj = t
6λξ �

� rj · n = tj6λξ · n = tj = t �� rj . Thus, since t’s last node and n both appear in t �� rj, this
implies that t6λξ · n = t. Hence t is a traversal of M .

• (App) tj = . . .·λξ ·@·n. The same reasoning as in the previous case permits us to conclude.

• (Value@ 7→λ) tj = . . . · λξ ·@ . . . v
v

@ · v

v

λξ. Since tj v t, the nodes λξ, @, v@ and vλξ all

appear in t. Moreover, since λξ is a lambda node appearing in t �� rj, its immediate successor
must also appear in t �� rj. Thus the two nodes λξ and @ are also consecutive in t. Hence we
can use the rule (Value@ 7→λ) in the computation tree τ(M) to produce the traversal t6v

λξ
·n and

by the same reasoning as in the previous case, we conclude that necessarily t = t6v
λξ
· n.

• (Valuevar 7→λ) tj = . . . · λξ · x . . . v
v

x · v

v

λξ. This case is identical to the previous case.

• (Valueλ7→@) tj = . . . ·@ · λz . . . v
v

λz · v

v

@. Same as in the previous case by observing that @
and λz are necessarily consecutive in t.
• (InputValue) and (InputVar). By assumption these cases do not happen.

• (Var) tj = . . . · p · λx . . . xi
i

· ληi

i

for some variable xi ∈ N
@`
var .

In general, two nodes p and λx appearing consecutively in tj are not necessarily consecutive in t.
For in M , t can “jump” from p to a node that do not belong to the subterm M (~j), and thus not
appearing in tj = t �� rj. This situation cannot happen here, however. Indeed, suppose that t6p
extends to t6p ·m in τ(M). All the nodes in the thread of ληi, in tj, are hereditarily justified by
the same initial @-node α which necessarily occurs after rj (the first node of tj). Consequently
p belongs to N@`

var and therefore the traversal t6p ·m must have been formed using the rule (Var)
in τ(M). Since p appears in t �� rj , by Lemma 4.1.14(i), all the nodes in the thread of p in t
appear in t �� rj. Thus m appears in t �� rj (since by O-visibility it points in the thread of p).
Hence (t6p ·m) �� r0 = t<p �� r0 · p ·m which implies that m is precisely the occurrence λx.
Hence the nodes p, λx, xi and ληi all appear in t with the two nodes p and λx appearing
consecutively. We can therefore use the rule (Var) in M to form the traversal t.
• (Valueλ7→var) Same proof as in the previous case.
• (Σ)/(Σ-var) Same as (App) and (Var).
• (Σ-Value) Same as (Valueλ7→var).

The correspondence theorem

We now state and prove the correspondence theorem for the simply-typed lambda calculus
without interpreted constants (Σ = ∅). This theorem establishes a correspondence between the
denotation of a term in the intentional game model and the set of traversals of its computation
tree. The result extends immediately to the simply-typed lambda calculus with uninterpreted
constants since we can regard constants as being free variables.

Theorem 4.2.2 (The Correspondence Theorem). For every simply-typed term Γ `M : T , ϕM
defines a bijection from T rav(M)? to 〈〈Γ `M : T 〉〉s and ψM defines a bijection from T rav(M)�~
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to [[Γ `M : T ]]:

ϕM : T rav(Γ `M : T )?
∼=
−→ 〈〈Γ `M : T 〉〉s

ψM : T rav(Γ `M : T )�~
∼=
−→ [[Γ `M : T ]] .

Remark 4.2.1 By Corollary 4.2.1, we just need to show that ϕM and ψM are surjective, that
is to say: ϕM (T rav(M)?) = 〈〈Γ `M : T 〉〉s and ψM (T rav(M)�~) = [[Γ `M : T ]]. Moreover the
former implies the latter, indeed:

[[Γ `M : T ]] = 〈〈Γ `M : T 〉〉s � [[Γ→ T ]] by (4.7) from Sec. 4.2.1.5

= ϕM (T rav(M)?) � [[Γ→ T ]] by assumption

= ψM (T rav(M)�~) by Lemma 4.2.8.

Therefore we just need to prove ϕM (T rav(M)?) = 〈〈Γ `M : T 〉〉s.

Since the proof is rather technical, we first give an overview of the argument: We proceed by
induction on the structure of the computation tree. The only non-trivial case is the application;
the computation tree τ(M) has the following form:

λξ

@

τ(N0) . . . τ(Np)

A traversal of τ(M) goes as follows: It starts at the root λξ of the tree τ(M) (rule (Root)),
visits the node @ (rule (Lam)) and the root of τ(N0) (rule (App)) and then proceeds by traversing
the subtree τ(N0). While doing so, some variable yi bound by τ(N0)’s root may be reached,
in which case the traversal is interrupted by a jump to τ(Ni)’s root (performed with the rule
(Var)) and the process goes on with τ(Ni). Again, if the traversal encounters a variable bound
by τ(Ni)’s root then the traversal of τ(Ni) is interrupted and the traversal of τ(N0) resumes.
This schema is repeated until the traversal of τ(N0) is completed4.

The traversal of M is therefore made of an initialization part followed by an interleaving of
a traversal of N0 and several traversals of Ni for i = 1..p. This schema is reminiscent of the way
the evaluation copy-cat map ev works in game semantics.

The crucial idea of the proof is that every time the traversal jumps from one subterm to
another, the jump is permitted by one of the “copy-cat” rules (Var), (Valueλ7→@), (Valuevar 7→λ),
(Value@ 7→λ), or (Valueλ7→var). We show by a second induction that these copy-cat rules implement
precisely the copy-cat evaluation strategy ev.

Proof. Let Γ `M : T be a simply-typed term where Γ = x1 : X1, . . . xn : Xn. We assume that M
is already in η-long normal form. By remark 4.2.1 we just need to show that ϕM (T rav(M)?) =
〈〈Γ `M : T 〉〉s. We proceed by induction on the structure of M :

• (abstraction) M ≡ λξ.N : Y → B where ξ = ξ1 : Y1, . . . ξn : Yn. On the one hand we have:

〈〈Γ ` λξ.N : T 〉〉s = Λn(〈〈ξ,Γ ` N : B〉〉s)

' 〈〈ξ,Γ ` N : B〉〉s .

On the other hand, the computation tree τ(N) is isomorphic to τ(λξ.N) (up to renaming
of the computation tree’s root), and T rav(N) is isomorphic to T rav(λξ.N). Hence we can
conclude using the induction hypothesis.

4Since we are considering simply-typed terms, the traversal does indeed terminate. However this will not be
true anymore in the PCF case.
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• (variable) M ≡ xi. Since M is in η-long normal form, x must be of ground type. The
computation tree τ(M) and the arena 〈〈Γ→ o〉〉s are represented below (value leaves and
answer moves are not represented):

λ

xi

q0

q1 q2 . . . qn

Let πi denote the ith projection of the interaction game semantics. We have:

〈〈M〉〉s = πi = Pref({q0 · q
i · vqi · vq0 | v ∈ D}) .

It is easy to see that traversals of M are precisely the prefixes of λ · xi · vxi
· vλ. Since M is in

β-normal we have T rav(M)? = T rav(M), and since ϕM (λ) = q0 and ϕM (xi) = qi we have:

ϕM (T rav(M)?) = ϕM (T rav(M)) = ϕM (Pref(λ · xi · vxi
· vλ)) = 〈〈M〉〉s .

• (@-application) M = N0N1 . . . Np : o where N0 is not a variable. We have the typing judg-
ments Γ ` N0N1 . . . Np : o and Γ ` Ni : Bi for i ∈ 0..p where B0 = (B1, . . . , Bp, o) and
p ≥ 1.

The tree τ(M) has the following form:

λ[~]

@

λy1 . . . y
[~0]
p

τ(N0)

[~1]

τ(N1)

. . . [~p]

τ(Np)

where ~j denote the root of τ(Nj) for j ∈ {0..p}.

We have:
〈〈Γ `M : o〉〉s = 〈〈〈Γ ` N0 : B0〉〉s, . . . , 〈〈Γ ` Np : Bp〉〉s〉︸ ︷︷ ︸

Σ

‖ ev .

In the following, we use the notations introduced in Fig. 4.1 from section 4.2.1.3 which fixes
the names of the different games involved in the interaction strategy 〈〈M〉〉s. In particular the
games A, B and C are defined as:

A = X1 × . . . ×Xn

B = ((B′
1 × . . .×B

′
p)→ o′)

︸ ︷︷ ︸
B0

×B1 × . . . ×Bp

C = o .

Let q0 and q′0 be the initial question of C and B0 respectively.

⊆ We first prove that 〈〈Γ `M : T 〉〉s ⊆ ϕM (T rav(M)?). Suppose u ∈ 〈〈Γ `M : T 〉〉s. We
give a constructive proof that there is a traversal t such that ϕM (t?) = u by induction
on u.
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For the base case u = ε, take t to be the empty traversal formed with (Empty). Step case:
Suppose that u = u′ ·m ∈ 〈〈Γ `M : T 〉〉s for some move m ∈MT where u′ = ϕM (t′?) for
some traversal t′ of τ(M).

By unraveling the definition of u ∈ 〈〈Γ `M : T 〉〉s we have:

(a) u ∈ JT ;
(b) For every occurrence b in u of an initial Bk-move, for some k ∈ {0..p}:{

u � T 0k � b ∈ 〈〈Nk〉〉s ,

u � T 0k′ � b = ε for every k′ ∈ {0..p} \ {k} ;
(c) u � B0 = u � B1, . . . , Bp, C .





(4.8)

We recall that each m ∈MT is an equivalence class of moves fromMT . For every game
A appearing in the interaction game T we will write “m ∈ A” to mean that some element
of the class m belongs to the set of moves MA. Similarly, for every sub-interaction game
T ′ of T , we write “m ∈ T ′” to mean that some element of the class m belongs to the set
of moves MT ′ . We proceed by case analysis on m: We either have m ∈ C or m ∈ T 0;
in the last case m is either in A, a superficial internal move in B or a profound internal
move in B:

– Suppose m ∈ C. Moves in C are played by the standard strategy ev that does not
contain any internal move. Hence m is either q0 or vq0 for some v ∈ D.
Suppose that m = q0. Since q0 can occur only once in u we have u = q0 and the
traversal t = λ[~] formed with (Root) clearly satisfies ϕ(t?) = u.
Otherwise m = vq0. This P-move is played by the copy-cat strategy ev therefore it is
the copy of some answer vq′0 to the question q′0 from the sub-game o′. The move vq′0
is necessarily the immediate predecessor of m in u. (Indeed the play u6vq′0

� A,B is

complete since its first move q′0 is answered by vq′0, and therefore u6vq′0
� T 0 is also

complete by Lemma 4.2.5; thus no profound internal move can be played between
vq′0 and vq0, and therefore these two moves are consecutive.)
Hence by the induction hypothesis the last move in t′ is ϕ(vq′0) = vλy1 . The rules

(Valueλ7→@) and (Value@ 7→λ) permits us to extend the traversal t′ to t′ ·v@ ·vλξ where
v@ and vλξ point to the second and first node of t′ respectively. Clearly we have
ϕM ((t′ · v@ · vλξ)

?) = u.

– Suppose m ∈ T 0 and m is an initial move in B0. Then necessarily m is q′0 ∈ [[o′]], the
copy-cat move of the initial move q0 ∈ C of u. Hence u = q0 · q

′
0. The rules (Root),

(App) and (Lam) permit us to build the traversal t = λ[~] · @ · λy[~0] which clearly
satisfies ϕM (t?) = u.

– Suppose m ∈ T 0 and m is an initial move in Bk for some k ∈ {1..p}. Then m is
necessarily a copy-cat move played by the evaluation strategy, and the move m1

immediately preceding m in u is an initial move of the component B′
k of B0.

Thus since ϕM (t′ω) = m1, t′ω must be an occurrence of the node yk—the kth variable
bound by λy. We can thus form, with the rule (Var), the traversal t = t′·~k satisfying
ϕM (t?) = ϕM (t′?) ·m = u.

– Supposem ∈ T 0 and m is not initial in B. In u � T 0, m must be hereditarily justified
by some initial move b in Bk for some k ∈ {0..p}. Since u � T 0k � b ∈ 〈〈Nk〉〉s, the
outermost induction hypothesis gives us:

u � T 0k � b = ϕNk
(t?k) (4.9)

for some traversal tk ∈ T rav(Nk) where w.l.o.g. we can assume that tωk 6∈ V@. We
have:

ϕM (tωk ) = (ϕM (t?k))
ω since tωk 6∈ V@
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= ((u′ ·m) � T 0k � b)ω by (4.9)

= ((u′ � T 0k � b) ·m))ω since m is h.j. by b and belongs to T 0k

= m .

Take t = t′ · tωk where tωk points in t′ to the image by ϕM of the occurrence justifying
m in u. Since tωk 6= @ we have t? = t′? · tωk where tωk justifier in t′? is the same as its
justifier in t.
Hence we have ϕM (t?) = ϕM (t′?) · ϕM (tωk ) which, by the innermost I.H. together
with the previous equation, equals u′ · m where m’s justifier in u′ corresponds to
ϕM (tωk )’s justifier in ϕM (t′?). Consequently:

ϕM (t?) = u . (4.10)

We are half-done at this point, it remains to show that t is indeed a traversal of τ(M).
Let rk denote the occurrence of the root ~k in t that is mapped to the occurrence b
in ϕM (t?). We make the following claim:

tk = t �� rk . (4.11)

Indeed we have:

ϕNk
(t?k) = u � T 0k � b by (4.9)

= ϕM (t?) � T 0k � b by (4.10)

= ϕNk
(t? � V (~k) � rk) by Lemma 4.2.7.

Since ϕNk
is a bijection from T rav(Nk)

? to ϕNk
(T rav(Nk)

?) (by Corollary 4.2.1)
this implies that t?k = t? � V (~k) � rk which in turn equals (t �� rk)

? by Lemma
4.1.17 from Sec. 4.1.3.6. But since tk and t do not end with an @-node, this implies
equality (4.11).

We now show that t is indeed a traversal by a case analysis of the rule used to visit
the last occurrence of tk in the tree τ(Nk):

(a) Suppose the rule used to visit tωk is neither (InputVar) nor (InputVarval). Then
by Lemma 4.2.11, t is a traversal of M .

(b) Suppose tωk is visited with (InputVar). Then tk is of the form

tk = . . . · z · . . . · tωk

for some input-variable z ∈ N~k`
var occurring in xtky and where tωk ∈ N

~k`
λ .

Thus:

u = . . . · ψNk
(z)

= m3

· . . . · ψNk
(tωk )

= m

.

The occurrence tωk is hereditarily enabled by the root ~k itself enabled by an
application node, thus tωk is not hereditarily enabled by the root ~. Since only
nodes that are hereditarily enabled by the root are mapped to move in A we
know that ψNk

(tωk ) is not played in A and therefore ψNk
(tωk ) ∈ Bk. Similarly we

have ψNk
(z) ∈ Bk.

Now consider the top-most composition in the interaction strategy 〈〈M〉〉s—that
of the interaction strategy Σ : A → B with the evaluation copy-cat strategy
ev : B → o. Consider the sub-sequence u � A,B,C of u consisting only of moves
involved in this top-most composition (i.e., the internal moves coming from other
compositions at deeper level in the revealed semantics are removed). Since z is a
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variable node, the move m3 = ψNk
(z) ∈ Bk is a P-move with respect to the game

[[A→ Bk]], and therefore it is an O-move in the game [[B → o]]. Consequently
the strategy ev is responsible to play at u6m3 � A,B,C. Let m2 denote the move
played by ev which immediately follows m1 in u � A,B,C.
We claim that m3 and m2 are also consecutive in u. That is to say that no
internal moves generated from the other compositions at deeper levels in the
interaction strategy can ever be played between m3 and m2. Indeed, firstly the
strategy ev is a pure standard strategy thus it does not play any (profound)
internal move. Furthermore, suppose that the strategy Σ comes from the com-
position Σl‖Σr of two interaction strategies Σl : A → D and Σr : D → B for
some game D, then by the Switching Condition for function-space game [HO00]
the Opponent cannot switch of component, and thus the move following m3 in
the interaction sequence u � A,D,B must belong to B. Hence internal moves
from D cannot be played immediately after m3.
Similarly, we can show that the move m is played by the strategy ev and is the
copy of the move m1 immediately preceding it in u � A,B,C as well as in u.
Hence the sequence u has the following form:

u = . . . ·m3 ·m2 · . . . ·m1

i

·m

i

.

Consequently we have:

tk = . . . · z · . . . · tωk

i

t′ = . . . · z · λy · . . . · y
i

.

The first equation implies that tωk is the ith child of z in the computation tree,
thus since z 6∈ N~`, we can apply the (Var) rule to the second equation which
produces the traversal of τ(M):

t′ · tωk = . . . · z · λy · . . . · y
i

· tωk

i

which is precisely the sequence t. Hence t is indeed a traversal of τ(M).
The diagram on Fig. 4.3 shows an example of such interaction sequence u.

A −→ ((B′
1 → o′) × B1) −→ o

q0(λξ) O

O q′0(λz) P

P m3(z) O

O m2(λy) P

P m1(y) O

O m(tωk ) P

@

Figure 4.3: Example of a sequence u � A,B,C for u ∈ 〈〈M〉〉s and l = 1.

(c) Suppose tk’s last move is visited with the rule (InputVarval) then the proof is the
same as in the previous case but with (InputVarval) substituted for (InputVar).

⊇ The converse, ϕM (T rav(M)?) ⊆ 〈〈M〉〉s, is the easy part of the proof.

Let u be as sequence of ϕM (T rav(M)?). Then u = ϕM (t?) for some traversal t of τ(M).
To show that u is a position of 〈〈Γ `M : T 〉〉s we have to prove that it satisfies the three
conditions of (4.8):
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– (a) By definition, ϕM maps justified sequences of nodes to justified sequences of
moves from MT therefore ϕM (t?) ∈ JT .

– (b) Take an initial B-move b ∈ Bk, for some k ∈ {0..p}, occurring in ϕM (t?). There
is a corresponding occurrence rk in t of a level-2 lambda node ~k of τ(M). By
definition, the function ϕM maps nodes from the subtree of τ(M) rooted at ~k′ , for
every k′ ∈ {0..p}, to moves of the game 〈〈Γ→ Bk′〉〉s that are hereditarily justified
by some occurrence of ϕM (~k′). Hence for every k′ ∈ {0..p} \ {k} we clearly have
ϕM (t?) � T 0k′ � b = ε. Moreover:

u � T 0k � b = ϕM (t?) � T 0k � b

= ϕM (t? � V (~k) � rk) by Lemma 4.2.7

= ϕM ((t �� rk)
?) by Lemma 4.1.17

= ϕNk
((t �� rk)

?) since t �� rk is a traversal of Nk by Prop. 4.1.5

∈ ϕNk
(T rav(Nk)

?)

= 〈〈Nk〉〉s by the induction hypothesis.

– (c) We can show that ϕM (t?) � B0 = ϕM (t?) � B1, . . . , Bp, C by a trivial induction
on the traversal t. (This property holds because of the way the traversal rules mimic
the behaviour of the evaluation strategy.)

• (Var-application) M = xiN1 . . . Np : o.

The revealed denotation is 〈〈Γ `M : o〉〉s = 〈πi, 〈〈Γ ` N1 : B1〉〉s, . . . , 〈〈Γ ` Np : Bp〉〉s〉︸ ︷︷ ︸
Σ

;∅,{1..p} ev

and the computation tree is

λ[~]

xi

τ(N1)
[~1] . . . τ(Np)

[~p]

.

We use the notations of Fig. 4.1 for names of the games involved in the interaction strategy.
The composition of Σ with ev takes place on the following games:

A︷ ︸︸ ︷

X1 × . . .

Xi︷ ︸︸ ︷
((B′′

1 × . . .×B
′′
p )→ o′′) . . .×Xn

Σ
−→

B︷ ︸︸ ︷
B0︷ ︸︸ ︷

((B′
1 × . . .×B

′
p)→ o′)×B1 × . . . Bp

ev
−→

C︷︸︸︷
o

Let q0, q
′
0 and q′′0 be the initial question of C, B0 and Xi respectively.

〈〈Γ `M : T 〉〉s ⊆ ϕM (T rav(M)?). We show (constructively) by induction that for every v ∈
Σ‖ev, there is some traversal t such that the sequence u = hide(v, {0..p}, {0}) equals
ϕM (t?).

The base case v = ε is trivial. Suppose that v = v′ ·m ∈ Σ‖ev where hide(v′, {0..p}, {0}) =
ϕM (t′?) for some traversal t′ of τ(M) and move m ∈ MT . Unraveling the definition of
v ∈ Σ‖ev gives

- v ∈ JT ;
- for every occurrence b in v of an initial Bk-move for some k ∈ {0..p}:
v � T 00 � b ∈ πi if k = 0 and v � T 0k � b ∈ 〈〈Nk〉〉s if k > 0,

and ∀k′ ∈ {0..p} \ {k}. v � T 0k′ � b = ε;
- and v � B0 = v � B1, . . . , Bp, C .





(4.12)

We proceed by case analysis on m. It is either played in A, B or C.
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1. m ∈ C. The proof is the same as in the @-application case except that the rules
(Valueλ7→var) and (Valuevar 7→λ) are used instead of (Valueλ7→@) and (Value@ 7→λ) respec-
tively.

2. m is a superficial internal B-move. Then hide(v, {0..p}, {0}) = hide(v′, {0..p}, {0}) so
we can directly conclude from the I.H.

3. m is a profound internal B-move. Then necessarily m belongs to Bk for some k ∈
{1..p} (since πi does not contain internal moves). Thusmmust be hereditarily justified
by some b ∈ Bk. The treatment of this case is identical to the @-application case where
m ∈ T 0 is not initial in B and b ∈ Bk for some k ∈ {0..p}.

4. m ∈ A. Let b denote the initial Bk-move that hereditarily justifies m for some
k ∈ {0..p}. If k > 0 then the treatment is the same as in case 3. Otherwise b ∈ B0:

– Suppose m is an occurrence of the initial o′′-move q′′0 . Then m is played by πi
and therefore is the copy of q′0 itself the copy of the initial move q0 of v. Thus
v = q0 · q

′
0 · q

′′
0 and u = q0 · q

′′
0 . The traversal t = λ[~] · xi formed using the rules

(Root) and (Lam) meets the requirement.

– Otherwise since v � b ∈ πi we have v � b � Xi = v � b � B0 therefore m must
necessarily be hereditarily justified by the first occurrence of q′′0 in v.

∗ Suppose m is an  -question. Then the preceding move in v is necessarily a
#-move also played in A by the strategy πi and therefore it is also hereditarily
justified by the first occurrence of q′′0 .
By definition of ϕM , the last node in t′ is a variable node (if the preceding move
is a #-question) or a value-leaf of a lambda node (if the preceding move is a #-
answer) that is hereditarily justified by the node xi. Hence the rule (InputVar)
can be applied at t′.
Let m′ be m’s justifier in v′ and α′ be the corresponding node in t′ that ϕM
maps to m′. Suppose m is the ith move enabled by m′ in the arena and let α be
the ith child node of α′ in τ(M). By definition of ϕM we have ϕM (α) = m. We
want to show that we can use the rule (InputVar) to append α to the traversal
t′. Since we have v � A,C ∈ [[M ]], by O-visibility m′ appears in xv′ � A,Cy, and
by the induction hypothesis we have v′ � A,C = ψM (t′ � r). Hence

m′ ∈ xψM (t′ � r)y = ψM (xt′ � ry)

= ϕM (xt′ � ry) since ϕM and ψM coincide on V ~`,

= ϕM (xt′y) by Lemma 4.1.18.

This implies that α′ appears in xt′y which allows us to use the rule (InputVar)
to form the traversal t = t′ · α satisfying ϕM (t?) = hide(v, {0..p}, {0}).

∗ Suppose m is a #-answer. The same argument as above holds but using
(InputValue) instead of (InputVar).

∗ Supposem is an  -question. We proceed identically using the rule (Lam) instead
of (InputVar). The proof that α′ appears in the P-view pt′q goes as follows:
Let pvq denote the core of the interaction sequence v [McC96b]. By P-visibility
in v � A,C, m occurs in pv′ � A,Cq. Further we have pv′ � A,Cq = pv′q � A,C
[McC96b], and clearly pv′q � A,C equals phide(v′, {0..p}, {0})q � A,C. Hence

m′ ∈ pϕM (t′?)q � A,C v pϕM (t′?)q .

This implies that α′ occurs in pt′?q, which is a subsequence of pt′q by (4.1).
(See Sec. 4.1.3.5).

∗ If m is a #-answer then we proceed as above but using the rule (Value) instead.
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ϕM (T rav(M)?) ⊆ 〈〈M〉〉s. Let t be some traversal of τ(M). To show that ϕM (t?) is a
position of 〈〈Γ `M : T 〉〉s we have to prove that ϕM (t?) = hide(v, {0..p}, {0}) for some
v satisfying condition (4.12). It suffices to take v = gΣ,ev(ϕM (t?)) where gΣ,ev denotes
the function defined in Sec. 4.2.1.4 that transforms plays of the syntactically-revealed
semantics to their corresponding plays of the fully-revealed semantics. The rest of the
argument is the same as in the @-application case.

Corollary 4.2.3. If M is in β-normal form then for every traversal t, ϕM (t) is a maximal
play if and only if t is a maximal traversal.

Proof. If M is in β-normal form then T rav(M)�~ = T rav(M) therefore ϕ defines a bijection on
T rav(M). Let t be a traversal such that ϕ(t) is a maximal play. Let t′ be a traversal such that
t 6 t′. By monotonicity of ϕ we have ϕ(t) 6 ϕ(t′) which implies ϕ(t) = ϕ(t′) by maximality of
ϕ(t) which in turn implies t′ = t by injectivity of ϕ. The other direction is proved identically
using injectivity and monotonicity of ϕ−1.

The diagram on Fig. 4.4 recapitulates the main results of this section.

T rav(M)? 〈〈M〉〉s

T rav(M)

T rav(M)�~ [[M ]]

? = −@−Σ

+ @ + Σ

� ~

ϕM

ϕ−1
M

ϕM

ϕ−1
M

full uncovering � [[Γ→ T ]]

where an arrow ‘A
f
−→ B’ indicates that f(A) = B.

Figure 4.4: Transformations involved in the Correspondence Theorem.

Example 4.2.5. Take M = λfz.(λgx.fx)(λy.y)(fz) : ((o, o), o, o). The figure below represents
the computation tree (left tree), the arena [[((o, o), o, o)]] (right tree) and ψM (dashed line). (Only
question moves are shown for clarity.) The justified sequence of nodes t defined hereunder is an
example of traversal:

λfz

@

λgx

f [1]

λ[2]

x

λy

y

λ[3]

f [4]

λ[5]

z

q0

q1

q2

q3

ψM

t = λfz ·@ · λgx · f [1] · λ[2] · x · λ[3] · f [4] · λ[5] · z

t � λfz = λfz · f [1] · λ[2] · f [4] · λ[5] · z

ϕM (t � λfz) = q0 · q1 · q2 · q1 · q2 · q3 ∈ [[M ]] .

Remark 4.2.2 Observe that the way we have defined traversals, the Opponent, contrary to
the Proponent, is not required to play deterministically, let alone innocently. It is only required
that he plays visibly (i.e., his justifiers must appear in the O-view) and respects well-bracketing.
This means that the game-denotation given by the Correspondence Theorem also accounts for
contexts that are not simply-typed terms. This indeed corresponds to the standard innocent
game model of PCF: the morphisms of the category Cib are P-innocent strategies but not O-
innocent. The addition of O-knowing-plays in the denotations is conservative for observational
equivalence because the full-abstraction result holds in the category quotiented by the intrinsic
preorder, and in the definition of the preorder, the “test” strategy α ranges over innocent
strategies only.
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4.3 Extension to PCF and IA

In this section, we show how to extend the game-semantic correspondence established for the
lambda calculus to other languages such as PCF and IA.

4.3.1 PCF fragment

The Y combinator needs a special treatment. In order to deal with it, we use an idea from
Abramsky and McCusker’s tutorial on game semantics [AM98b]: we consider the sublanguage
PCF1 of PCF in which the only allowed use of the Y combinator is in terms of the form Y (λxA.x)
for some type A. We will write ΩA to denote the non-terminating term Y (λxA.x) for a given
type A.

We introduce the syntactic approximants to YAM :

Y 0
AM = Γ ` ΩA : A

Y n+1
A M = M(Y nM) .

For every PCF term M and natural number n, we define Mn to be the PCF1 term obtained from
M by replacing each subterm of the form Y N with Y nNn. We then have [[M ]] =

⋃
n∈ω [[Mn]]

[AM98b, lemma 16].

4.3.1.1 Computation tree

In order to define the notion of computation tree for PCF terms, we first extend the inductive
definition of computation tree for simply-typed terms (Def. 4.1.2) to PCF1 terms by adding the
new inductive case:

τ(Ω(A1,...,An,o)) = λxA1
1 . . . xAn

n .⊥

where ⊥ is a special constant representing the non-terminating computation of ground type Ωo.
We now introduce a partial order on the set of trees. A tree t is formally defined by a

labelling function t : T → L where T , called the domain of t and written dom(t), is a non-
empty prefix-closed subset of some free monoid X∗ and L denotes the set of possible labels.
Intuitively, T represents the structure of the tree—the set of all paths—and t is the labelling
function mapping paths to labels. Trees are ordered using the approximation ordering [KNU02,
section 1]: we write t′ v t if the tree t′ is obtained from t by replacing some of its subtrees by
⊥. Formally:

t′ v t ⇐⇒ dom(t′) ⊆ dom(t) ∧ ∀w ∈ dom(t′).(t′(w) = t(w) ∨ t′(w) = ⊥) .

The set of all trees together with the approximation ordering form a complete partial order.
Here we take L to be the set of labels consisting of the Σ-constants, @, the special constant

⊥, variables, and abstractions of any sequence of variables. It is easy to check that the sequence
of computation trees (τ(Mn))n∈ω is a chain. We can therefore define the computation tree of a
PCF term M to be the least upper-bound of the chain of computation trees of its approximants:

τ(M) =
⋃

n∈ω

(τ(Mn))n∈ω .

In other words, we construct the computation tree by expanding ad infinitum any subterm of
the form YM . Thus for a term of the form YAF with A = (A1, . . . , An, o), the computation tree
is the unique (up to alpha-conversion) infinite tree that is solution of the equation:

τ(YAF ) = λxA.τ(F ) τ(YAF ) τ(x1) . . . τ(xn) (4.13)

where x = x1 . . . xn are fresh variables.
We will write (CT,v) to denote the set of computation trees of PCF terms ordered by the

approximation ordering v defined above. Clearly (CT,v) is also a complete partial order.
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Example 4.3.1. Take M = Y (λfx.fx) where f : (o, o) and x : o. Its computation tree τ(M),
is the tree representation of the η-long nf of the infinite term (λfx.fx)((λfx.fx)((λfx.fx)(. . ..
It is the unique (up to alpha conversion) solution of the following equation on trees:

τ(M) = λy

@

λfx

f

λ

x

τ(M) λ

y

The remaining operators of PCF are treated as standard constants and the corresponding
computation trees are constructed from the η-long normal form in the standard way. For instance
the diagram below shows the computation tree for cond b x y (left) and λx.5 (right):

λbxy

cond

λ

b

λ

x

λ

y

λ

5

The node labelled 5 has, like any other node, children value-leaves which are not represented on
the diagram above for simplicity.

4.3.1.2 Traversal

New traversal rules are added to interpret PCF constants. The arithmetic constants are traversed
as follows:

• (Nat) If t · n is a traversal where n denotes a node labelled with some numeral constant
i ∈ N then t · n · in is also a traversal where in denotes the value-leaf of m corresponding
to the value i ∈ N.

• (Succ) If t · succ is a traversal and λ denotes the only child node of succ then t · succ · λ
1

is also a traversal.

• (Succ′) If t1 · succ · λ
1

· t2 · iλ is a traversal for i ∈ N then t1 · succ · λ
1

· t2 · iλ · (i+ 1)succ is
also a traversal.

• The rules for pred are defined similarly to (Succ) and (Succ′).

The conditional operator is implemented as follows. (We recall that a cond-node in the
computation tree has three children nodes numbered from 1 to 3 corresponding to the three
parameters of the conditional operator.)

• (Cond-If) If t1 · cond is a traversal and λ denotes the first child of cond then t1 · cond · λ
1

is
also a traversal.

• (Cond-ThenElse) If t1 · cond · λ
1

· t2 · iλ is a traversal then so is t1 · cond · λ
1

· t2 · iλ · λ

2 + [i > 0]

.

• (Cond′) If t1 · cond · t2 · λ

k

· t3 · iλ is a traversal for k = 2 or k = 3 then the sequence

t1 · cond · t2 · λ

k

· t3 · iλ · icond is also a traversal.

It is easy to verify that these traversal rules are all well-behaved. This completes the definition
of traversals for PCF.
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4.3.1.3 Revealed semantics

We recall that the definition of the syntactically-revealed semantics (Sec. 4.2.1, Def. 4.2.6) ac-
counts for the presence of interpreted constants: For every Σ-constant f : (A1, . . . , Ap, B) in the
language, the revealed strategy of a term of the form λξ.fN1 . . . Np is defined as:

〈〈λξ.fN1 . . . Np〉〉 = 〈〈〈N1〉〉, . . . , 〈〈Np〉〉〉 #
0..p−1 [[f ]]

where [[f ]] is the standard strategy denotation of f .

4.3.1.4 Correspondence theorem

We now show how to extend the Correspondence Theorem of the simply-typed lambda calculus
(Theorem 4.2.2) to PCF.

Lemma 4.3.1. Let (S,⊆) denote the set of sets of justified sequences of nodes ordered by subset
inclusion. The function T rav( )�~ : (CT,v)→ (S,⊆) is continuous.

Proof. - Monotonicity : Let T and T ′ be two computation trees such that T v T ′ and let t be
some traversal of T . Traversals ending with a node labelled ⊥ are maximal therefore ⊥ can
only occur at the last position in a traversal. We prove the following properties:

(i) If t = t · n with n 6= ⊥ then t is a traversal of T ′;

(ii) if t = t1 · ⊥ then t1 ∈ T rav(T
′).

(i) By induction on the length of t. It is trivial for the empty traversal. Suppose that t = t1 ·n
is a traversal where n 6= ⊥ and t1 is a traversal of T ′. We observe that in all traversal rules,
the produced traversal is of the form t1 ·n where n is defined to be a child node or value-leaf of
some node m occurring in t1. Moreover, the choice of the node n only depends on the traversal
t1 (provided that the constant rules are well-behaved).

Since T v T ′, any node m occurring in t1 belongs to T ′ and the children nodes of m in T also
belong to the tree T ′. Hence n is also present in T ′ and the rule used to produce the traversal
t of T can be used to produce the traversal t of T ′.

(ii) ⊥ can only occur at the last position in a traversal therefore t1 does not end with ⊥ and
by (i) we have t1 ∈ T rav(T

′).

Hence we have:

T rav(T )�~ = {t � r | t ∈ T rav(T )}

= {(t · n) � r | t · n ∈ T rav(T ) ∧ n 6= ⊥} ∪ {(t · ⊥) � r | t · ⊥ ∈ T rav(T )}

(by (i) and (ii)) ⊆ {(t · n) � r | t · n ∈ T rav(T ′) ∧ n 6= ⊥} ∪ {t � r | t ∈ T rav(T ′)}

= T rav(T ′)�~ .

- Continuity : Let t ∈ T rav
(⋃

n∈ω Tn
)
. We write ti for the finite prefix of t of length i. The

set of traversals is prefix-closed therefore ti ∈ T rav
(⋃

n∈ω Tn
)

for every i. Since ti has finite
length we have ti ∈ T rav(Tji) for some ji ∈ ω. Therefore we have:

t � r = (
∨

i∈ω

ti) � r (the sequence (ti)i∈ω converges to t)

=
⋃

i∈ω

(ti � r) since � r is continuous (Lemma 4.1.1)

∈
⋃

i∈ω

T rav(Tji)
�~ since ti ∈ T rav(Tji)
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⊆
⋃

i∈ω

T rav(Ti)
�~ since {ji | i ∈ ω} ⊆ ω.

Hence T rav(
⋃
n∈ω Tn)

�~ ⊆
⋃
n∈ω T rav(Tn)

�~.

Proposition 4.3.1. Let Γ `M : T be a PCF term and r be the root of τ(M). Then:

(i) ϕM (T rav(M)∗) = 〈〈M〉〉 ,

(ii) ϕM (T rav(M)�~) = [[M ]] .

Proof. We first show the result for PCF1: For (i), the proof is an induction identical to the proof
of Theorem 4.2.2; we just need to complete it with the new constants cases. The cases succ,
pred, cond and numeral constants are straightforward. Case M = Ωo: We have T rav(Ωo) =
Pref({λ · ⊥}) therefore T rav(Ωo)

�~ = Pref({λ}) and [[Ωo]] = Pref({q}) with ϕ(λ) = q. Hence
[[Ωo]] = ϕ(T rav(Ωo)

�~). (ii) is a direct consequence of (i) and the Projection Lemma 4.2.7.

We now extend the result to PCF. Let M be a PCF term, we have:

[[M ]] =
⋃

n∈ω

[[Mn]] [AM98b, lemma 16]

=
⋃

n∈ω

T rav(τ(Mn))
�~ since Mn is a PCF1 term

= T rav(
⋃

n∈ω

τ(Mn))
�~ by continuity of T rav( )�~, Lemma 4.3.1

= T rav(τ(M))�~ by definition of τ(M)

= T rav(M)�~ .

Hence by Corollary 4.2.1, ϕ defines a bijection from T rav(M)�~ to [[M ]]:

ϕ : T rav(M)�~
∼=
−→ [[M ]] .

Example 4.3.2 (Successor operator). Consider the term M = succ 5 whose computation tree
is represented below. Vertices attached to their parent node with a dashed line represent the
value-leaves.

λ0

succ

λ1

5

0 1 . . .

0 1 . . .

0 1 . . .

0 1 . . .

The following sequence of nodes is a traversal of τ(M):

t = λ0 · succ · λ1 · 5 · 55 · 5λ1 · 6succ · 6λ0 .

The subsequences t∗ and t � r are given by:

t∗ = λ0 · λ1 · 5λ1 · 6λ0 and t � r = λ0 · 6λ0 .

The sequence ϕ(t∗) = q0 · q5 · 5q5 · 5q0 where q0 and q5 both denote the root of the flat arena over
N, corresponds to a play of the syntactically-revealed semantics. The sequence ϕ(t � r) = q0 ·5q0
corresponds to a play of the standard semantics. The interaction play ϕ(t∗) is represented below:
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1
5
−→ N

succ
−→ N

q0
q5

5q5

6q0

Example 4.3.3 (Conditional).

λxy

cond

λ1

1

λ2

x

λ3

y

Figure 4.5: Computa-
tion tree of the term
λxy.cond 1 x y.

Take the computation tree represented on the left (value-leaves are not
shown). For every value v ∈ D we have the following traversal:

t = λxy · cond · λ1 · 1 · 11 · λ
3 · y · vy · vλ3 · vcond · vλxy .

The subsequence t∗ is given by:

t∗ = λxy · λ1 · λ3 · y · vy · vλ3 · vλxy

and the core of t � ~ is given by:

t � ~ = λxy · y · vy · vλxy .

By the correspondence theorem, the sequence of moves ϕ(t∗) (represented in the diagram below)
is a play of the revealed semantics, and the sequence ϕ(t � ~) is the play of the standard semantics
obtained by hiding the internal moves from ϕ(t∗).

N × N
〈[[1]],π1,π2〉
−→ N × N × N

cond
−→ N

q
(λxy)
0

q
(λ1)
a

1

q
(λ2)
b

q
(y)
y

vqy
vqb

vq0

Remark 4.3.1 (Finite representation of the computation tree) Due to the presence of the Y
combinator, computation trees of PCF terms are potentially infinite. It is possible to give an
equivalent finite representation using computation graphs. We briefly describe here how this can
be achieved.

The idea is to replace Y-recursion by µ-recursion: each subterm of the form YA M is replaced
by µf.Mf for f fresh. The computation graph is then obtained from the eta-long normal form of
the term. The abstraction nodes are generalized to take into account µ binders: an abstraction
node is of the form λλx where x is a list of µ-bound and λ-bound variables where the µ-bound
variables are written in parenthesis to distinguish them from λ-bound variables.

The computation graph of YA(λfA.M) for A = (A1, . . . , An, o) is then obtained from the
syntax representation of λλ(f)x1 . . . xn.dMe by adding a child edge going from each occurrence
of the recursion variable f in dMe to the root λλ(f)x1 . . . xn.
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This presentation also accounts for ground type recursion, for instance the computation graph
of the while operator of Idealized Algol defined as while C do I ≡ Y (λf.cond C skip (seq If))
is given by the graph of λλ(f).cond C skip (seq If).

The order of a generalized abstraction node is still defined as the order of the term represented
by the subtree rooted at this node. In other word, the order of λλx is defined as the order of λλy
where y is the sublist of x obtained by removing all the recursion variables (those in parenthesis).

Bound variables in a generalized abstraction node λλx are numbered as follows: The ith

λ-bound variable in x is denoted by i and the ith recursion variable is denoted by (i). The links
in a justified sequence of nodes are labelled accordingly.

All the traversal rules are kept unmodified. The recursion variables in the λ-nodes are
ignored by the rules since such variables are numbered differently from standard variables. In
particular, the (Var) rule only applies to non-recursion variables. We only need to add a rule
to handle recursion variable: whenever a traversal meets a recursion variable f in the subgraph
τ(F ), the traversal jumps to the root of the graph:

(Varrec) If t′ · n · λλx . . . fi

(i)

is a traversal for some recursion variable fi bound

by λλx then so is t′ · n · λλx . . . fi

(i)

· λλx.

The enabling relation ` needs to be adapted to allow the root to be justified by a recursion
variable (as if it was a child of the recursion variable). Since a traversal can now visit the root
multiple times, the definition of the traversal core also needs to be adapted: instead of keeping
all the nodes hereditarily enabled by the root, it keeps the nodes that are hereditarily justified by
an occurrence of the root with no justifier. The definition of the mapping ψ from nodes to moves
remains consistent with this notion of computation tree, and the game-semantic correspondence
follows.

4.3.2 Idealized algol

We now consider the language Idealized Algol. The general idea is the same as for PCF, however
there are some difficulties caused by the presence of the two base types var and com. We briefly
sketch how our framework can be adapted to IA without going into the details of the proof of
the Correspondence theorem.

Computation hypertree

The languages that we have considered up to now (lambda calculus and PCF) do not have
product types. Consequently, the arenas involved in their game model only have a single initial
move at most, and can therefore be regarded as trees. This property permitted us to represent
the game denotation of term directly on some representation of its abstract syntax tree—the
computation tree. This cannot be done in IA because the base type var is given by the product
comω × exp which corresponding game has infinitely many initial moves, whereas the AST of
the term is a tree and therefore has a single root.

The overcome this mismatch, we use hypertrees instead of trees. These hypertrees provide
an abstract representation of the syntax of the term in which some nodes, called generalized
lambda nodes, are themselves constituted of (possibly infinitely many) subnodes. Furthermore
each individual subnode can have its own children nodes.

Notations 4.3.1 For every type µ, we write Dµ to denote the set of values of type µ. We
have Dexp = N, Dcom = {done} and Dvar = Dexp ∪ Dcom. For every node n, if κ(n) is of type
(A1, . . . An, B), we call B the return type of n. The set of value-leaves of a node n is given
by Dµ where µ is the return type of n. For conciseness, when representing value-leaves in the
hypertree, we merge all the value-leaves of a given node of type µ into a single leaf labelled Dµ.
For instance we use the tree notation
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n

Dexp

to mean n

0 1 2 . . .

and n

Dcom

for n

done

.

The computation hypertree of a term with return type var has infinitely many root lambda-
nodes which are merged all-together into a single node called a generalized lambda-node.
The subnodes of a generalized lambda nodes are labelled λr, λw0 , λw1, λw2, . . . Suppose that M
is a term of type var, then the computation hypertree for λξ.M is obtained by relabelling the
root λ-nodes λr, λw0 , λw1, λw2 , . . . into λrξ, λw0ξ, λw1ξ, λw2ξ, . . . . For a term M of type exp or
com, the computation hypertree for λξ.M is computed the same way as for computation trees
of lambda-terms.

Table 4.4 defines the computation hypertree for each term-construct of IA. A generalized
lambda node is represented by a frame surrounding its subnodes (2nd and 6th row in the table).

Enabling relation, justified sequence

The notion of binder is redefined as follows: Given a variable node x, the binder of x is the first
node occurring in the path to the root that is a lambda node λx with x ∈ x or a block-declaration
node new x.

The enabling relation and the definition of justified sequence is modified so that occurrences
of block-allocated variables are justified by nodes of type new x instead of lambda nodes.

Children numbering convention

Let p be a node and suppose that its ith child n has return type var. Then n is a generalized
lambda-node with subnodes λrξ, λw0ξ, . . . . From the point of view of the parent node p, these
subnodes are referenced as “i.α” where 0 ≤ i ≤ arity(p) and α ∈ {r} ∪ {wk | k ∈ N}. For
instance i.r refers to the root labelled λrξ of the ith child of p, and i.wk refers to the root
labelled λwkξ.

Traversals

The following new rules are added on top of those defined in Sec. 4.1.3:

• Application rules

The rule (app) is now split up in three rules (appexp), (appcom) and (appvar) corresponding
to traversals ending with an @-node of return type exp, com and var respectively. The
rules (appexp), (appcom) are defined identically to (app) (see Sec. 4.1.3). The rule (appvar)
is

(appvar) t · λ
kξ ·@

0

∈ T rav and k ∈ {r, w0, w1, . . .} =⇒ t · λkξ ·@
0

· λkη

0.k

∈ T rav .

• Input-variable rules

We define the rules (InputVal$) for $ ranging in {com, var, exp}. For com and exp, the
rules are defined identically to (InputVal) of Sec. 4.1.3. The var case is implemented by
two rules:

(InputValuevarr )
t1 · λ

rξ · x · t2 ∈ T rav

t1 · x · t2 · vx
v

∈ T rav
x pending node ∧ x ∈ N~`

var ∧ x : var, v ∈ D .

(InputValuevarw )
t1 · λ

wξ · x · t2 ∈ T rav

t1 · x · t2 · donex

v

∈ T rav

x pending node ∧ x ∈ N~`
var ∧ x : var .
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M τ(M)

x : µ
µ ∈ {com, exp} λ

x

Dµ

Dµ

new x in N : µ
µ ∈ {com, exp}

new x

τ(N : µ) Dµ

x : var λr λw0 λw1 λw2 λw...

Dexp x done

Dexp done

skip: com λ

skip

done

done

deref L : exp λ

deref

τ(L : var) done

done

assign L N : com λ

assign

τ(N : exp) τ(L : var) done

done

seqµ N1 N2 : com
µ ∈ {exp, com}

λ

seqµ

τ(N1 : com) τ(N2 : µ) done

Dµ

mkvar Nw Nr : var λr λw0 λw1 λw2 λw...

Dexp mkvar done

τ(Nr) τ(Nw) Dexp done

Table 4.4: Computation hypertrees of IA constructs.
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(deref)
t · deref ∈ T rav

t · deref · n
1.r

∈ T rav
(deref ′)

t · deref · n · t2 · vn ∈ T rav

t · deref · n · t2 · vn · vderef ∈ T rav

(assign)
t · assign ∈ T rav

t · assign · λ
1

∈ T rav

(assign′)
t · assign · λ · t2 · vλ ∈ T rav

t · assign · λ · t2 · vλ · λη

2.wn

∈ T rav

(assign′′)
t · assign · t2 · λη

2.wk

· t3 · doneλη ∈ T rav

t · assign · t2 · λη · t3 · doneλη · doneassign ∈ T rav

(seq)
t · seq ∈ T rav

t · seq · n
1

∈ T rav
(seq′)

t · seq · n · t2 · vn ∈ T rav

t · seq · n · t2 · vn ·m

2

∈ T rav

(seq′′)
t · seq · t2 ·m

2

· t3 · vm ∈ T rav

t · seq · t2 ·m · t3 · vm · vseq ∈ T rav

(mkvarr)
t · λrξ · mkvar ∈ T rav

t · λrξ · mkvar · λ
1

∈ T rav
(mkvar′r)

t · mkvar · λ · t2 · vλ ∈ T rav

t · mkvar · λ · t2 · vλ · vmkvar ∈ T rav

(mkvarw)
t · λwkξ · mkvar ∈ T rav

t · λwkξ · mkvar · λη
2

∈ T rav

(mkvar′′w)
t · λwkξ · mkvar · λη · t2 · doneλη ∈ T rav

t · λwkξ · mkvar · λη · t2 · doneλη · donemkvar ∈ T rav

where v denotes some value from D.

Table 4.5: Traversal rules for IA constants.
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• IA constants rules

The rules for the constants of IA are given in Table 4.5. These rules for new are purely
structural, they are defined similarly to (appexp), (appcom) and (appdone).

The rules from Table 4.5 do not suffice to model mkvar however. We need to specify what
happens when reaching a variable node that is hereditarily justified by the constant mkvar.
Take for instance the term assign (mkvar (λx.M)N)7. The rule (mkvar′′w) permits one to
pass the node mkvar and to continue with the traversal of the computation tree of λx.M ,
which may subsequently lead to some occurrence of x. The behaviour of the traversal at
this point is specified by the traversal rules defined in the next paragraph.

• Variable rules

Let x be an internal variable node. Then by definition it is either hereditarily justified by
an @-node or by a Σ-constant node.

– Suppose that x’s binder is a lambda-node λx and x ∈ N@`.

This case is a generalization of the rule (Var) (Sec. 4.1.3). The only difference is that
for variables of type var, the lambda nodes preceding x in the traversal determines
the lambda-node that is visited next:

(Varvar)
t · n · λx . . . λαxi · xi

i

∈ T rav

t · n · λx . . . λαxi · xi

i

· ληi

i.α

∈ T rav

xi ∈ N
@`
var ∧ α ∈ {r} ∪ {wi | i ∈ N} .

– Suppose that x’s binder is a lambda-node and x ∈ NNΣ`. Then x’s binder is nec-
essarily the second child of a mkvar-node (since mkvar is the only constant of order
greater than 0).

(mkvar-Var)
t · λwkξ · mkvar · λx · t2 · x ∈ T rav

t · λwkξ · mkvar · λx · t2 · x · kx ∈ T rav
.

– Suppose that x is a block-allocated variable.

Given a block-declaration new x, we call assignment of x any segment of traversal of
the form λwkξ · x for some k ∈ Dexp and occurrence x of a node bound by new x. We
call k the value assigned to x.

(new-Varw)
t · λwkξ · x ∈ T rav

t · λwkξ · x · donex ∈ T rav
x ∈ Nnew`

var .

(new-Varr)
t1 · new x · t2 · λ

rξ · x ∈ T rav

t1 · new x · t2 · λ
rξ · x · kx ∈ T rav

where k ∈ N is the last value as-
signed to x in t2, or 0 if there is no
such assignment.

4.3.2.1 Game semantics correspondence

The properties that we proved for computation trees and traversals of the lambda calculus with
constants can easily be lifted to computation hypertrees of IA. In particular:

• Constant traversal rules are well-behaved (for order-0 and order-1 constants, this is a
consequence of Lemma 4.1.3; for mkvar and new this can be easily verified);

• P-view of traversals are paths in the computation hypertrees;
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• For beta-normal terms, the P-view of a traversal core is the core of the P-view (Lemma
4.1.20, and the O-view of a traversal is the O-view of its core (Lemma 4.1.18);

• There is a mapping from vertices of the computation hypertrees to moves in the interaction
game semantics;

• There is a correspondence between traversals of the computation tree and plays in inter-
action game semantics;

• Consequently, there is a correspondence between the standard game semantics and the set
of justified sequences of nodes T rav(M)�~.

4.4 Conclusion and related works

We have given a new presentation of game semantics based on the theory of traversals. This
presentation is concrete in the sense that the traversal denotation carries syntactic information
about the term. We established the connection with the Hyland-Ong game semantics by means
of a Correspondence Theorem: The set of traversals of a term is isomorphic to the revealed
game denotation of the term.

One advantage of the traversal theory lies in its ability to compute beta-reduction locally
without having to perform term substitution. As observed by Danos et al. [DHR96], “the
interaction processes at work in game semantics are implementations of linear head reduction”.
In that regards, the traversals theory can be viewed as a rule-based implementation of the head
linear reduction strategy [DR04]. Although the idea of evaluating a term using this strategy is not
new, our presentation has several advantages and novelties. Firstly, the Correspondence theorem
establishes a clear correspondence with game semantics, namely that traversals gives you a way
to compute precisely the revealed game denotation of a term. To our knowledge, although the
notion of revealed game semantics was mentioned in previous works [Gre04], it was never formally
defined. Secondly, our presentation highlights more clearly the algorithmic aspect of game
semantics. The rule-based definition of traversals lends itself well to automaton characterization.
An example is the characterization of higher-order recursion schemes by collapsible higher-order
pushdown automata [HMOS08].

Another advantage of the traversal theory is its efficiency for effectively computing the game-
semantic denotation of a term. The traditional approach is to proceed bottom-up by appealing
to compositionality. Although the compositional nature of game semantics is very attractive
from a theoretical point of view, in practice it is not efficient to compute a denotation in that
way. Indeed, for every subterm one has to compute all the possible ways to interact with the
environment for that subterm. But this denotation is then immediately composed with another
subterm, which determines part of the environment’s behaviour, thus it was wasteful in the first
place to consider all the possible behaviours of the environment for the first term.

The traversal theory follows a top-down approach which means that we only consider possible
behaviour of the outermost environment. Moreover contrary to the compositional method, there
is no need to implement any composition mechanism: the set of traversals is just obtained by
following the traversal rules; the hiding of internal nodes is postponed until the end.

The lazy nature of the traversal evaluation provides a further source of efficiency: the beta-
redexes are computed “on-demand” instead of performing a global substitution.

Last but not least, we believe that the syntactic correspondence between game semantics and
its syntax is of pedagogical interest. Game semantics is often found hard to understand due to
some obscure technical definitions. A concrete presentation such as the one given by the traversal
theory, allows one to explain game-semantic concepts (such as P-view, innocence, visibility) from
a programmer point of view. I have implemented a prototype tool using the F# programming
language, which among other things, illustrates the theory of traversals [Blu08]. The tool lets
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the user “play” the game induced by a simply-typed term (or a higher-order grammar) just by
choosing nodes from the computation tree. As the game unfolds the corresponding traversal is
shown. A calculator mode allows the user to perform various operations on justified sequences.
(All the examples from this chapter were generated using this tool.)

Further correspondences

The traversal theory that we have presented here captures the lambda calculus fragment of the
game model of call-by-name programming languages such as PCF and Idealized Algol. A natural
way to extend this work would be to define the appropriate notion of traversal corresponding to
the call-by-value games [Plo75, AM98a].

Applications

The theory of traversal has applications in several domains of research:

Verification

The theory of traversal was originally introduced by Ong to study the decidability of MSO
theories of infinite trees generated by higher-order recursion schemes. This result was recently
used by Kobayashi to develop a novel framework for verification of temporal properties of higher-
order functional programs [Kob09].

Another promising application of the traversal theory concerns the study of reachability
problems. In its most general form, the reachability problem for programming languages can
informally be stated as: Given a term M and coloured subterm N , is there a context C[−]
such that evaluating C[M ] involves the evaluation of N?. In an ongoing research project, Luke
Ong and Nikos Tzevelekos make use of the traversal theory to study several variations of the
reachability problem for finitary PCF [OT].

Automata theory

The traversal theory has led to an equi-expressivity result between a certain type of automa-
ton device called collapsible pushdown automaton (CPDA) and higher-order recursion schemes
(HORS) [HMOS08]. One direction of this proof relies on the traversal theory: for a given HORS,
a CPDA is constructed that computes precisely the set of traversals over the computation tree
of the HORS.

A crucial point in this encoding is that structures generated by recursion schemes are of
ground type. Because such structures do not interact with the environment, their game-semantic
denotation is relatively simple. In particular, the O-view of the traversal does not play any role
in the traversal rules and therefore the automaton does not need to calculate or remember it. A
natural extension would be a similar automata-characterization for higher-order structures such
as simply-typed terms.

Pattern matching

Higher-order matching is the following problem: Given an equation M = N where M is an open
simply-typed term and N is a closed simply-typed term, is there a solution substitution θ such
that Mθ and N have the same βη-normal form? Huet conjectured in 1976 that this problem
is decidable [Hue76]. It was proved only recently by Colin Stirling that it is indeed the case
[Sti06].

Stirling’s argument is based on a game-theoretic argument, namely the concept of tree-
checking games. As pointed out by Luke Ong, Stirling’s games are closely related to the innocent
game semantics framework provided by the theory of traversals. The concept of traversals is



Chapter 4. A Concrete Presentation of Game Semantics 159

implicitly present in Stirling’s proof (though the notion of justification pointers is replaced by
“iteratively defined look-up tables”).

Analyzing syntactic constraints

The connection between syntax and semantics provided by the traversal theory enables us to
analyze the effect of a given syntactic constraint on the game model. The next chapter is an
example of such an application: By making simple observations about the computation tree of
safe terms, the Correspondence Theorem allows us to show that their strategy denotations are
of a particular kind: Their plays satisfy a certain property called incremental justification.
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Chapter 5

Syntactic Analysis of the Game

Denotation of Safe Terms

Our aim is to characterize safety by game semantics. This chapter assumes that the reader
is familiar with the basics of game semantics introduced in Chapter 2. Recall that a justified
sequence over an arena is an alternating sequence of O-moves and P-moves such that every
move m, except the opening move, has a pointer to some earlier occurrence of the move m0

such that m0 enables m in the arena. A play is just a justified sequence that satisfies Visibility
and Well-Bracketing. A basic result in game semantics is that lambda-terms are denoted by
innocent strategies, which are strategies that depend only on the P-view of a play. The main
result (Theorem 5.4.1) of this section is that if a lambda-term is safe, then its game semantics (is
an innocent strategy that) is, what we call, P-incrementally justified. In such a strategy, pointers
emanating from the P-moves of a play are uniquely reconstructible from the underlying sequence
of moves and pointers from the O-moves therein: specifically a P-question always points to the
last pending O-question (in the P-view) of a greater order.

The proof of Theorem 5.4.1 relies on the Correspondence Theorem from Chapter 4 that
relates the strategy denotation of a lambda-term M to the set of traversals over a souped-up
abstract syntax tree of the η-long normal form of M . In the language of game semantics, this
theorem says that traversals are just (concrete representations of) the uncovering (in the sense
of Hyland and Ong [HO00]) of plays in the strategy denotation.

Since the safety condition is a syntactic constraint, it seems difficult to give a characterization
in term of game semantics, as game models are in essence syntax-independent. This is where
the Correspondence Theorem comes to the rescue by helping us to reason syntactically about
the game denotation of a term. This ultimately permits us to give a precise game-semantic
characterization of the safety restriction.

One of the main results of this chapter (Proposition 5.4.2) states that pointers in a play of a
strategy denoting a safe term can be uniquely recovered from O-questions’ justification pointers
and from the underlying sequence of moves. In the first section we introduce the notion of
P-incrementally justified strategies, a particular kind of strategy in which justification pointers
emanating from P-moves can be reconstructed uniquely from the underlying sequences of moves
and from O-moves’ pointers. We then introduce the notion of incrementally-bound computation
trees and establish a relationship between incremental-binding and P-incremental justification
(Proposition 5.3.2). Finally, we show that safe simply-typed terms have incrementally-bound
computation trees, consequently their game denotation is P-incrementally justified.

The third section of this chapter is concerned with the safe lambda calculus without in-
terpreted constants. In the following sections we extend the result by taking into account the
interpreted constants of PCF and IA: we show that safe PCF and safe IA terms are denoted by
P-incrementally justified strategies.

Some of the results presented in this chapter were first published in TLCA [BO07]. They
are reproduced here with complete proofs and generalized to the languages PCF and IA.



162 Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms

5.1 P-incrementally justified strategies

In the game semantics literature, some authors use the term “order of a question move” to refer
to the length of the path in the arena to the initial move that hereditarily enables it. For the
purpose of studying the safety restriction, however, it will be convenient instead to call it the
level of the node, and reserve the term “order” to refer to another quantity: The order of

a question move q, written ord q, is defined as the length of the longest enabling-chain of
questions starting from q minus 1 (see Def 2.3.15). Thus the order of an arena can be defined
in term of move-order: it is precisely the greatest order of its initial moves.

Definition 5.1.1. A strategy σ is said to be P-incrementally justified if for every play
s q ∈ σ where q is a P-question, q points to the last unanswered O-question in psq with order
strictly greater than ord q.

Note that although the pointer of q is determined by the P-view, the choice of the move q
itself can be based on the whole history of the play. Thus P-incremental justification does not
imply innocence.

The definition suggests an algorithm that, given a play of a P-incrementally justified de-
notation, uniquely recovers the pointers from the underlying sequence of moves and from the
pointers associated to the O-moves therein. Hence:

Lemma 5.1.1. In P-incrementally justified strategies, pointers emanating from P-moves are
superfluous.

Proof. Suppose σ is a P-incrementally justified strategy. We prove that pointers attached to
P-moves in a play s ∈ σ are uniquely recoverable by induction on the length of s. Base case: If
|s| ≤ 1 then there is no pointer to recover. Step case: Suppose sm ∈ σ. If m is an answer move
then by the well-bracketing condition m points to the last unanswered question in s. If m is a
P-question then by P-incremental justification of σ, m points to the last O-move in psq with
order strictly greater than ord q. Since we have access to O-moves’ pointers, we can compute
the P-view psq. Hence m’s pointer is uniquely recoverable.

Example 5.1.1. Copycat strategies, such as the identity strategy idA on game A or the evalu-
ation map evA,B of type (A→ B)×A→ B, are all P-incrementally justified.1

5.2 Dead code elimination

We recall that the β-normal form of a term of an applied lambda calculus is the (possibly infinite)
term obtained by reducing all the β-redexes. Because of the presence of interpreted constants, a
β-normal form is not necessarily normal with respect to the small-step semantics. For instance
in PCF, the term cond 0M N is β-normal but it reduces in one step to M .

We say that a coloured subterm N of M : (A1, . . . , An, o) is dead code if for every context
C[−] such that C[M ] is of ground type, every reduction sequence starting from C[M ] does
not involve a reduction of the subterm N ; formally, there is no reduction sequence of the form
C[M ] → . . . → E[σ(N)] → E[N ′] for some evaluation context E[−], term N ′, and substitution
σ of free variables of N .

Example 5.2.1. The subterm N in cond 0M N is dead-code, whereas in λx.(cond 0xN)M
the subterm x is not dead-code.

The dead code elimination problem is the converse of the reachability problem: Given
a term M containing a coloured subterm N of M , is there a context C[−] such that C[M ] is

1In such strategies, a P-move m is justified as follows: either m points to the immediately preceding move in
the P-view, or the preceding move is of smaller order and m is justified by the second last O-move in the P-view.
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of ground type, and a reduction sequence C[M ] → . . . → E[σ(N)] for some evaluation context
E[−] and substitution σ of free variables of N? The reachability problem is clearly not trivial. In
fact for PCF it is not decidable since the halting problem for PCF—which is a Turing-complete
language—can be encoded into a reachability problem.

Let M be a term in eta-long normal form. Occurrences of variables that are in the dead
code of M are called dead occurrences. Given a term M , we define M∗ as the term obtained
from the (possibly infinite) η-long normal form of M by substituting all subterms of the form
xN1 . . . Nk where x : (B1, . . . , Bk, o) is a dead variable occurrence, by the constant ⊥ of type o.
This process is called dead variable elimination. We write τ(M)∗ to denote the equivalent
transformation on the computation tree of M .

Clearly we have:
T rav(M∗) ⊆ T rav(M) . (5.1)

Reachability by traversals

A node of a computation tree is said to be reachable if there exists a traversal that visits it.
By the Correspondence Theorem, it is easy to show that if a node is not reachable then the
corresponding variable occurrence is a dead occurrence. In particular:

Lemma 5.2.1. If x is a variable node in τ(M)∗ then the corresponding node in τ(M) is reachable
by some traversal.

However the converse does not hold. This is because the Correspondence Theorem concerns
the intentional innocent game model where the Opponent is not restricted to play determinis-
tically, let alone innocently. Thus in this model, the strategy denotation accounts for contexts
C[−] that are not part of the language considered, whereas in the definition of dead-code elim-
ination, the context ranges over term of the language only. Hence a variable node may be
reachable by a traversal (as defined in Chapter 4) but not reachable in the sense defined above
(with respect to the operational semantics of the language).

Example 5.2.2. Take the following simply-typed lambda-term:

M ≡ λϕ(o,o) xo yo zo.ϕx(ϕyz) .

The node of its computation tree corresponding to the occurrence y is reachable by the traversal
λϕxyz · ϕ · λ · ϕ · λ · y but there is no simply-typed context C[−] such that the evaluation of
C[M ] leads to the evaluation of y.

The two notions of reachability can be reconciled by enforcing O-innocence in the rules of
Table 4.3, so that whenever a lambda node is visited, it is uniquely determined by the O-view
of the traversal at that point.

5.3 Incremental binding

In this section, we work in the general setting of an applied simply-typed lambda calculus
extended with a stock of interpreted constants Σ (but without recursion), whose terms are of
the form Γ ` M : T . We consider its safe fragment, as defined in Sec 3.5.3, whose terms are
written Γ `M : T .

We fix a term Γ `M : T of this unspecified language for the rest of this section. We assume
that the language has a fully-abstract game-semantic model. We write [[Γ `M : T ]] to denote
the strategy denotation in the intensional model. We further assume that there are well-behaved
(see Def. 4.1.14) traversal rules modeling the behaviour of the constants in such a way that the
game-semantic correspondence (Theorem 4.2.2) holds for that language.



164 Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms

Notations 5.3.1 We call path any sequence of nodes such that for every two consecutive nodes
a ·b in the sequence, a is the parent of b. We write [n1, n2] to denote, if it exists, the unique path
going from node n1 to node n2 equipped with the justification pointers induced by the enabling
relation ` (A node has a unique enabler in the path to the root thus for each occurrence in
[n1, n2] there is at most one occurrence of its enabler in [n1, n2]). We write ]n1, n2] for the
sub-sequence of [n1, n2] obtained by removing n1 together with all the associated pointers.

The symbol ~ denotes the root of the computation tree τ(M), N~` denotes the subset of
N consisting of nodes that are hereditarily enabled by ~, and NΣ` denotes the nodes that are
hereditarily enabled by some constant in Σ.

Definition

Recall from the definition of computation trees (Chapter 4) that a variable node n labelled x is
said to be bound by a node m if m is the closest node in the path from n to the root such that
m is labelled λξ with x ∈ ξ. Thus the binder node always occurs in the path from the variable
node that it binds to the root. We now introduce a class of computation trees in which the
binder node is uniquely determined by the nodes’ orders.

Definition 5.3.1 (Incrementally-bound computation tree). Let A be a subset of nodes of the
computation tree.

(i) A variable node x of a computation tree is said to be A-incrementally-bound if its
enabler is the first λ-node from A in the path to the root that has order strictly greater
than ordx. Formally:

x is A-incrementally-bound ⇐⇒





x is enabled by b ∈ [~, x] ∩A ;
ord b > ordx
∀λ-node n′ ∈]n, x] ∩A. ordn′ ≤ ordx .

This definition can be split into two cases:

(a) x is bound by the first λ-node from A occurring in the path to the root that has order
strictly greater than ordx.

(b) or x is a free variable and all the λ-nodes from A occurring in the path to the root
except the root have order smaller or equal to ordx.

(ii) A computation tree is said to be A-incrementally-bound, also abbreviated A-i.b., if all
the variable nodes from A are A-incrementally-bound

(iii) A node (resp. a tree) is incrementally-bound if it is (N \NΣ`)-incrementally-bound

where N is the entire set of nodes of the computation tree and NΣ` is the set of nodes
hereditarily justified by some constant node.

Lemma 5.3.1.

(i) For every two sets of nodes A and B satisfying A ⊆ B, B-incremental-binding implies
A-incremental-binding.

(ii) τ(M) is A-incrementally bound if and only if τ(closure(M)) is.

where closure(M) denotes the closed term obtained by abstracting the free variables in M (see
Sec. 2.1).

Proof. (i) follows immediately from the definition. (ii) This is because the computation trees
τ(M) and τ(closure(M)) are isomorphic and the enabling relation ` is defined identically on
these two trees (since free variable nodes are enabled by the root).
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Safety and incremental binding

We recall that a term is almost safe if it can be written λx1 . . . xn.N0 . . . Np for some n, p ≥ 0
where Ni is safe for all 0 ≤ i ≤ p. It is an almost safe application if further n = 0 (i.e., no
abstraction).

Proposition 5.3.1 (Safe terms have incrementally-bound computation trees). Let Γ ` M : T
be a term of some applied typed lambda calculus (without recursion).

(i) If M is almost safe then τ(M) is incrementally-bound ;

(ii) conversely, if τ(M) is incrementally-bound then the η-long normal form of M is almost
safe, and safe if further M is closed.

Proof. (i) Suppose that M is almost safe. Computation trees are defined modulo eta-long normal
expansion thus since this transformation preserves almost safety (Lemma 3.1.16) we can assume
that M is in eta-long nf. By the previous lemma, to show that τ(M) is incrementally-bound we
just have to show that τ(closure(M)) is incrementally-bound. We now consider τ(closure(M)).

In an applied safe lambda calculus, the Γ-variables with the lowest order must be all ab-
stracted at once when applying the abstraction rule. Since the computation tree merges consec-
utive abstractions into a single node, any Γ-variable x occurring free in the subtree rooted at a
λ-node λξ 6∈ NΣ` different from the root must have order greater or equal to ordλξ. Conversely,
if a lambda node λξ binds a variable node x then its order is 1 + maxz∈ξ ord z > ordx.

Let x be a Γ-variable node in τ(closure(M)). Its enabler necessarily occurs in the path to
the root, therefore, according to the previous observation, x must be bound by the first λ-node
occurring in [~, x]\NΣ` with order strictly greater than ordx. Hence τ is incrementally-bound.

(ii) We first show the result for closed term. Let `M : T be a closed term such that τ(M)
is incrementally-bound. We assume that M is already in η-long normal form. We prove by
induction that M is safe. The base case M ≡ λξ.α for some variable or constant α is trivial.
Step case: M ≡ λξ.N1 . . . Np. Let 1 ≤ i ≤ p. Each Ni can be written ληi.N

′
i where N ′

i is not an
abstraction. By the induction hypothesis, λξ.Ni ≡ λξηi.N

′
i is safe which means that the term

N ′
i is also safe: we have ξ, ηi `s N

′
i : Ai for some type Ai. Let z be a variable occurring free

in N ′
i . Since M is closed, z is either bound by λη1 or λξ. In the latter case, since τ(M) is

i.b. we have that ord z is smaller than ordλη1 = ordNi, thus in both case we are allowed to
abstract the variables η1 using the rule (abs), which shows that Ni is safe. Since all the Nis are
safe and the term N1 . . . Np : o is of order 0, by the rule (app) we have that N1 . . . Np is safe:
ξ `s N1 . . . Np : o. The rule (abs) then gives us the sequent `s λξ.N1 . . . Np.

Now ifM is open, by the preceding case we have that closure(M) is safe. But by “pealing-off”
abstractions from a safe term we obtain an almost safe term, thus M is almost safe.

Note that the hypothesis that M is closed in (ii) is necessary. Take for instance the two
terms λxy.x and λy.x, where x, y : o. Their have isomorphic incrementally-bound computation
trees. But λxy.x is safe and λy.x is only almost safe.

For the second part of this proposition a slightly stronger result holds if the term is β-normal
and does not contain any interpreted constant:

Corollary 5.3.1. Let M be a β-normal term containing no interpreted constant. If all the input
variables are incrementally-bound then the η-long normal form of M is almost safe, and safe if
further M is closed.

This is simply because in the computation tree of such terms all the variable nodes are
input-variable nodes. This stronger result does not hold for terms containing redexes: for every
unsafe closed term U , the term (λu.u) U is unsafe but the only input-variable is u and it is
incrementally-bound. It does not hold either for terms with interpreted constants: for every
closed unsafe term U of type exp, the PCF term succ U has no input variable but it is unsafe.
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Corollary 5.3.2. If τ(M) is incrementally-bound and M →βs
N then τ(N) is incrementally-

bound.

Proof. Suppose that τ(M) is i.b. Then by Proposition 5.3.1(ii) the eta-long normal form of M is
almost safe, therefore so is M by Lemma 3.1.16. But almost safety is preserved by βs-reduction
(Lemma 3.1.17) therefore N is almost safe, and by Proposition 5.3.1(i), τ(N) is incrementally-
bound.

Note that this corollary cannot be generalized to A-incremental-binding for every set of
node A. Take for instance the term M ≡ λuov((o,o),o).(λxo.v(λzo.x))u which beta-reduces to
N ≡ λuv.v(λz.u). The computation trees are:

τ(M) = λuv

@

λx

v

λz

x

λ

u

τ(N) =λuv

v

λz

u

If we take A to be the set of nodes that are hereditarily enabled by the root (underlined in the
figure above) then τ(M) is A-incrementally-bound but τ(N) is not.

Incremental justification and incremental binding

Proposition 5.3.2 (Incremental-binding and P-incremental justification). Let Γ ` M : T be a
term-in-context of some applied typed lambda calculus.

(i) Suppose M is β-normal. If all the reachable input-variable nodes of the computation tree
τ(Γ `M : T ) are incrementally bound then [[Γ `M : T ]] is P-incrementally justified.

(ii) If [[Γ `M : T ]] is P-incrementally justified then all the reachable input-variable nodes of
the computation tree τ(Γ `M : T ) are N~`-incrementally bound.

Proof. (i) Suppose M is a β-nf. W.l.o.g we can assume that M is a closed term since the
incremental-binding property is conserved when taking the closure of a term and since the
denotation of the closure is isomorphic to the denotation of the term.

Suppose that all the reachable input-variable nodes of τ(M) are incrementally bound. We
want to show that [[M ]] is P-incrementally justified. Take a play s ∈ [[M ]] ending with a question
P-move q. By the Correspondence Theorem 4.2.2, there is a traversal t of τ(M) starting with
an occurrence r of the root ~ such that ψM (t � r) = s. We assume t to be the shortest such
traversal, so that the last occurrence of t—name it n—is hereditarily justified by r, and is
by definition an occurrence of a reachable node. Since ψM maps n to the P-question q, n is
necessarily an occurrence of a variable node x. By Lemma 4.2.6 (iv), the P-views of s and t � r
are computed identically and have the same underlying sequence of justification pointers so in
particular the node n and the move q both point to the same position in the justified sequence
pt � rq and psq respectively. Further by Lemma 4.2.6(iii), ψM maps nodes of a given order to
moves of the same order. Hence showing that s is P-incrementally justified amounts to showing
that n’s justifier in t is the latest lambda-node in pt � rq with order strictly greater than ordn.

Let m denote n’s justifier in t. The term M is closed therefore x is necessarily a bound
variable and n is an occurrence of x’s binder in τ(M). The traversal t is incrementally-bound
by assumption and n belongs to N \NΣ` = N~` therefore by definition of incremental binding
the occurrence m is the last λ-node in [~, n] ∩N~` with order strictly greater than ordn. The
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Path–P-view correspondence (Prop. 4.1.1) gives [~, n] ∩ N~` = ptq � r which in turn equals
pt � rq by Lemma 4.1.20 (it is applicable because M is a β-nf and we have assumed that the
constant traversals are well-behaved).

(ii) Suppose [[M ]] is P-incrementally justified. Let x be a reachable input-variable node of τ(M).
There exists a traversal of the form t · x in T rav(M) such that x is hereditarily justified in t by
the first occurrence r of τ(M)’s root.

The correspondence theorem shows that ϕ((t ·x) � r) = ϕ(t � r) ·ϕ(x) belongs to [[M ]]. Since
[[M ]] is P-incrementally justified, ϕ(x) points to the last O-move in pϕ(t � r)q with order strictly
greater than ordϕ(x). Consequently x points to the last λ-node in pt � rq with order strictly
greater than ordx.

But by Lemma 4.1.19, pt � rq contains ptq � r as a subsequence, and by P-visibility m occurs
in this subsequence, thus m is also the last λ-node in ptq � r with order strictly greater than
ordx. By the Path-P-view correspondence (Prop. 4.1.1) this means that m is the last λ-node
in [~, x[ ∩ N~` with order strictly greater than ordx. Hence τ(M) is N~`-incrementally-
bound.

Corollary 5.3.3. Let Γ `M : A be a term-in-context of some applied typed lambda calculus.

(i) If τ(Γ `M : A) is incrementally-bound then [[Γ `M : A]] is P-incrementally justified;

(ii) if M is β-normal and [[Γ `M : A]] is P-incrementally justified then τ(Γ ` M : A)∗ is
incrementally-bound.

Proof. (i) Let M ′ denote the beta-normal form of M . If τ(M) is incrementally bound then by
Corollary 5.3.2 so is τ(M ′). So in particular all the reachable input-variable node of τ(M ′) are
incrementally bound. Thus by Proposition 5.3.2(i), [[M ]] = [[M ′]] is P-incrementally justified.
(ii) Suppose that [[M ]] is P-incrementally justified. Consider τ(M)∗. By definition, a tree is
incrementally bound just if it is N \NΣ`-incrementally bound. Since M is β-normal, variable
nodes cannot be hereditarily enabled by an @-node thus N`~ = N \NΣ`. Thus to show that
τ(M)∗ is incrementally-bound we just need to show that its variables are N`~-incrementally
bound. But by definition its variable nodes are precisely those of τ(M) that are reachable.
Hence we just need to show that the reachable input variables of τ(M) are N`~-incrementally
bound. This is precisely what Proposition 5.3.2(ii) says.

5.4 Safe lambda calculus

We now consider the special case of the pure (i.e., without interpreted constants) safe lambda
calculus. For every simply-typed term Γ `st M : T we write [[Γ `st M : T ]] to refer to the
innocent game denotation of Γ `st M : T .

Lemma 5.4.1. Let M be a simply-typed lambda-term in β-normal form. All the nodes of the
computation tree of M are reachable by some traversal obtained using the rules of Table 4.3.

Proof. Since M is in β-normal form, its computation tree has no application node and therefore
all the variable nodes are hereditarily justified by the root. Hence each variable node can be
reached by the traversal consisting of the path from the root to that node (The rule (Lam) and
(InputVar) permit us to visit the variable nodes and lambda nodes respectively).

Proposition 5.4.1. Let Γ `st M : T be a pure (i.e., with no interpreted constants) simply-
typed term in β-normal form. Then [[Γ `st M : T ]] is P-incrementally justified if and only if the
computation tree τ(M) is incrementally-bound.

Proof. By Lemma 5.4.1, all the variable nodes are reachable in a β-normal term thus τ(M) =
τ(M)∗ and the result follows from Corollary 5.3.3.
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Example 5.4.1.

(i) For every higher-order variable x : A the computation tree τ(x) is incrementally-bound.
Consequently the projection strategies are all P-incrementally justified.

(ii) λ3

f2

λy1

x0

Consider the β-normal term Γ `st f(λy.x) : o where y : o and Γ = f : 2, x : o.
The figure on the right represents its computation tree with the node orders
given as superscripts. The node x is not incrementally-bound because the node
x of order 0 is not bound by the order 1 node λy. Therefore τ(f(λy.x)) is
not incrementally-bound and by Proposition 5.4.1, [[Γ `st f(λy.x) : o]] is not P-
incrementally justified. Similarly we can check that [[λy.x]] is P-i.j. while [[f(λy.x)]]
is not.

(iii) By the previous examples we have that [[Γ `st f : 2]] and [[Γ `st λy.x : 1]] are both P-i.j.
whereas [[Γ `st f(λy.x) : o]] is not. Hence application does not preserve P-incremental
justification. This suggests that P-incremental justification is not a compositional prop-
erty. In Chapter 6 we will identify a sufficient condition enabling compositionality of
P-incrementally justified strategies.

Putting Proposition 5.4.1 and Proposition 5.3.1 together gives us a game-semantic charac-
terization of safety. This result was first presented in TLCA2007, [BO07, Theorem 3(ii)]:

Theorem 5.4.1 (Characterization Theorem for the safe lambda calculus). Let Γ `st M : A be
a pure simply-typed term (with no interpreted constants).

(i) If M is almost safe (and in particular if it is safe) then [[Γ `st M : A]] is P-incrementally
justified.

(ii) If [[Γ `st M : A]] is P-incrementally justified then the beta-normal form of M is almost safe,
and safe if further M is closed.

Proof. (i) Since M is almost safe, by Proposition 5.3.1(i), its computation tree is incrementally-
bound. Hence by Corollary 5.3.3(i) its denotation is incrementally justified.

(ii) Since a term has the same denotation as its beta-normal form we can assume that
M is beta-normal. By Proposition 5.4.1 its computation tree is incrementally bound, and by
Proposition 5.3.1(ii), the eta-long normal form of M is safe if it is a closed term and almost safe
otherwise. The same holds for M itself since both safety and unsafety are preserved by eta-long
normal expansion (Lemma 3.1.16 and 3.1.2).

In particular, a term has a P-incrementally justified denotation if and only its beta-normal
form is almost safe.

Remark 5.4.1

(i) Observe that the use of the Correspondence theorem makes the proof of the above theorem
almost trivial: just by making some observations about the computation trees of safe terms,
we are able to deduce properties in the denotational game model. We do not claim here
that it is the unique way to prove the result; however any proof would require at some
point to make a connection between the binding information found in the syntax of the
term, and the justification pointers of game semantics. In our argument, this connection
is provided by the concrete presentation of game semantics from the previous chapter.

(ii) In game semantics, the Opponent’s strategy is dictated by the denotation of a term—
the context—representing the environment so that if the language considered is a pure
functional language such as PCF then the Opponent necessarily plays innocently. In the
intentional game denotation, however, all possible O-moves are accounted for at every
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position, including those moves that would break “O-innocence”. In the extensional de-
notation, non O-innocent plays do not have any effect since the test strategy from the
intrinsic preorder ranges over P-innocent strategies.

The second part of the previous theorem crucially relies on the presence of those non
O-innocent plays: It is true that an unsafe beta normal term is denoted by a non P-i.j.
strategy, but the failure to satisfy P-incremental justification may only be due to some play
that does not affect the extensional denotation of the term. For instance the beta-normal
term λϕ((o,o),o,o) yo. ϕ(λxo.x)(ϕ(λxo.y) y) is clearly unsafe and, as is implied by (ii), its
denotation in the intentional game model is not P-i.j. since for instance the last node in
the traversal t = λϕy · ϕ1 · λ · ϕ2 · λx · y is not incrementally justified. But the traversal
t corresponds to a play that does not respect O-innocence since we have xt6ϕ1y = xt6ϕ2y

and the node visited after ϕ1 and ϕ2 differ.

Putting Theorem 5.4.1(i) and Lemma 5.1.1 together gives:

Proposition 5.4.2 (P’s pointers are superfluous for safe terms). In the game semantics of safe
lambda-terms, pointers emanating from P-moves are unnecessary: they are uniquely recoverable
from the underlying sequences of moves and from O-moves’ pointers.

Example 5.4.2. If justification pointers are omitted then the denotations of the two Kierstead
terms M1 ≡ λf.f(λx.f(λy.y)) and M2 ≡ λf.f(λx.f(λy.x)) from Example 3.1.1 are not distin-
guishable. In the safe lambda calculus this ambiguity disappears since M1 is safe whereas M2 is
not (The free variable x in the subterm f(λy.x), has the same order as y but it is not abstracted
together with y).

In fact, as the last example highlights, pointers are superfluous at order 3 for safe terms
whether from P-moves or O-moves. This is because for question moves in the first two levels of
an arena (initial moves being at level 0), the associated pointers are uniquely recoverable thanks
to the visibility condition. At the third level, the question moves are all P-moves therefore their
associated pointers are uniquely recoverable by P-incremental justification. This is not true
anymore at order 4: Take the safe term ψ : (((o4, o3), o2), o1) `s ψ(λϕ.ϕa) : o0 for some constant
a : o, where ϕ : (o, o). Its strategy denotation contains plays whose underlying sequence of moves
is q0 q1 q2 q3 q2 q3 q4. Since q4 is an O-move, it is not constrained by P-incremental justification
and thus it can point to any of the two occurrences of q3.

2

5.5 Safe PCF

We now extend the game-semantic characterization to safe PCF.
We have already established the correspondence between almost safety and incremental

binding in the general setting of an applied simply-typed lambda calculus without recursion
(Proposition 5.3.1). PCF1 can be cast into this setting by considering ⊥A as ordinary constants:
In the computation tree of a PCF1 term, subterms of the form ΩA are represented by the single
constant node ⊥A. In full PCF, however, a difficulty arises as computation trees are potentially
infinite due to the presence of the Y combinator. Nevertheless the result still holds:

Proposition 5.5.1 (Almost safety and incrementally-binding). Let Γ `M : A be a PCF term.

(i) If Γ `M : A is almost safe then τ(Γ `M : A) is incrementally-bound ;

2More generally, a P-incrementally justified strategy can contain plays that are not “O-incrementally justi-
fied” since it must take into account any possible strategy incarnating its context, including those that are not
P-incrementally justified. For instance in the given example, there is one version of the play that is not O-
incrementally justified (the one where q4 points to the first occurrence of q3). This play is involved in the strategy
composition [[`st M2 : (((o, o), o), o)]]; [[ψ : (((o, o), o), o) `st ψ(λϕ.ϕa) : o]] where M2 denotes the unsafe Kierstead
term.
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(ii) conversely, if τ(Γ ` M : A) is incrementally-bound then the η-long normal form of Γ `
M : A is almost safe if M is open and safe if M is closed.

Proof. (i) Let M be an almost safe PCF term and i denote the number of occurrences of the Y
combinator in M . We first prove by induction on i that for every k ∈ ω, the kth approximants
to M , denoted Mk, is almost safe. The base case i = 0 is trivial: Mk = M . Step case: i > 0.
Let YAN be a subterm of M . Since M is almost safe, N is also safe. The number of occurrences
of the Y combinator in N is smaller than i therefore by the induction hypothesis Nk is safe.
Consequently the term Y k

ANk = Nk(. . . (Nk︸ ︷︷ ︸
k times

Ω) . . .) is also safe and by compositionality so is Mk.

The result holds for PCF1 terms, thus since Mk is a safe PCF1 term, τ(Mk) is incrementally-
bound. Now let z be a variable node in τ(M) =

⋃
k∈ω τ(Mk). There exists k ∈ ω such that z

belongs to τ(Mk) v τ(M). If we write rk to denote the root of the tree τ(Mk) then the path
[rk, z] in τ(Mk) is equal to the path [r, z] in τ(M). Hence, since z is incrementally-bound in
τ(Mk), it is also incrementally-bound in τ(M).

(ii) Suppose that the term is not almost safe then necessarily one of its approximant is
not almost safe either. Since the result holds for every PCF1 term, the computation tree of
the approximant is not incrementally-bound. But the computation tree of M contains the
computation tree of its approximant, therefore it is not incrementally-bound.

Hence we obtain the following characterization of almost safety by P-incrementally justified
strategies:

Theorem 5.5.1 (Characterization Theorem for safe PCF). Let Γ ` M : A be a PCF term.
Then:

(i) If M is almost safe then [[Γ `M : A]] is P-incrementally justified.

(ii) If [[Γ `M : A]] is P-incrementally justified then ηlnf(βnf(M))∗ is almost safe if M is open,
and safe if M is closed.

Proof. (i) LetM be an almost safe term andM∞ be the β-normal form ofM . Since almost-safety
is preserved by the small-step reduction of PCF,M∞ is also almost-safe and by Proposition 5.5.1,
τ(M∞) is incrementally-bound. By Corollary 5.3.3(i), [[M∞]] is P-incrementally justified and by
soundness of the game denotation, [[M∞]] = [[M ]], thus [[M ]] is P-incrementally justified.
(ii) Let M be PCF term with a P-incrementally justified denotation. By Corollary 5.3.3(ii),
τ(βnf(M))∗ = τ(ηlnf(βnf(M))∗) is incrementally-bound. Hence by Proposition 5.5.1(ii), if M is
closed then ηlnf(βnf(M))∗ is safe and almost safe otherwise.

Consequently, P-pointers are superfluous (i.e., uniquely recoverable) in the game denotation
of safe PCF terms.

Example 5.5.1 (Counter-example). The use of dead-code elimination in the second part of the
theorem is crucial. Take for instance the closed PCF term:

M ≡ λf ((exp,exp),exp) xexp yexp.f(λzexp.cond(succ x)yz) .

This term is in β-normal form (the conditional operator cannot be reduced since the value of x is
undetermined). The η-long β-normal form of M is therefore M itself which is unsafe. But since
succ x will always evaluate to a positive integer, the first branch of the conditional operator will
never be evaluated. Hence M is observationally equivalent to the safe term N ≡ λfxy.f(λz.z)
which by the Full Abstraction theorem implies that they have the same denotation. But since
N is safe, by the first part of the theorem, we have that [[M ]] is P-incrementally justified.

Such counter-example arises because the conditional operator of PCF permits us to construct
beta-normal terms containing “dead code” (i.e., some subterm that will never be evaluated for



Chapter 5. Syntactic Analysis of the Game Denotation of Safe Terms 171

every value of M’s parameters). In the example above, the dead code consists of the subterm y. In
general, if the dead code part of the computation tree contains a variable that is not incrementally
bound then the resulting term will be unsafe even if the rest of the tree is incrementally bound.
In our example, it is possible to turn M into the equivalent safe term N by eliminating the dead
code from M .

5.6 Safe Idealized Algol

The argument used in the previous section for safe PCF can be reused identically for safe IA
(as defined in Sec. 3.5.2.2). Hence we have:

Theorem 5.6.1 (Characterization Theorem for Safe IA). Let Γ `M : A be a IA term. Then:

(i) If M is almost safe then [[Γ `M : A]] is P-incrementally justified.

(ii) If [[Γ `M : A]] is P-incrementally justified then ηlnf(βnf(M))∗ is almost safe if M is open,
and safe if M is closed.

This shows that P-pointers are superfluous for safe IA terms. Since unsafety only appears
at order 3, this theorem implies the well-known result that pointers are uniquely recoverable
for IA2 terms. This suggests potential applications in algorithmic game semantics: Ghica and
McCusker were able to show that the game denotation of IA2 terms can be characterized by
(extended) regular expressions, thus giving a decision procedure for observational equivalence
in this fragment [GM00]. Can we achieve a result for higher-order fragment of safe IA? We will
investigate this question in the next chapter.

5.7 Towards a game model of safe PCF

5.7.1 Definability

Recall (Sec. 2.3.4.6) that PCFc denotes the language obtained by extending PCF with the casek
construct. The casek construct is the obvious generalization of the conditional operator cond

to k ∈ N branches instead of 2. We call safe PCFc the corresponding extension of safe PCF.
Clearly, all the results obtained so far concerning safe PCF also hold in safe PCFc.

The characterization theorem allows us to show the following definability result for safe
PCFc:

Proposition 5.7.1 (Definability for safe PCFc terms). Let A = (A1, . . . , Ai) and B be two PCF
types for some i, l ≥ 0 and σ be a well-bracketed innocent P-i.j. strategy with finite view function
defined on the game A1× . . .×Ai → B. There exists an almost safe PCFc term x : A `̀ M : B
in η-long normal form such that:

[[x : A `̀ Mσ : B]] = σ

and a safe closed PCFc term `s M
′
σ : (A,B) in η-long normal form such that:

[[`s M
′
σ : (A,B)]] ∼= σ .

Proof. By the standard definability result for PCFc, there is a finite term x : A ` N : B
such that [[x : A ` N : B]] = σ. Take Mσ to be ηlnf(βnf(N))∗. We have [[x : A `Mσ : B]] =
[[x : A ` N : B]] = σ and by Theorem 5.5.1(ii), Mσ is almost safe. For the second part, take M ′

σ

to be the closure λx.Mσ of Mσ.
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Note that because the argument relies on dead code-elimination, which is undecidable, it
does not constitutes a constructive proof: we know that the term Mσ exists but we do not have
an algorithm to compute it.

This result shows that the game model of safe PCF is intentionally fully-abstract: every
compact strategy (i.e., with finite view function) is definable [AMJ94]. The property that all
denotations in the model are definable, including the recursive ones, is called universality.
Universality was shown for the game model of PCF [AMJ94]. In order to show universality for
safe PCF, the “trick” used in the previous proof does not suffice: it is possible to perform dead-
code elimination on the infinite term obtained by unfolding the Y-recursion, but the resulting
term is a potentially infinite term, and it is not necessarily the unfolding of a “finite” PCF
term (with Y combinators). Thus one has to be slightly more subtle to handle recursion. One
way around this problem could consists in using a version of the Correspondence Theorem
expressed over a finite syntax representation of the term (as described in remark 4.3.1) and to
perform dead-code elimination on this representation rather than on its unwinding. We will not
investigate this question further as it is not essential to our understanding of the game semantics
of safe lambda-calculi.

5.7.2 Compositionality

In the next chapter we will give an in depth account of P-i.j. strategies. In particular we will
give a semantic argument showing that when suitably restricted, P-i.j. strategies compose. We
show here essentially the same result using a syntactic argument that relies on the definability
result from the previous section. The advantage is that the proof is much simpler that the one
given in the next chapter. The disadvantage is that it is slightly less general as it only works for
strategies that are denotations of compact PCF terms (i.e., the compact innocent ones) whereas
the proof in the next chapter works in the general case.

Let A = (A1, . . . , Ai), B = (B1, . . . , Bl, o) and C = (C1, . . . , Ck, o) be three PCF types for
some i ≥ 1, l, k ≥ 0.

Problem: Given two compact (with finite view function) innocent well-bracketed and P-
incrementally justified strategies f : A1 × . . . × Ai → B and g : B → C. What is a sufficient
condition for the composite f ; g to be P-incrementally justified?

We tackle the problem syntactically by appealing to the definability result: Since f and g
are compact innocent, there are two closed safe terms Mf : (A,B) and Mg : B → C in η-long
nf denoted by f and g respectively. Composition is syntactically formulated by the term

Mf ;g ≡ λx.Mg(Mfx)

for some fresh variables x : A, whose denotation is clearly given by [[Mf ]]; [[Mg]] = f ; g.
Observe that the safety of Mf and Mg does not imply that of Mf ;g as the following examples

illustrate:

Example 5.7.1. (i) Take A = o, B = (o, o), C = (((o, o), o), o), the variables x, u, v : o, y : B
and ϕ : ((o, o), o) and the Σ-constant a : o. Take the two closed safe terms Mf ≡ λxv.x :
A → B and Mg ≡ λyϕ.ϕ(λu.ya) : B → C. The eta-long beta-nf of Mf ;g is λxϕ.ϕ(λu.x)
which is unsafe because of the underlined term.

Consequently by Theorem 5.4.1(ii), the strategy [[Mf ;g]] = [[Mf ]]; [[Mg]] is not P-i.j. This
shows that P-i.j. strategies do not generally compose. The following diagram illustrates a
play that is not P-i.j.:
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o
[[Mf ]]
−→ (o, o)

[[Mg]]
−→ (((o, o), o), o)

λxϕ  λyϕ

ϕ #ϕ

λu  λu

λxv G#y

x #x

A B C

(ii) A counter-example with ordB = ordC: Let A = o, B = C = (((o, o), o), o) and let x : A,
y : B, u : o, v, ϕ : ((o, o), o) and g : (o, o) be variables and a : o be a Σ-constant. Take
the two closed safe terms Mf ≡ λxv.x and Mg ≡ λyϕ.ϕ(λu.y(λg.a)). The ηβ-nf of Mf ;g is
λxϕ.ϕ(λu.x) which is unsafe because of the underlined term, so f ; g is not P-i.j.

Since Mf and Mg are in η-nf, they can be written:

`s Mf ≡ λxA1
1 . . . xAi

i ϕB1
1 . . . ϕBl

l .Nf

`s Mg ≡ λy(B1,...,Bl,o) φC1
1 . . . φCk

k .Ng

for some safe ground-type terms Nf and Ng in η-nf. Substituting these two equations in Mf ;g

gives:

f ; g = [[λx.(λφ1 . . . φk.Ng)[(Mfx)/y]]]

= [[λxφ1 . . . φk.Ng[(Mfx)/y]]] (the xj ’s and φj ’s can be chosen to be disjoint). (5.2)

Thus by Theorem 5.5.1, f ; g is P-incrementally justified just when ηlnf(βnf(Ng[(Mfx)/y]))
∗

is safe.

A sufficient and necessary condition

Lemma 5.7.1. Let Γ, y : B `s M be a safe term in η-nf and Γ ` R : B be an almost safe
application. Let N denote the set of nodes of the computation tree of M and ~ be the root.
Then:

Γ `s M [R/y] : A ⇐⇒ ∀x ∈ FV (R).∀y ∈ Nfv.∀m ∈ Nλ∩]~, y] : ordm ≤ ordx .

Proof. The only cause of unsafety that can be introduced when substituting the almost safe
term R for y in M is when some variable free in R becomes not incrementally bound in τ(M).
The right-hand side of the equivalence expresses just this.

Applying this lemma with R ≡ Mfx and M ≡ Mg gives us a necessary and sufficient
condition for Mg[(Mfx)/y] to be safe, and hence for f ; g to be P-i.j. The problem is that this
condition is expressed on both Mg and Mf at the same time rather than independently. This
is unsatisfactory because it does not give rise to a categorical notion of compositionality: two
morphisms should be composable as soon as the domain of one matches with the codomain of
the other.
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A sufficient condition The solution consists in restricting the P-i.j. strategies to a smaller
class of composable strategies.

Lemma 5.7.2. If ordAi ≥ ordB for all 1 ≤ i ≤ n then f ; g is P-incrementally justified.

Proof. For all 1 ≤ i ≤ n we have ordxi = ordAi ≥ ordB = ord (Mfx) thus we can use the
application rule of the safe lambda calculus to form the safe term x : A `s Mfx. The substitution
lemma then shows that Mg[(Mfx)/y] is safe which by (5.2) implies that f ; g is P-i.j.

Strategies satisfying this condition are the closed P-incrementally justified strategies. This
property will be studied in depth in Sec. 6.2.4.

Remark 5.7.1

1. The condition is not necessary: Take A = o, B = (o, o), C = (o, o) and consider the two
safe terms Mf ≡ λxA uo.u and Mg ≡ λyB.y a for some constant a : o. Then we have
Mf ;g =β λx.a which is safe hence f ; g is P-i.j. although ordA < ordB.

2. In general type homogeneity is not preserved after composition. For instance the types
o → (o → o) and (o → o) → ((o→ o)→ o) are homogeneous but o → ((o→ o)→ o) is
not. Incidentally, the condition of Lemma 5.7.2 turns out to be a sufficient condition for
type-homogeneity to compose: if A → B and B → C are homogeneous simple types and
ordA ≥ ordB then A→ C is homogeneous.

5.7.3 Full abstraction

In Chapter 2 we have presented the well-known result that the standard game models of PCF
is fully abstract [AMJ94, HO00, Nic94]: two PCF terms are observationally equivalent if and
only they have the same denotations. Since safe PCF is a fragment of PCF this statement also
holds for safe PCF terms: Two safe PCF terms are observationally equivalent with respect to
PCF contexts (not necessarily safe) if and only if they have the same game denotation.

A natural question is whether there exists a fully abstract model with respect to safe contexts
only. Since safe PCF terms are denoted by P-incrementally justified strategies, it is reasonable
to think that O-moves also need to be constrained by a symmetrical notion of “O-incremental
justification” corresponding to the requirement that contexts are safe.

The definability result shown for safe PCF is a first step towards full-abstraction. This
problem will be studied in Chapter 6.



Chapter 6

Models of Safe Applied Lambda

Calculi

This chapter aims to formally define the notion of model of the safe lambda calculus and its
various extensions. We present a categorical interpretation of the safe lambda calculus in the
same vein as the characterization of the lambda calculus by Cartesian Closed Categories. We
then provide such a model by means of game semantics and show that it is fully-abstract when
observational equivalence is defined with respect to safe contexts. We conclude the chapter by
examining the model from an algorithmic game-semantic point of view: we consider the problem
of observational equivalence for finitary fragments of safe IA and show that up to order 3, the
complexity of deciding observational equivalence is essentially the same as for unrestricted IA
terms. We then give a version of the complete-play Characterization Theorem for safe terms:
we show that two safe terms are observationally equivalent if and only if the sets of complete
O-incrementally justified plays of the denotations are equal. This result leads us to conjecture
that observational equivalence is decidable for safe IA up to order 4.

6.1 Categorical model

It is well-known [Lam86] that cartesian closed categories (categories with a terminal object,
finite products and exponentials), CCCs for short, capture the notion of model of typed lambda
calculi: Every CCC is a model of the simply-typed lambda calculus, and conversely, every typed
lambda calculus generates a CCC. What is the categorical interpretation of the safe lambda
calculus? This section introduces incremental closed categories and shows that they capture
models of safe lambda calculi.

6.1.1 Safe lambda calculus with product

The safe lambda calculus defined in Chapter 3 does not have products. It is easy to add them
to the language. The type grammar is given by:

T ::= B | T → T | T × T

for some set B of base types. The order of a type is defined by induction as follows:
• ord(B) = 0 for every base type B,
• ord(A×B) = max(ordA, ordB),
• ord(A→ B) = max(1 + ordA, ordB).
The typing system of the safe lambda calculus is then extended with three rules corresponding

to pairing, first projection and second projection (respectively (×), (π1) and (π2) in Table 6.1).
This suffices to add product constructs to the safe lambda calculus but there is now a little
problem. Consider the following terms-in-context:

x : (o→ o)× o `st λz
o. (π2x) : (o→ (o→ o)) ≡M1
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x1 : (o→ o), x2 : o `s λz
o. x2 : (o→ (o→ o)) ≡M2 .

In any model of the lambda calculus, these two terms-in-context have isomorphic denotations,
but M1 is safe whereas M2 is unsafe. Indeed, the side-condition of the abstraction rule only
requires that the variables in the context have order greater than the order of the term, therefore
M2 is unsafe because it contains the free occurrence x2. In M1, however, x1 and x2 are combined
into a single variable, this has the effect of increasing the order of the variable and therefore the
side-condition holds.

In the categorical model of the simply-typed lambda calculus, a term-in-context Γ ` M : T
is modeled by a morphism [[Γ]]→ [[T ]] where the context Γ is identified with the product of the
types of the variables in the context: if the context variables are X1, · · · ,Xn then Γ is identified
with the type X1 × · · · ×Xn. Thus the contexts x1 : A,x2 : B and x : A × B will be denoted
by two isomorphic objects in the category. Because variables in the context can be “combined”,
there is no way to tell—just by looking at the type Γ—which subtypes corresponds to which
variable. Consequently the basic property of the safe lambda calculus—that all the variables in
the context have order greater than the order of the term—cannot be expressed in the standard
categorical model. For this reason we modify slightly the side-condition of the abstraction and
application rules to enforce a property stronger than the usual basic property of the safe lambda
calculus: instead of requiring that all variables in the context have order greater than the order
of the term, we require that the order of any prime sub-type of any variable in the context has
order greater than that of the term, where the set of prime sub-types of a type A, written
Pr(A), is given by:

Pr(B) = {B} if B is a base type,

Pr(A→ B) = {A→ B}

Pr(A×B) = Pr(A) ∪ Pr(B) .

We then define the relation ≥ on types as follows:

A ≥ B
def
= ∀A′ ∈ Pr(A). ordA′ ≥ ordB .

Thus for every context Γ and type B we have:

Γ ≥ B ⇐⇒ ∀x : A ∈ Γ.∀A′ ∈ Pr(A). ordA′ ≥ ordB .

We now replace the side-condition in the abstraction and application rules by “Γ ≥ B” where
B denotes the type of the term being formed and Γ its context.

Definition 6.1.1. The safe lambda calculus with product, or safe Λ×
→ for short, over a

typed-alphabet Ξ of constants is given by induction over the rules of Table 6.1. The differences
with the rules of the safe lambda calculus without product are framed.

Example 6.1.1. The terms M1 and M2 given above are both unsafe.

It is easy to see that the basic property of the safe lambda calculus still holds—the free
variables of a term have order greater than the order of the term itself—and therefore all the
basic results showed in Chapter 3 also hold (No-variable-capture lemma, safety is preserved by
safe β reduction, ...).

We call typed calculus any applied simply-typed lambda calculus with product with a stock
of constants and function symbols together with an operational semantics for function symbols
given by means of a set of reduction rules. We define the safe fragment of a typed calculus
as the system obtained by replacing the abstraction and application rules by the rules (app),
(appas), (abs) and (δ) from Table 6.1. A language that is the safe fragment of some typed lambda
calculus is called a safe typed calculus.

The long safe fragment of a type-calculus is the subclass of the safe fragment consisting
of terms-in-context that are typable without using the rule (appas). (See Def. 3.1.8.)
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(var)
x : A `s x : A

(const)
`s f : A

f ∈ Ξ (wk)
Γ `s s : A

∆ `s s : A
Γ ⊂ ∆ (δ)

Γ `s M : A

Γ `̀ app M : A

(×)
Γ `s s : A Γ `s t : B

Γ `s 〈s, t〉 : A×B
(π1)

Γ `s s : A×B

Γ `s π1s : A
(π2)

Γ `s s : A×B

Γ `s π2s : B

(appas)
Γ `s s : (A1, . . . , An, B) Γ `s t1 : A1 . . . Γ `s tn : An

Γ `̀ app s t1 . . . tn : B

(app)
Γ `s s : (A1, . . . , An, B) Γ `s t1 : A1 . . . Γ `s tn : An

Γ `s s t1 . . . tn : B
Γ ≥ B

(abs)
Γ, x1 : A1, . . . , xn : An `̀ app s : B

Γ `s λx1 . . . xn.s : (A1, . . . , An, B)
Γ ≥ (A1, . . . , An, B)

Table 6.1: The safe lambda calculus with product (safe Λ×
→).

Remark 6.1.1 (Alternative definition) Our definition of the safe lambda calculus with product
conveys the syntactic notion of safety appropriately but there is still a mismatch between syntax
and semantics: there exist pairs of terms, one safe and the other unsafe, that are denoted by
the same (up to isomorphism) morphism in the categorical model of the simply-typed lambda
calculus. For instance the two simply-typed terms:

x : (o→ o)× o `st λz
o. (π1x) : (o→ (o→ o)) ≡ N1

x1 : (o→ o), x2 : o `s λz
o. x1 : (o→ (o→ o)) ≡ N2

are denoted by isomorphic morphisms in the categorical model, but N1 is unsafe whereas N2

is safe. (This is because in N1, the variable x has to be introduced first in the derivation tree,
whereas in N2, although x1 needs to be introduced first, x2 can be added to the context at the
end of the derivation using the weakening rule.)

We could define an alternative notion of safe lambda calculus with product in order to solve
this kind of problems. One way is to require that for every context-variable of type A× B the
equality ordA = ordB holds. Another solution is to forbid the use of variables of product type
and only allow product types for terms created with the pairing rule. But these two approaches
are rather restrictive. A better approach consists in changing the system to allow the formation
of terms like N2. This can be done by adding a new kind of weakening rule that alters the type
of context-variables rather than adding new variables to the context:

(wk×)
Γ, x : A `s s : C

Γ, x : A×B `s s [(π1x)/x] : C
.

Semantically, this rules is equivalent to the weakening rule because in the categorical model
of the simply-typed lambda calculus, if s is denoted by a morphism [[s]] : Γ × A → C then
Γ, x : A × B `st s [(π1x)/x] : C and Γ, x : A, y : B `st s [(π1x)/x] : C are denoted by the

morphisms (idΓ×π
A×B
1 ); [[s]] and π

(Γ×A)×B
1 ; [[s]]. These two denotations are the same since idΓ×

πA×B1 = 〈π
Γ×(A×B)
1 ; idΓ, π

Γ×(A×B)
2 ;πA×B1 〉, which by associativity of the product is isomorphic

to 〈π
(Γ×A)×B
1 ;πΓ×A

1 , π
(Γ×A)×B)
2 ;πΓ×A

2 〉 = π
(Γ×A)×B
1 .

Example 6.1.2. With the addition of this rule to the system, both N1 and N2 are typable.

Again it is easy to see that the basic property of the safe lambda calculus still holds and
therefore all the basic results showed in Chapter 3 also hold. Moreover, for every term typable
with these rules there exists some term typable in safe Λ×

→ with an isomorphic denotation (in
the categorical model of the simply-type lambda calculus).
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6.1.2 Incremental closed category

We first recall some basic categorical notions and fix some notations.

Basic definitions

A category C is given by a class Obj(C) of objects and a class Hom(C) of morphisms between
objects: for each pair of objects A, B, a set of morphisms C(A,B), written f : A → B, where
A is the domain and B is the codomain. Further for every three objects A, B and C, and
morphisms f : A→ B and g : B → C there is a composite morphism written f ; g or g ◦ f such
that the composition operation is associative; and for each object A there is a morphism idA
that is the identity for composition.

Two objects A and B are said to be isomorphic, written A ∼= B, if there exists a pair of
morphism f : A→ B and g : B → A such that f ◦ g = idB and g ◦ f = idA.

A subcategory of a category C is a category whose objects and morphisms are respectively
objects and morphisms of C. It is a lluf subcategory if it contains all the objects of C.

A object I is terminal if for every object A there is a unique morphism from A to I.
A category has products if for every two objects A and B there is an object A × B and

two morphisms π1, π2 mapping A× B to A and B respectively such that for every morphisms
f : C → A, g : C → B, there is a unique morphism 〈f, g〉 : C → A×B, called the pairing of f
and g, such that π2 ◦ 〈f, g〉 = g and π1 ◦ 〈f, g〉 = f .

A category has exponential if for every two objects B and C there is an object CB and a
morphism evB,C : (CB ×B)→ C such that for every object A and morphism f : (A×B)→ C
there is a unique morphism Λ(f) : A→ CB such that the following diagram commutes:

A×B

CB ×B C

f
Λ(f) × idB

evB,C

Definition 6.1.2. A cartesian closed category, CCC for short, is a category with a terminal
object, binary products and exponentials.

Definition 6.1.3. A pre-incremental closed category is a triple (C, ord,dro) where C is a
CCC and ord and dro are functions Obj(C)→ N ∪ {−1} satisfying the following conditions for
all objects A,B:

(i) A ∼= B implies ordA = ordB and droA = droB,

(ii) ordA = −1 iff droA = −1 iff A ∼= I,

(iii) for A,B 6∼= I, ord(A×B) = max(ordA, ordB) and dro(A×B) = min(ordA, ordB),

(iv) for B 6∼= I, dro(BA) = ord(BA) = max(1 + ordA, ordB).

(Observe that (i) implies ord(A× I) = ord(I ×A) = ord(AI) = ordA for every object A.)

We say that a morphism f : A → B is incremental if we have dro(A) < ord(B). This
property is preserved by composition:

Lemma 6.1.1. For every objects A, B and C of a pre-incremental closed category (C, ord,dro),
if dro(A) ≥ ord(B) and dro(B) ≥ ord(C) then dro(A) ≥ ord(C).

Proof. This follows from the fact that ord ≥ dro.
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Incremental closed category

Definition 6.1.4 (Incremental closed categories). An incremental closed category, ICC for
short, is a 4-tuple (C, I, ord,dro) such that (C, ord,dro) is a pre-incremental closed category
and I is a lluf subcategory of C such that:

1. it contains all the projections: for all objects C1 and C2, π1 : C1×C2 → C1 and π2 : C1×C2 →
C2 are in Hom(I);

2. it is closed under pairing: if f : C → A and g : C → B are in Hom(I) then so is 〈f, g〉;

3. it contains all the incremental evaluation morphisms: for every objects B and C such that
dro(B) ≥ ord(C), evB,C : (CB ×B)→ C is in Hom(I);

4. it is closed under incremental currying: if f : (A×B)→ C ∈ Hom(I) with dro(A) ≥ ord(CB)
then Λ(f) : A→ CB ∈ Hom(I);

5. all morphisms are incremental modulo weakening: For every morphism f : A → B, either f
is incremental, or A = A1 × A2 and f = πi; g for some incremental morphism g : Ai → B,
i ∈ {1, 2}.

Let (C, ord,dro) be a pre-incremental closed category. Its canonical sub-ICC is defined
as (C, I, ord,dro) where I is the lluf subcategory obtained by keeping only the morphisms that
are incremental modulo weakening. Formally for every objects A and B:

I(A,B) = C(A,B) if dro(A) ≥ ord(B);

I(A,B) = {πi; f | f ∈ I(Ai, B), A = A1 ×A2, i ∈ {1, 2}} if dro(A) < ord(B).

Proposition 6.1.1. Let (C, ord,dro) be a pre-incremental closed category. Then its canonical
sub-ICC (C, I, ord,dro) is an ICC.

Proof. We first show that I is a lluf subcategory of C: The identity morphisms are all incremental
therefore they are in Hom(I). Further the class of morphisms is closed under composition. Indeed
take two morphisms f : A→ B and g : B → C:
• If f and g are incremental then by Lemma 6.1.1, f ; g is incremental;
• If f = πi; f

′ for some projection πi, i ∈ {1, 2}, and f ′ and g are incremental then by
associativity we have f ; g = (πi; f

′); g = πi; (f
′; g). Since f ′ and g are incremental, so is

f ′; g therefore f ; g is incremental modulo weakening;
• If g = πi; g

′ for some projection πi, i ∈ {1, 2}, and f and g′ are incremental then we have
B = B1 ×B2 and dro(A) ≥ ord(B) ≥ ord(B1) ≥ dro(C) ≥ ord(C), therefore f ; g : A→ C
is incremental;

• If f = πi; f
′ and g = πj; g

′ for i, j ∈ {1, 2} where f ′ and g′ are incremental then the
previous two points show that f ; g is incremental modulo weakening.

Hence I is a lluf subcategory. Further it clearly contains the projections (A projection πi :
C1 × C2 → C1 that is not incremental can always be written πi = πi; idCi

where idCi
is incre-

mental.), and is closed under pairing; by definition it contains all the incremental evaluation
morphisms from C, it is closed under incremental currying, and all morphisms in the category
are incremental modulo weakening. Hence (C, I, ord,dro) is an ICC.

Remark 6.1.2 (Homogeneous incremental closed category) It is also possible to interpret type
homogeneity (see Sec. 2.2.2) categorically. A non-terminal object A of a pre-incremental closed
category (C, ord,dro) is said to be homogeneous if
• A is a base object (neither a product nor an exponential);
• or A = B × C where B and C are homogeneous and ordB ≥ ordC;
• or A = B → C where B and C are homogeneous and ordB ≥ ordC − 1.
The sub-category of an ICC consisting of the homogeneous objects plus the terminal object

I, and the incremental morphisms (but not those that are incremental only modulo weakening)
is then called an homogeneous incremental closed category.
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Order-enrichment

In order to model applied lambda calculi with recursion, one needs to impose further requirement
on the category. The condition called rationality [AM99] is sufficient for a CCC to interpret
PCF. We reproduce the definition here: A pointed poset is a partially ordered set with a least
element. A category C is pointed-poset enriched (ppo-enriched) if
• every hom-set has a pointed poset structure (C(A,B),vA,B ,⊥A,B);
• composition, pairing and currying are monotone;
• composition is left-strict : for all f : A→ B, ⊥B,C ◦ f = ⊥A,C .
A category C is rational if it is ppo-enriched and for all f : A×B → B, the chain defined

by f (0) = ⊥A,B, f (k+1) = f ◦ 〈idA, f
(k)〉 has a least upper bound denoted by fO such that for all

g : C → A, h : B → D, g ◦ fO ◦ h =
⋃
k∈ω g ◦ f

(k) ◦ h.

We now extend this definition to ICCs as follows:

Definition 6.1.5. An ICC (C, I, ord,dro) is rational if C is rational and I is complete with
respect to (·)O (i.e., if f : A×B → B is a morphism of I then so is fO).

6.1.3 Categorical semantics

Consider a typed lambda calculus extended with a set of constants and function symbols together
with a set of reduction rules giving the operational interpretation of these functions. A model

of a typed lambda calculus in a cartesian closed category is specified by giving:
• For every ground type T an object [[T ]] of the category. This suffices to interpret any

simple type T as an object [[T ]] using products and exponentials;
• for every constant k of type T a morphism [[K]] of type [[T ]];
• for every function symbol f of type A1 × · · · × An → B, a morphism [[f ]] of type [[A1]] ×
· · · × [[An]]→ [[B]].

It is then possible to specify the interpretation of any term-in-context Γ ` M : T by induction
on the structure of the term [Cro93]. The model is said to be sound if whenever M reduces to
N with the small-step semantics of the language then M and N have the same denotation in
the model.

Proposition 6.1.2 (Models of safe typed lambda calculi). Let L be a typed lambda calculus and
(C, I, ord,dro) be an ICC. If C provides a sound model of L then I provides a sound model of
the safe fragment of L.

Proof. The interpretation [[·]] of the safe lambda calculus with product in I is induced by the
standard interpretation in the CCC: Ground types are interpreted as objects of the category,
this suffices to interpret any simple type T as an object [[T ]] using products and exponentials.
A closed term of type T is interpreted by a morphism I → [[T ]], and an open term of type T is
interpreted by a morphism from the denotation of the type of its free variables to [[T ]].

We show that for every safe term M , its denotation [[M ]]
C

in C is also a morphism of the
subcategory I. Since the model C is sound, M has the same denotation as its eta-long normal
form therefore we can assume w.l.o.g. thatM is eta-long normal. We show the result by induction
on the structure of M . We do not have to consider the rule (appas) because it is not required
to type η-long normal terms. The (var) axiom is interpreted by the identity morphisms which
all belong to the ICC. The rules (×), (π1) and (π2) are interpreted by pairing and projections.
The weakening rule (wk) is interpreted by composition with the projection morphisms. For
the rule (app), the term formed is of ground type (since we work with eta-long normal form)
so we have [[s t1 . . . tn : o]] = 〈[[s]], [[t1]], . . . , [[tn]]〉 # ev(A1×...×An),o and we can conclude using the
I.H. and the fact that the evaluation map ev(A1×...×An),o belongs to the ICC. Rule (abs): Let
f : Γ× (A1 × . . .× An)→ T be the denotation of the premise. The term formed is denoted by
the curried morphism Λ(f) : Γ → T (A1×...×An). The side-condition ensures that this morphism
is incremental closed and therefore it belongs to the ICC.
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Hence for every safe termM , we can define its interpretation [[M ]]
I
in I to be its interpretation

in C: [[M ]]
I

def
= [[M ]]

C
. The soundness of the ICC model follows from that of the CCC model.

Example 6.1.3 (Model of safe PCF). It is a well-known fact that any rational CCC in which
we have fixed an interpretation for base types, PCF constants and function symbols provides
a sound model of PCF [AMJ94]. Therefore any rational ICC provides a sound model of safe
PCF. The interpretation of safe PCF in the ICC coincides with its interpretation in the ambient
pre-incremental closed category [AMJ94]: Each constant and first-order function of PCF of type
T is interpreted by some morphism c : I → [[T ]], and because the category is rational, the Y

combinator YA for every object A can be interpreted by the morphism ΘO
A : I → AA

A
where

ΘA = [[F : (A→ A)→ A ` λfA→A.f(Ff) : (A→ A)→ A]] .

6.1.4 Quotiented category

Let C be a rational CCC. A precongruence . on C is defined as a family of preorders .A,B⊆
C(A,B)×C(A,B) such thatvA,B⊆.A,B, composition, pairing, currying are .-monotonous, and
the preorders satisfy some continuity property [AMJ94]. Given a precongruence, the quotiented
category C/. is defined as follows: the objects are those of C, and a morphism in C/. (A,B) is
an equivalence class [f ] of C(A,B) modulo the equivalence relation induced by .A,B. A partial
ordering ≤A,B on C/. (A,B) can then be defined as follows:

[f ] ≤A,B [g] ⇐⇒ f .A,B f .

Lemma 6.1.2 ([AMJ94]). If . is a precongruence on a rational CCC C then C/. is a rational
CCC.

The notion of quotient category extends naturally to ICCs: the precongruence . on I for
some ICC (C, I, ord,dro), is defined similarly as CCC precongruences except that monotonicity
is required for incremental currying only. This naturally gives rise to the notion of quotiented
category I/..

Lemma 6.1.3. Let (C, I, ord,dro) be an ICC, and let . be a precongruence on C. Then:

(i) (C/., I/., ord,dro) is an ICC;

(ii) If (C, I, ord,dro) is rational then so is (C/., I/., ord,dro).

Proof. (i) Since . is a CCC precongruence, it is in particular an ICC precongruence therefore
the quotiented category I/. is well-defined. Since I is a subcategory of C, each equivalent class
of morphisms of I is a subset of some equivalent class of morphisms of C; therefore, up to an
obvious isomorphism, the category I/. is a lluf subcategory of C/.. Finally, the incremental
closure of I immediately implies that of I/..

(ii) Suppose (C, I, ord,dro) is rational. By definition this means that C is rational and I
is complete with respect to the operation (·)O. By Lemma 6.1.2, C/. is also a rational CCC,
therefore by (i), I/. is a lluf subcategory of a rational CCC.

Let [f ] : A×B → B be an equivalence class morphism in I/.. It is also a morphism of the
category C/., therefore by CCC rationality the least upper bound of the chain [f ](n) is given
by [fO] [AMJ94]. Since I is (·)O-complete this implies that [fO] is also in I/.. Thus I/. is also
(·)O-complete.

Hence (C/., I/., ord,dro) is a rational ICC.
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6.1.5 The internal language of incremental closed categories

By a well-known result by Lambek, the simply-typed lambda calculus is the language of carte-
sian closed categories [Lam86]: For every cartesian closed category C one can construct a typed
lambda calculus L(C) called the internal language of the CCC. And for every typed lambda
calculus L we can construct a CCC Cl(L) that soundly interprets L; this category is called the
CCC generated by L or also the canonical classifying category of L [Cro93]. Further-
more these two transformations establish an equivalence of categories which means that their
composites are naturally isomorphic to the identity functors:

C ∼= Cl(L(C)), L ∼= L(Cl(L)) . (6.1)

Does a similar correspondence hold between ICCs and safe typed lambda calculi?
Following [Lam86], it is possible to adapt the notion of internal language to ICCs. Given an

ICC (C, I, ord,dro), we can define its internal language L(C, I, ord,dro) as the typed lambda
calculus whose types are the objects of I, and terms of type A are freely generated from the basic
constants (given by arrows a : I → A) and variable x : A (given by indeterminate arrows x :
I → A) by the term forming operations induced by the maps of I (pairing, incremental currying,
composition with projection, and composition with incremental evaluation): the formation rules
are the same as those of the internal language of the ambient CCC except that the abstraction
and application rules have a side-condition ensuring that the context variables have order greater
than the order of the term being formed. This does not allow the formation of almost-safe terms,
this language is thus precisely the long-safe fragment of the internal language of C:

Definition 6.1.6. The internal language of an ICC (C, I, ord,dro) is defined as

L(C, I, ord,dro)
def
= long-safe

õrd
(L(C))

where

• for every typed lambda calculus L and function f : T→ N, long-safef (L) denotes the long-
safe fragment of L (Def. 3.1.8) where the side-condition in the application and abstraction
rules is defined using the type-order function f ;

• the type-order function õrd : T → N is defined as follows: for every type T ∈ T, õrdT =
ord [[T ]], where [[T ]] is the denotation of the type T in the model C of L(C).

Definition 6.1.7. Let L be a typed lambda calculus over simple types T. For every function
ord : T → N we define the functions ord+ and ord− on the objects of the category Cl(L) as
follows:

ord+(A) = ordT if A = [[T ]] for some type T ∈ T

ord+(A) = −1 if A ∼= I

ord+(A) = 0 otherwise.

The function ord− is defined similarly, substituting ‘ord’ in the right-hand side of the above
equations by the function dro : T→ N defined as follows: dro(T1×T2) = min(ordT1, ordT2) for
every types T1, T2 ∈ T and dro(T ) = ord(T ) for every non-product type T .

(These two functions are well-defined because in Cl(L), for every type T ∈ T we have [[T ]] 6∼= I
and for every types T1, T2, T1 6= T2 implies [[T1]] 6= [[T2]].)

A type-order function is a function ord : T→ N satisfying ord(T1×T2) = max(ordT1, ordT2)
and ord(T1 → T2) = max(1 + ordT1, ordT2) for every type T1, T2 ∈ T. Clearly, for every such
function, the triple (C, ord+,dro−) defines a pre-incremental closed category (Def. 6.1.3).
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Definition 6.1.8. The canonical classifying ICC of (or ICC generated by) L with respect
to a type-order function ord, written IClord(L), is defined as the canonical ICC induced by the
pre-ICC (Cl(L), ord+,dro−):

IClord(L)
def
= (Cl(L), I, ord+, ord−)

where I denotes the canonical sub-ICC of (Cl(L), ord+,dro−).

Proposition 6.1.3.

(i) For every typed lambda calculus L and type-order function ord : T→ N we have:

L(IClord(L)) ∼= long-safeord(L) .

(ii) For every pre-incremental closed category (C, ord,dro) with canonical sub-ICC I we have:

ICl
õrd

(L(C)) ∼= (C, I, ord,dro) .

Proof. This is an immediate consequence of (6.1) and definitions 6.1.6 and 6.1.8. (i) follows

from the fact that õrd+ = ord. (ii) follows from the fact that õrd
+

= ord and õrd
−

= dro.

Intrinsically safe fragment Let (C, I, ord,dro) be an ICC. We define the intrinsically safe
fragment LI(I) of L(C) as the language consisting of the terms whose denotations in C ∼=
Cl(L(C)) are also in I:

LI(I)
def
= { t ∈ L(C) | [[t]] ∈ Hom(I)} .

This definition implies [[LI(I)]] = I. This language satisfies the basic property of the safe lambda
calculus:

Lemma 6.1.4. Let (C, I, ord,dro) be an ICC. For every term M of LI(I), the free variables of
M have order greater than ordM .

Proof. Lambek [Lam86] defines a functor [[·]] : L → C such that every term M of the language L
of type B with free variables of type A1, . . . , An is denoted by a morphism in C(A1×. . .×An, B).
Take L to be LI(I), then by definition M is denoted by an incremental morphism therefore
dro(A1 × . . . ×An) ≥ ordB. We then have for 1 ≤ i ≤ n:

ordAi ≥ droAi ≥ dro(A1 × . . .×An) ≥ ordB .

The language LI(I), however, is not the safe fragment of the internal language of C. Indeed,
since safety is only preserved by β-reduction but not by β-equality, it is possible to have an
unsafe term U in L(C) with a safe beta-nf βnf(U); since βnf(U) is safe, its denotation is an
incremental morphism and therefore it belongs to LI(I), but by soundness of the model C, the
terms U and βnf(U) have the same denotation, hence the unsafe term U must also belong to
LI(I).

6.2 The game model

Our aim for the rest of this chapter is to construct a category of games that is incremental closed,
thus giving rise to a game model of the safe lambda calculus. We start by introducing the class
of closed P-incremental justified strategies and then show that it is closed under composition.
This then allows us to construct an ICC category with game as objects and closed P-incremental
justified strategies as morphisms.

We make the following assumptions on games. Let ⊥ denote the game whose arena has a
single initial question move and no answers. For every game A 6= ⊥:
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(A1) Each question move in the game enables at least one answer move;

(A2) Answer moves do not enable any other move.

Clearly, PCF and IA games all satisfy these two assumptions. A game is said to be prime if it
has a single initial move; a type is prime if its game denotation is prime.

6.2.1 Order of a move

We recall the definition of a move-order (Def 2.3.15). Let A = 〈M,λ,`〉 be a game. We call
`-chain, any sequence of enabling moves m1 ` m2 ` . . . ` mh where h ∈ N is called the length
of the chain. The order of a question move q in A, written ordA q (or just ord q where there
is no ambiguity) is defined as the length of the longest `-chain of questions starting from q
minus 1. The order of an answer-move is defined as −1. (Alternatively, under assumptions (A1)
and (A2), if A 6= ⊥, the order of a (question or answer) move m is given by the length of the
longest `-chain starting from m minus 2.) The order of a game is defined as the maximal
order of its (initial) moves: ordA = maxm∈M ordAm. The level of a move m, written levelAm,
is the length of the longest `-chain ending with m. It is easy to see that the following relation
holds for every question move q of a game A 6= ⊥:

ord
A
q + level

A
q ≤ ordA .

Thus a move m is a question if and only if ordm ≥ 0, and it is an answer if and only if
ordm = −1.

We recall that for every type T built up from base types, product and function space,
the order of T , written ordT , is defined by induction as follows: A base type has order 0,
ord (A→ B) = max(1 + ordA, ordB), and ord(A × B) = max(ordA, ordB) for every types A
and B. Clearly, this definition coincides with the definition given above: the order of a type is
the order of the arena denoting it (i.e., ordT = ord [[T ]] for all type T ).

Move-order after composition

Consider the game X ( Y and let m be a move of X ( Y . We write ordX(Y m to denote the
order ofm in the gameX ( Y . Ifm belongs toX (resp. Y ) then we write ordX m (resp. ordY m)
to denote the order of the move m in the game X (resp. Y ).

Lemma 6.2.1. Let A, B and C be three games. We have:

∀m ∈ A : ordA(Bm = ordA(C m ,
∀m ∈ B : ordA(Bm ≥ ordB(C m for m initial,

ordA(Bm = ordB(C m for m non initial,
∀m ∈ C : ordA(C m ≥ ordB(C m ⇐⇒ ordA ≥ ordB for m initial,

ordA(C m = ordB(C m for m non initial.

The proof is immediate.

6.2.2 Well-bracketing

We call pending question of a sequence of moves s ∈ LA the last unanswered question in s.

Definition 6.2.1. A strategy σ is said to be P-well-bracketed if for every play s a ∈ σ where
a is a P-answer, a points to the pending question in s.

P-well-bracketing can be restated differently as the following proposition shows:

Proposition 6.2.1. We make assumption (A1) and (A2). Let σ be a strategy on a game A.
The following statements are equivalent:
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(i) σ is P-well-bracketed,

(ii) for s a ∈ σ with a a P-answer, a points to the pending question in psq,

(iii) for s a ∈ σ with a a P-answer, a points to the last O-question in psq,

(iv) for s a ∈ σ with a a P-answer, a points to the last O-move in psq with order > orda.

Proof. The result holds trivially if A = ⊥ (the game with one initial question and no answers).
Othwerise:

(i) ⇐⇒ (ii): [McC96a, Lemma 2.1] states that if P is to move then the pending question
in s is the same as that of psq.

(ii) ⇐⇒ (iii): Assumption (A2) implies that the pending question in psq is also the last
O-question occurring in psq.

(iii) ⇐⇒ (iv): Because of assumption (A1) and (A2), for every move m, we have m is a
question move if and only if ordm ≥ 0 if and only if ordm > ord a = −1.

Lemma 6.2.2. Under assumption (A2), if s is a justified sequence of moves satisfying alter-
nation and visibility then any O-move (resp. P-move) in s points to an unanswered P question
(resp. O-question).

Proof. Suppose that an O-move c points to a P-move d that has already been answered by the
O-move a. The sequence s as the following form:

s = . . . d . . . a . . . c .

By O-visibility, d must belong to xs<cy. But since a is an answer, by assumption (A2), it
cannot justify any P-move, therefore xs<qy must contain an OP-arc “hoping” over a. We name
the nodes of this arc d1 and c1:

s = . . . d . . . d1 . . . a . . . c1 . . . c .

By P-visibility, d1 must belong to ps<c1q. Consequently, a does not belong to ps<c1q (oth-

erwise the PO-arc d a would cause the P-view to jump over d1). Therefore there must be a

PO-arc d2 c2 in ps<c1q hoping over a:

s = . . . d . . . d1 . . . c2 . . . a . . . d2 . . . c1 . . . c .

This process can be repeated infinitely often by using alternatively O-visibility and P-
visibility. This gives a contradiction since the sequence of moves s<c has finite length. Hence d
cannot point to a question that has already been answered. Since, by assumption (A2), a ques-
tion is enabled by another question, d is necessarily justified by an unanswered question.

Lemma 6.2.3. Under assumption (A2), if s is a P-well-bracketed justified sequence of moves of
odd length satisfying alternation and visibility then all O-questions occurring in psq are unan-
swered in s.

Proof. We proof the first part by induction on s. The base case (s = q with q initial O-move)

is trivial. Suppose s = s′ · q · u ·m. We have psq = ps′q · q ·m. Clearly m is unanswered in s.
Let r be an O-question in ps′q and suppose that r is answered in s by some move a. By the
induction hypothesis, r is unanswered in s′ therefore a necessarily appears in the segment u:

s = · · · rO · · ·︸ ︷︷ ︸
s′

qP · · · aP · · ·︸ ︷︷ ︸
u

mO .
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But since m is justified by q, by Lemma 6.2.2 q must be unanswered in s<m. In particular,
the pending question at s6a cannot be r since the unanswered question q is played after r. This
gives a contradiction since by well-bracketing a should answer the pending question. Hence r is
unanswered in s.

6.2.3 P-incremental justification

P-incremental justification is a generalization of well-bracketing to question moves:

Definition 6.2.2. A play sm of even length is said to be P-incrementally justified, or P-i.j.
for short, if m points to the last unanswered O-question in psq with order strictly greater than
ordm. A strategy σ is said to be P-incrementally justified, if all plays in σ ending with a
P-question are P-incrementally justified.

Let σ be a strategy. We write P(σ) to denote the subset of σ consisting of plays whose even-
length prefixes are all P-i.j. Hence P-i.j. strategies are precisely those satisfying the relation
σ = P(σ).

Proposition 6.2.2. Let σ be a P-well-bracketed strategy on a game A. Under assumptions
(A1) and (A2), the following statements are equivalent:

(i) σ is P-incrementally justified,

(ii) for s q ∈ σ with q a P-question, q points to the last O-question in psq with order > ord q,

(iii) for s q ∈ σ with q a P-question, q points to the last O-move in psq with order > ord q.

Proof. The result holds trivially if A = ⊥. Otherwise: (i) iff (ii): By Lemma 6.2.3, O-questions
occurring in psq are all unanswered. (ii) iff (iii): By (A1), ord q ≥ 0 and by (A2), answer moves
have order 0 therefore answer moves all have order ≤ ord q.

Putting Proposition 6.2.2 and 6.2.1 together we obtain:

Proposition 6.2.3. Under assumption (A1) and (A2), a strategy σ is P-well-bracketed and
P-incrementally justified if and only if for sm ∈ σ, m points to the last O-move in psq with
order > ordm.

6.2.4 Closed P-incremental justification

Definition 6.2.3. An even-length play sm on some game A → B is said to be closed P-

incrementally justified (closed P-i.j. for short) just if

(i) sm is P-incrementally justified;

(ii) and if m is an initial move in A then its justifier n (initial in B) satisfies ordAm ≥ ordB n.

A strategy σ is closed P-i.j. just if all plays in σ ending with a P-questions are closed P-i.j.

Example 6.2.1. For every game A, the identity strategy idA is closed P-i.j.

Lemma 6.2.4. Let σ : A ( B be a P-i.j. strategy.

(i) If for each initial move m of A occurring in some play of σ we have ordAm ≥ ordB, then
σ is closed P-i.j.

(ii) Suppose that A = A1 × . . .×An where each of the Ai are prime arenas. If for each initial
move mi of Ai, for i ∈ {1..n}, occurring in some play of σ we have ordAi ≥ ordB, then
σ is closed P-i.j.
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Proof. (i) This is a direct consequence of the definition since ordB ≥ ordB b for every move b
initial in B. (ii) Take an initial move m of A. We have ordAm = ordAi

m for some i. This is
in turn equal to ordAi since Ai is prime. By hypothesis it is greater than ordB hence we can
conclude using (i).

Example 6.2.2. The simply-typed term x : (o1 → o2) × o3 `st λy
o.π2x : o4 → o5 has a P-i.j.

denotation. The second part of the previous Lemma cannot be applied because its hypothesis
is not satisfied; and indeed the denotation is not closed P-i.j. since it contains the play q5q3 and
we have ord(o1→o2)×o3 q

3 = 0 < 1 = ordo4→o5 q
5.

Observe that the “P-incremental justification” property is preserved across the curry iso-
morphism, but this is not the case for closed P-incremental justification. It is possible to have
two isomorphic strategies σ and µ such that one is closed P-i.j. but not the other. For instance
any strategy σ that is P-i.j. on the game I ( A is also closed P-i.j. When seen as a strategy
on the isomorphic game A, however, σ is not necessarily closed P-i.j.1; thus the distinction be-
tween the games I ( A and A matters. This is because the definition of closed P-i.j. strategy
specifically refers to the moves of the arena in the left-hand side of the function space arrow (.
A consequence of this is that the category of closed P-i.j. strategies that we will introduce later
on, is neither monoidal closed nor cartesian closed.

6.2.5 Interaction sequences

In this section we recal some basic definitions and results used in game semantics. We fix here
some notations that will be used to analyze interaction sequences.

Let A, B and C be three games. We say that u is an interaction sequence of A, B and C
whenever u � A,B is a valid position of the game A ( B (i.e., u � A,B ∈ PA(B) and u � B,C
is a valid position of the game B ( C. We write Int(A,B,C) to denote the set of all such
interaction sequences.

Let σ : A ( B and µ : B ( C be two strategies. We write σ ‖ µ to denote the set of
interaction sequences that unfold according to the strategy σ in the A,B-projection of the game
and to µ in the B,C-projection:

σ ‖ µ = {u ∈ Int(A,B,C) | u � A,B ∈ σ ∧ u � B,C ∈ µ} .

The composite of σ and µ is then defined as σ;µ = {u � A,C | u ∈ σ ‖ τ}.
The diagram below shows the structure of an interaction sequence from σ ‖ µ. There are

four states represented by the rectangular boxes. The content of the state shows who is to play
in each of the game A ( B, B ( C and A ( C. For instance in state OPP , it is O’s turn to
play in A ( B and P’s turn to play in B ( C and A ( C. Arrows represent the moves. When
specifying interaction sequence, the following bullet symbols are used to represent moves: # for
P-moves,  for O-moves, H# for a move playing the role of P in A ( B and O in B ( C and G#

for the symmetric of H#. We sometimes add a subscript to the symbols # and  to denote the
component in which the moves is played (A or C).

Note that in state OPP, the alternation condition in each of the three games involved prevents
the players from playing in A. Indeed, the O-moves in component A of A ( B are also O-moves
in component A of A ( C, but the state name indicates that the next move in A ( B must
be an O-move and the next move in A ( C must be a P-move.

Similarly, in the top state OOO, the players cannot make a move in B since the O-moves in
component B of the game B ( C correspond to P-moves in the component B of A ( B, but
the state name indicates that the next move in A ( B and the next move in B ( C must be
played by O.

1In particular, every P-i.j. strategy σ on the game !A1 ⊗ . . .⊗!An ( B, is isomorphic, up to arena-tagging
of the moves, to the closed P-i.j. strategy Λn(σ) on the game I ( (A1, . . . , An, B), where Λ denotes the curry

isomorphism.
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A ( B B ( C A ( C

O O O

O P P

P O P

O O O

C

B

A

µ#envµ  

σH#µ G#

envσ σ #

External move

Internal move

External O-moves:  

Generalised P-move: G#, H#, #

Figure 6.1: Structure of an interaction sequence.

Let u ∈ Int(A,B,C) and m be a move of u. The component of m is A,B if after playing
m the game is under the control of the strategy σ, and B,C otherwise (i.e., if µ has control). In
other words, the moves  , # ∈ A and G# ∈ B shown on the diagram of Fig. 6.1 have component
A,B and  , # ∈ C and H# ∈ B have component B,C.

Also we call generalized O-move in component A,B moves that play the role of O in
the game A ( B; that is to say moves represented by G# and  A. Similarly H#-moves and
#A-moves are the generalized P-moves in component A,B,  C -moves and H#-moves are the
generalized O-moves in component B,C and #C-moves and G#-moves are the generalized

P-moves in component B,C.
The P-view of an interaction sequence u ∈ Int(A,B,C) (also called core [McC96b]), written

u or puq, is defined as:

pu · nq = n if m is an external O-move initial in C,

pu ·m · v · nq = n if m is an external O-move non initial in C,

pu ·mq = puq ·m if m is a generalised P-move.

Lemma 6.2.5. Let u be an interaction sequence in Int(A,B,C) then

puq � A,C = pu � A,Cq .

Proof. By induction on u. It is trivial for the empty sequence. Let b be a move in B. We
have pu · bq � A,C = puq � A,C. By the I.H. this equals pu � A,Cq = pu · b � A,Cq. Let
m be a P-move in A or C then pu · mq � A,C = (puq � A,C) · m and by the I.H. it equals
pu � A,Cq ·m = p(u � A,C) ·mq = pu ·m � A,Cq. Let c be an initial move in C. We have
pu · c � A,Cq = p(u � A,C) · cq = c = c � A,C = pu · cq � A,C. Let u = u1 ·m · u2 · n with n an

O-move in A→ C. Then necessarily m ∈ A,C and pu � A,Cq = pu1 � A,C ·m · u2 � A,C · nq =
pu1 � A,Cq ·m · n. Finally by the I.H. this equals (pu1q � A,C) ·m · n = (pu1q ·m · n) � A,C =

pu1 ·m · u2 · nq � A,C.

We will also make use of another result that was used by Harmer to show compositionality
of P-visible strategies [Har05]:

Lemma 6.2.6. [Har05, Lemma 3.3.1] If u ∈ Int(A,B,C) such that u � A,B ∈ σ and u � B,C ∈
τ where σ, τ are two (P-visible) strategies, and m is a generalized O-move of u in component X
then pu6m � Xq = pu6m � Xq.
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Notations 6.2.1 We now introduce some notations for moves that will come useful when
representing plays. The symbol  stands for an O-move and # for a P-move. If the game
considered is of the form L ( R then the we write  L and #L (resp.  R and #R) to represent
a move that belongs to the component L (resp. R). For interaction sequences in Int(A,B,C)
we use the set of symbols {  A, #A,  C , #C , G#, H#} as defined in Fig. 6.1. We also identify each
of these symbols with the set of moves of the corresponding kind. Thus we write “m ∈  A” to
mean that m is an O-move played in A. We use the variable X to denote either the component
A,B or B,C, and the variable Y to denote the opposite component.

For every given component X, we write H#X to denote a generalized P-move in X and G#X

to denote a generalized O-move in X. Thus G#A,B = G#, H#A,B = H#, G#B,C = H#, and H#B,C = G#.
We write  X (resp. #X) to denote an external O-move (resp. P-move) in component X. Thus
 A,B =  A, #A,B = #A,  B,C =  C , and #B,C = #C . We write s v t to say that s is a
subsequence (with pointers) of t, s 6 t to say that s is a prefix (with pointers) of t and s > t to
say that s is a suffix of t.

6.2.6 Preliminary results

In this section, we prove several preliminary lemmas which will help us to study compositionality
of P-i.j. strategies.

Lemma 6.2.7. Let X be a component (either A,B or B,C). Let u be an interaction sequence

of the form u = . . . β
#X

. . . n . . . α
 X

. . . m where:

- α, β are external moves in component X (necessarily both played in A or in C),

- m is either played in B or an external P-move in X,

- α is visible at m in X (i.e., α ∈ pu � Xq) and consequently β is also visible.

Then n 6∈ pu � A,Cq.

Proof. Since α is an O-move, α and β are necessarily played in the same arena (A or C). Take
v = u if m is a generalized O-move in X and v = u<z otherwise (if m is a generalized P-
move in X). The third assumption implies α, β ∈ pvq. The last move in v is necessarily a
generalized O-move in component X (see diagram of Fig. 6.1) therefore by Lemma 6.2.6 we
have pv � Xq = pv � Xq v v v u. Thus α, β ∈ u and since α, β are played in A,C we have
α, β ∈ u � A,C = pu � A,Cq (Lemma 6.2.5). Finally since n lies underneath the β-α PO-arc it
cannot appear in the P-view pu � A,Cq.

Lemma 6.2.8. Let u ∈ Int(A,B,C) and n be a move of u such that n ∈ pu � A,Cq.

(i) If all the moves in u>n are played in C then n ∈ pu � B,Cq.

(ii) If all the moves in u>n are played in A then n ∈ pu � A,Bq.

Proof. (i) We show the contrapositive. Suppose that n 6∈ pu � B,Cq then either:

- pu � B,Cq contains an initial move c0 ∈ C occurring after n in u.

By Lemma 6.2.6 we have pu � B,Cq = pu � B,Cq v puq, thus c0 also occurs in puq. Since
c0 belongs to C we have c0 ∈ puq � A,C = pu � A,Cq (Lemma 6.2.5). Thus the P-view
pu � A,Cq starts with the initial move c0, and since n occurs before c0 it does not occur in
the P-view.

- or n lies underneath a PO-arc β-α visible at u � B,C. By assumption, since α occurs after n
in u, it must belong to C. We can therefore apply Lemma 6.2.7 with X ← B,C which gives
n 6∈ pu � A,Cq.
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(ii) Suppose that n 6∈ pu � A,Bq then either:

- pu � A,Bq contains an initial move b0 ∈ B occurring after n in u. But this is impossible since
by assumption all the moves occurring after n in u belong to A;

- or n lies underneath a PO-arc β-α in A,B. By assumption, since α occurs after n it must
belong to A. We can then conclude using Lemma 6.2.7 with X ← A,B.

Note that we cannot completely relax the assumption which says that moves in u>n are all

in the same component. For instance take u =  C G# #A

n

G# then we have n ∈ pu � A,Cq but

n /∈ pu � A,Bq.

Lemma 6.2.9 (P-visibility decomposition (from C)). Let u = . . . n′ · r ·m ∈ Int(A,B,C) where
n′ is a  A-move satisfying n′ ∈ pu � A,Cq and m is in #C ∪ G# ∪ H#. Then there is a H#-move
γ in r ·m such that γ ∈ pu � B,Cq , n′ ∈ pu≤γ � A,Bq and γ is justified by a move occurring
before n′.

Proof. By induction on |r|. If r = ε then necessarily u = . . .  A
n′

H#

m

where m points before n′

(since n′ belongs to A it cannot justify m which is played in B) so we just need to take γ = m.
If |r| = 1 then either u = . . .  A

n′

H# #C

m

or u = . . .  A
n′

H# G#

m

. In both cases we can take γ to be the

H#-move between n′ and m. Suppose |r| > 1. Let m− denote the move preceding m in u. We
proceed by case analysis:

- Suppose m ∈ #C and m− ∈  C . Let q be the external P-move that justifies m−. Since
n′ ∈ pu � A,Cq, q must occur after n′ in u:

A
σ
−→ B

µ
−→ C

...
...

n′  

...
...

#q

...
...

 m−

#m

Thus we can use the induction hypothesis with u ← u6q: There is a H#-move γ in u]n′,q]

pointing before n′ such that γ ∈ pu6q � B,Cq, n′ ∈ pu6γ � A,Bq. Moreover pu6q � B,Cq 6

pu6m � B,Cq (since q is visible from m in B,C) thus we have γ ∈ pu6m � B,Cq as required.

- Suppose m ∈ #C and m− ∈ H#. Again we can conclude using the induction hypothesis with
u← u6m− .

- Suppose m ∈ H#.

Suppose that all the moves in r are in A. Then r is of the form ( #A  A)∗ (where (·)∗ denotes
the Kleenee star operator). We just need to take γ = m. Indeed, moves in u>m are all in A
and by assumption n′ ∈ pu � A,Cq therefore Lemma 6.2.8(ii) gives n′ ∈ pu � A,Bq. Also,
since m is a H#-move, its justifier is a G#-move but r contains only  and # moves hence m’s
justifier must occur before n′.
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Suppose that r contains at least one move in B. Let b be the last such move, then u is of the
form . . . n′ · . . . · G#

b

·( #A  A)∗ · H#

m

. We then have u � B,C = . . . n′ · . . . · G#

b

· H#

m

thus b ∈ pu � B,Cq.

We can then conclude by applying the induction hypothesis with u← u6b.

- Suppose m ∈ H#. If m− ∈ G# then the I.H. with u← u6m− permits us to conclude. If m− ∈  C

then we conclude by applying the I.H. on u ← u6q where q is the external P-move in C
justifying m−.

We now show the symmetric of the previous lemma:

Lemma 6.2.10 (P-visibility decomposition (from A)). Let u = . . . n′ ·r ·m ∈ Int(A,B,C) where
n′ is an O-move non initial in C satisfying n′ ∈ pu � A,Cq and m is in #A ∪ G#∪ H#. Then there
is a G#-move γ in r ·m such that γ ∈ pu � A,Bq , n′ ∈ pu≤γ � B,Cq and γ is justified by a move
occurring before n′.

Proof. The proof is almost symmetrical to the previous one (Lemma 6.2.9). We proceed by
induction on |r|. If r = ε then necessarily u = . . .  C

n′

G#

m

where m points before n′ (it cannot

point to n′ since n′ is not initial in C). Thus we just need to take γ = m.
If |r| = 1 then either u = . . .  C

n′

G# #A

m

or u = . . .  C
n′

G# H#

m

. In both cases we can take γ to

be the G#-move between n′ and m. Suppose |r| > 1. Let m− denote the move preceding m in u.
We do a case analysis:

- Suppose m ∈ #A and m− ∈  A. Let q be the external P-move that justifies m−. Since
n′ ∈ pu � A,Cq, q must occur after n′ in u:

A
σ
−→ B

µ
−→ C

...
...

 n′

...
...

q #

...
...

m−
 

m #

Thus we can use the induction hypothesis with u ← u6q: There is a G#-move γ in u]n′,q]

pointing before n′ such that γ ∈ pu6q � A,Bq, n′ ∈ pu6γ � B,Cq. Moreover pu6q � A,Bq 6

pu6m � A,Bq (since q is visible from m in A,B) thus we have γ ∈ pu6m � A,Bq as required.

- Suppose m ∈ #A and m− ∈ H# then again we can conclude using the I.H. with u← u6m− .

- Suppose m ∈ G#.

- Suppose that r does not contain any move in B then r is of the form ( #C  C)∗.

We just need to take γ = m. Indeed:

1. By Lemma 6.2.8(i) we have n′ ∈ pu � B,Cq.

2. the justifier of m occurs before n′. Indeed, if m is justified by a H#-move then since n′ · r
contains only  and #-moves, m’s justifier must occur before n′. If m’s justifier is an
initial  C-move ci, then by P-visibility we have ci ∈ pu � B,Cq; but since the P-view
computation “stops” when reaching an initial moves, and because by (a) n′ also belongs
to the P-view, n must necessarily occur after ci.
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- Suppose that r contains some move in B. Let b be the last such move. Then u is of the form
u = . . . n′ · . . . · G#

b

· ( #A  A)∗ · H#

m

. So we have u � B,C = . . . n′ · . . . · G#

b

· H#

m

hence b ∈ pu � B,Cq.

We can now conclude by applying the I.H. with u← u6b.

- Suppose m ∈ H#. If m− ∈ H# then the I.H. with u← u6m− permits us to conclude. If m− ∈  A

then we conclude by applying the I.H. on u ← u6q where q is the external P-move in A
justifying m−.

Using the two preceding lemmas we can show:

Lemma 6.2.11 (Increasing order lemma). Let u = . . . n′ · r ·m ∈ Int(A,B,C) where

1. n′ is an external O-move in component X (n′ ∈  A and X = A,B, or n′ ∈  C and
X = B,C) non initial in C,

2. n′ ∈ pu � A,Cq,

3. m is either played in B (in G# or H#) or is an external P-move in Y (in #C if n′ ∈  A, or
in #A if n′ ∈  C),

4. m’s justifier occurs before n′,

5. u � Y is P-i.j.,

6. u6b � X is P-i.j. for every B-move b occurring in u such that b is a generalized P-move in
X and is not initial in B.

Then:
ord
Y
m ≥ ord

A(C
n′ .

Proof. If n′ ∈  C (resp. if n′ ∈  A) then by Lemma 6.2.10 (resp. Lemma 6.2.9) there is an
occurrence in r · m of a non-initial B-move γ of type G# (resp. H#) such that γ ∈ pu � Y q ,
n′ ∈ pu≤γ � Xq and γ is justified by a move occurring before n′.

There are six possible cases depending on the type of the moves n′ and m: (n′,m) ∈  A ×
( #C ∪ G#∪ H#)∪  C× ( #A∪ G#∪ H#). The following diagram illustrates the cases (n′,m) ∈  A× #C

(left) and (n′,m) ∈  C × #A (right):

A −→ B −→ C

...
...

 

... G#

...

n′  

...
...

γ H#

...
...

m #

A −→ B −→ C

...
...

 

...
...

n′  

...
...

γ G#

...
...

m #

We have:
ord
Y
γ ≥ ord

X
γ . (6.2)

Indeed, if n′ ∈  C then X = B,C and Y = A,B and by Lemma 6.2.1 we have ordA(B γ ≥
ordB(C γ. If n ∈  A then γ is a H#-move therefore it is not initial in B and Lemma 6.2.1 gives
ordA(B γ = ordB(C γ.
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Hence:

ord
A(C

n′ = ord
X
n′ by Lemma 6.2.1 since n′ is non initial in C

≤ ord
X
γ since u6γ � X is P-i.j. (hyp. 6) and γ’s justifier occurs before n′

≤ ord
Y
γ by (6.2)

≤ ord
Y
m since u � Y is P-i.j., and m’s justifier occurs before γ (hyp. 4).

Lemma 6.2.12. Let u ∈ Int(A,B,C) such that u = . . . γ . . . δ . . .m where m is a generalized
P-move in X, γ ∈ pu � A,Cq and δ ∈ pu � Xq. Then γ ∈ pu6δ � A,Cq.

Proof. First we remark that δ must occur in puq. Indeed, δ ∈ pu � Xq = pu<m � Xq·m therefore
δ ∈ pu<m � Xq and since the move preceding m in u is necessarily a generalized O-move in X,
we can apply Lemma 6.2.6:

δ ∈ pu<m � Xq = ppu<mq � Xq by Lemma 6.2.6

v pu<mq

v puq .

Clearly, pu6δ � A,Cq is a prefix of pu � A,Cq, indeed:

pu6δ � A,Cq = pu6δq � A,C by Lemma 6.2.5

6 puq � A,C since δ ∈ puq

= pu � A,Cq by Lemma 6.2.5.

Finally since γ ∈ pu � A,Cq and γ occurs before δ in u, we necessarily have γ ∈ pu6δ �

A,Cq.

Lemma 6.2.13. Let X be a component and u ∈ Int(A,B,C) such that the projection of u on
the component X has the form:

u � X = . . . n . . . n′

 X

. . .m
#X

and

1. m and n′ are external move in X (in A if X = A,B and in C if X = B,C),

2. u � X is P-i.j.,

3. u6b � A,B is P-i.j. for every H#-move b occurring in u,

4. u6b � B,C is P-i.j. for every G#-move b not initial in B occurring in u.

Then either ordA(C n
′ ≤ ordA(C m or n′ 6∈ pu � A,Cq.

Proof. - Suppose that n′ occurs in the P-view pu � Xq. Then we have

ord
A(C

n′ = ord
B(C

n′ . (6.3)

Indeed, if X is the component B,C then necessarily n′ is not initial in C (otherwise it would
be the first move in pu � B,Cq, which is not the case since by visibility n occurs before n′ in
the P-view) and if X = A,B then n′ is in A. In both cases, Lemma 6.2.1 gives us the claimed
equality.
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Thus,

ord
A(C

n′ = ord
X
n′ by (6.3)

≤ ord
X
m since u � X is P-i.j.

= ord
A(C

m by Lemma 6.2.1 since m is not initial in C.

- Suppose that n′ does not occur in the P-view pu � Xq, then n′ lies underneath a PO arc
occurring in pu � Xq. We denote this arc by β-α where β and α denote the arc’s nodes. We
have:

u � X = . . . n . . . β
#

. . . n′

 

. . . α
 

. . .m
#

with ordX α ≤ ordX m (since u � X is P-i.j.).
– Suppose α is an external move then so is β. Indeed, if X = B,C and α ∈  C then α can
only point to another move in C and if X = A,B and α ∈  A then since α is an O-move in
A,B, it is not initial in A and therefore its justifier must also be in A. Instancing Lemma
6.2.7 with n← n′ gives us n′ 6∈ pu � A,Cq.
– Suppose α is a B-move then necessarily so is β (Indeed, if X = A,B then α ∈ B can only
point to a move in B; if X = B,C then since α is an O-move in the game B,C it is not initial
in B so its justifier must also be in B). Suppose that n′ ∈ pu � A,Cq, then applying Lemma
6.2.12 with δ, γ ← α, n′ gives n′ ∈ pu6α � A,Cq. By the 3rd and 4th hypothesis, u6α � X is
P-i.j. and we can use Lemma 6.2.11 on u6α:

ord
A(C

n′ ≤ ord
Y
α by Lemma 6.2.11 with u← u6α

= ord
X
α by Lemma 6.2.1 since α is a non initial B-move

≤ ord
X
m since u � X is P-i.j.

= ord
A(C

m by Lemma 6.2.1 since m is not initial in C.

Linear composition

Proposition 6.2.4 (Linear composition). Let σ : A ( B and µ : B ( C be two well-bracketed
(P-visible) strategies then

(i) σ closed P-i.j. ∧ µ P-i.j. =⇒ σ;µ P-i.j.;

(ii) σ and µ are closed P-i.j. =⇒ σ;µ closed P-i.j.

Proof. Since well-bracketing is preserved by strategy composition [AMJ94, Proposition 2.5], σ;µ
is well-bracketed so we can use the definition of P-i.j. from Proposition 6.2.1.
(i) We prove that σ;µ is P-i.j. Let u be a play of the interaction σ ‖ µ ending with an external
P-move m justified by n in pu � A,Cq. Let n′ be an external O-move occurring between n and
m:

u � A,C = . . . n
 

. . . n′

 

. . .m
#

.

To show that u � A,C is P-incrementally justified, we just need to prove that either n′ 6∈ pu �

A,Cq or ordA(C n
′ ≤ ordA(C m. Note that if n′ ∈ pu � A,Cq then necessarily n′ is not initial

in C because n occurs before n′ in pu � A,Cq.
Let E denote one of the two external arenas (A or C), X be the corresponding component

(i.e., X = A,B if E = A, and X = B,C if E = C) and Y denote the other component.

1) Suppose m and n are two external moves in E.
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1.a) Suppose n′ ∈ E. This situation is handled by Lemma 6.2.13: we have either ordA(C n
′ ≤

ordA(C m or n′ 6∈ pu � A,Cq.

1.b) Suppose n′ 6∈ E. If n′ ∈ pu � A,Cq, then by Lemma 6.2.11 with X ← Y we have
ordA(C n

′ ≤ ordX m and since m is not initial in C, Lemma 6.2.1 gives ordX m =
ordA(C m, thus ordA(C n

′ ≤ ordA(C m.

2) Suppose m ∈ A and n ∈ C. Then m is an initial move in A pointing to a G#-move b0 initial
in B which in turn points to the  C -move n initial in C.

This situation differs from the previous case because the justifier of m in the game A,C
differs from its justifier in A,B (see Sec. 2.3.2.6 for the definition of projection on the overall
component A,C), thus it is not guaranteed that m’s justifier in A,C occurs before n′ so we
cannot use Lemma 6.2.11.

Let’s assume that n′ ∈ pu � A,Cq and prove that ordA(C n
′ ≤ ordA(C m.

- Suppose n′ occurs before b0. (Thus we cannot use Lemma 6.2.11). Up to now we have only
used the fact that σ and µ are P-i.j. The assumption that σ is closed P-i.j. now becomes
crucial.

Since n′ ∈ pu � A,Cq and b0 ∈ pu � B,Cq, applying Lemma 6.2.12 with X ← B,C and
δ, γ ← b0, n

′ gives n′ ∈ pu6b0 � A,Cq. This allows us to apply Lemma 6.2.11 on u6b0 :

ord
A(C

m = ord
A
m ≥ ord

B
b0 since u � A,B is closed P-i.j. and m is initial in A

= ord
B(C

b0

≥ ord
A(C

n′ by Lemma 6.2.11 on u6b0 with X ← A,B.

- Suppose n′ occurs after b0 (and necessarily before m).

a. Suppose n′ ∈ C. m’s justifier occurs before n′ in u thus by Lemma 6.2.11 we have
ordA(C n

′ ≤ ordA(Bm = ordA(C m.

b. Suppose n′ ∈ A. Since n′ ∈ pu � A,Cq, by Lemma 6.2.13 with X ← A,B and
(n, n′,m)← (b0, n

′,m) we have ordA(C n
′ ≤ ordA(C m.

(Note that here we cannotuse Lemma 6.2.11 on u because m and n′ are both played
in A. Also, if A has a single initial move then n′ is necessarily hereditarily enabled by
the initial move m, thus we can immediately conclude that ordA(C n

′ ≤ ordA(Cm;
however this argument does not work in the general case.)

(ii) We now show that σ;µ is closed P-i.j. provided that both σ and µ are. Take a play sm ∈ σ;µ
such that m is initial in A and let n be the initial move of C justifying m. Let u ∈ σ ‖ µ be the
uncovering of sm (sm = u � A,C) and b0 be the initial B-move justifying m in u. We have:

ord
A
m ≥ ord

B
b0 since u � A,B ∈ σ is closed P-i.j.

≥ ord
C
n since u6b0 � B,C ∈ µ is closed P-i.j..

Observe that the second part of the proposition gives only a sufficient condition for σ;µ to
be closed P-i.j.: we can have σ;µ closed P-i.j. although µ is not.

Tensor product

Given two strategies σ : A ( B and τ : C ( D, their tensor product is denoted σ⊗τ : A⊗B (

C ⊗D where A⊗B denotes the tensor product of the games A and B (see Sec. 2.3.3.1).

Proposition 6.2.5. If σ : A ( B and τ : C ( D are P-i.j. (resp closed P-i.j.) then so is
σ ⊗ τ .
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Proof. By establishing the state diagram of the game A⊗C ( B⊗D one can show easily that
only player O can switch between the subgames A ( B and C ( D. Consequently, in the
P-view of a play of the game A ⊗ C ( B ⊗D, all the moves are played in the same subgame
(i.e., all in A ( B or all in C ( D). Hence if the last move of a play m is played in A ( B
then ps � A,Bq = psq � A,B = psq (and conversely if m is played in C ( D). The result
follows immediately.

Pairing and projection

Given two strategies σ : C ( A and τ : C ( B, let 〈σ, τ〉 : C ( A × B denote the pairing
strategy as defined in Sec. 2.3.3.3 where A×B denotes the product of the games A and B.

Proposition 6.2.6 (Pairing).

(i) If σ : C ( A and τ : C ( B are P-i.j. (resp. closed P-i.j.) then so is 〈σ, τ〉;

(ii) For every objects A and B, the projections π1 : A×B ( A and π2 : A×B ( B are closed
P-i.j.

The proof is immediate.

Promotion

Let s be a play. We call thread a maximal subsequence of s consisting of moves that are
hereditarily justified by the same occurrence of an initial move. For every move m occurring in
s, there is only one thread in s containing it; this thread is called the thread of m.

Recall that the promotion σ† : !A (!B of a strategy σ : !A ( B, for two well-opened games
A and B, is given by:

σ† = {s ∈ L!A(!B | for all inital m in B, s � m ∈ σ} .

Since B is well-opened, plays of σ consist of a single thread initiated by some initial B-
move. Plays of σ†, however, are interleaves of potentially infinitely many single-threaded plays
of σ. The visibility condition implies that the thread of a P -move is always the same as the
thread of the preceding O-move. Consequently, the P-view of a play is equal to the P-view of
the current thread: if the current thread of a play s is opened by an initial move b ∈ B then
psq = ps � bq = psq � b.

The state of the game is given by an infinite sequence of symbols in {O,P}, each element
of the sequence indicating who is to play in the corresponding thread. The diagram on Fig. 6.2
illustrates how the state changes as a play of σ† unfolds. The initial state of the game is Oω—an
infinite sequence of O’s—indicating that O is to play in all the threads. When O plays an initial
move in B, it “opens” a new thread so the state of the game becomes OkPOω where k is the
index of the thread being opened. By alternation, P now has to play; his move must be played
in a thread already opened by O and in which P is to play. Only one thread is in such state:
the kth one; thus when P makes his move the game is set back to state Oω.

Proposition 6.2.7 (Promotion). If A and B are two well-opened games and σ : !A ( B is a
well-bracketed P-i.j. strategy then σ† is also well-bracketed and P-i.j. Furthermore if σ is closed
P-i.j. then so is σ†.

Proof. σ† is well-bracketed [AMJ94, Proposition 2.10.]. For P-incremental justification, the
result is a direct consequence of the fact that the P-view of a play in σ† is equal to the P-view
of the current thread. For closed P-incremental justification, the result is immediate.
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Oω

POω OPOω . . . OkPOω . . .

O
P OP OP

Figure 6.2: State diagram for plays of σ†.

Composition

We recall that the composite of σ : !A ( B, and µ : !B ( C in the co-Kleisli category of games
C (Def. 2.3.12), written σ # µ, is defined as:

σ # µ = σ†;µ .

From propositions 6.2.4 and 6.2.7 we obtain:

Proposition 6.2.8. Let A and B be two well-opened games. Let σ : !A ( B and µ : !B ( C
be two well-bracketed strategies then:

(i) If σ is closed P-i.j. and µ is P-i.j. then σ # µ : !A ( C is also P-i.j.;

(ii) If σ and µ are closed P-i.j. then so is σ # µ : !A ( C.

6.2.7 Categories of closed P-i.j. strategies

We define the category of closed P-incrementally justified strategies as follows:
• Objects: games (as defined in Sec. 2.3.2.2),
• Morphisms A→ B: closed P-i.j. strategies for the game A ( B,
• Composition: the linear strategy composition (Def. 2.3.9).
The results of the previous section show that this is indeed a monoidal category. It is not

monoidal closed, however. Indeed, recall that a P-i.j. strategy σ : A ( B is closed P-i.j. if
some condition on the initial A-moves occurring in the plays is met. In particular if A has no
initial move, σ is necessarily closed P-i.j. Consequently the isomorphic strategy on the game
I ( (A ( B) obtained by currying is closed P-i.j. although σ itself is not necessarily closed
P-i.j. Take for instance the two simply-typed terms `st λx

o yo.y and y : o `st λx
o.y. These two

terms have isomorphic denotations in C. But the denotation of the first term is closed P-i.j.
while the second is only P-i.j.

We define the intentional category I as the co-Kleisli category of the category defined
above.

Intentional category

Let C denote the co-Kleisli category of games defined in Sec. 2.3.3.6.

Lemma 6.2.14. Let ord be the order function from Def. 2.3.15: for every game A with under-
lying set of moves MA:

ordA
def
= max

m∈MA

ordm

with the convention max ∅ = −1. We define the function dro on objects of C as follows. For
every game A with underlying set of initial moves IA:

droA
def
= min

m∈IA
ordm .
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Then the triple (C, ord,dro) defines a pre-incremental closed category.

Proof. The functions ord and dro trivially satisfy the conditions of Def. 6.1.3.

Proposition 6.2.9. (C,I, ord,dro) is an ICC.

Proof. The objects of I are exactly those of C. The morphisms of I are a subclass of morphisms
of C. For every object A, the identity strategy idA is closed P-i.j. For every pair of morphisms
in I the composite is also in I by Prop. 6.2.8. Thus I is a lluf subcategory of C. By Prop. 6.2.6,
projections are closed P-i.j., and closed P-i.j. strategies are closed under pairing. Because of
Lemma 6.2.4(i), the incremental evaluation maps are closed P-i.j., and the closed P-i.j. strategies
are closed under incremental currying. Hence (C,I, ord,dro) is an ICC.

The category I will be used to give the intentional game model of safe PCF and safe IA.
We write Iib, Ib and Ii to denote its lluf subcategories of innocent, well-bracketed and innocent
and well-bracketed strategies respectively.

Extensional category

Let . denote the usual intrinsic preorder of the category C (see Sec. 2.3.3.6). The preorder .I

on morphisms of the category C is defined similarly to . except that the test strategy α ranges
over the morphisms of the subcategory I only: for σ, µ ∈ C(I,A),

σ .I τ ⇐⇒ ∀α ∈ I(A,Σ). σ # τ = > =⇒ τ # α = > .

The intrinsic preorder in I, also written .I , is defined as the restriction of .I to the
morphisms of the category I. Abramsky et al. [AMJ94] proved that . is a CCC precongruence
for C. The same proof shows that .I is also a CCC precongruence for C. Consequently by
Lemma 6.1.3, the extensional category I/.I is a rational ICC.

Interpretation

By Prop. 6.1.2, we have that the ICCs I and I/.I both provide a model of the safe lambda
calculus, and the rational ICCs Iib and Iib/.Iib

of innocent well-bracketed closed P-i.j. strategies
both provide a model of safe PCF.

6.3 Interpretation in the standard game model

In Chapter 5 we have shown by a syntactic argument, based on the theory of traversals, that
safe lambda-terms are denoted in the standard game model by P-i.j. strategies. We now reprove
this result by a semantic argument based on the results of the previous section.

6.3.1 Safe lambda calculus with product

Proposition 6.3.1. In the standard game model of the simply-typed lambda calculus with prod-
uct, safe terms are denoted by closed P-i.j. strategies.

Proof. We show by induction on the formation rules that (1) almost safe terms are denoted by
P-i.j. strategies; (2) safe terms are denoted by closed P-i.j. strategies.
• (var) [[x : A `s x : A]] is the identity strategy idA which is closed P-i.j.
• (wk) Take Γ ⊂ ∆ and suppose [[Γ `s s : A]] is closed P-i.j. Up to a retagging of the moves,

the two strategies [[∆ `s s : A]] and [[Γ `s s : A]] are isomorphic. Hence [[∆ `s s : A]] is P-i.j.
It is also closed P-i.j. since none of the new initial moves introduced by ∆ occurs in any
play of the strategy.

• (×), (π1) and (π2): The result follows from the I.H. and Proposition 6.2.6.
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• (δ): It follows from the I.H.
• (appas) Suppose that Γ `̀ app t0t1 . . . tn : B with Γ `s t0 : (A1, . . . , An, B) and Γ `s ti : Ai

for i ∈ {1..n}. By the I.H., for i ∈ {0..n} the strategy [[ti]] is closed P-i.j. We then have
[[t0t1 . . . tn]] = 〈[[t0]], [[t1]], . . . , [[tn]]〉#ev

n where evn is the n-parameter evaluation strategy. By
Proposition 6.2.6 the strategy 〈[[t0]], [[t1]], . . . , [[tn]]〉 is closed P-i.j. Since the evaluation map
evn is P-i.j. (but not necessarily closed P-i.j.), by Proposition 6.2.4(i) [[Γ `s t0t1 . . . tn : B]]
is P-i.j.

• (app) Terms formed with this rule can also be formed with the rule (appas), therefore by
the previous case the denotation of the term formed is P-i.j. By the side-condition of the
rule, all the prime sub-types of Γ have order greater than the order of the term, therefore
by Lemma 6.2.4(ii), [[Γ `s t0t1 . . . tn : B]] is closed P-i.j.

• (abs): By the I.H., the premise of the rule has a P-i.j. denotation. The denotation of the
term in the conclusion of the rule is isomorphic, up to currying, to the denotation of the
premise. Therefore it is also P.i.j. And by the side-condition and Lemma 6.2.4(ii) this
implies that it is closed P-i.j.

6.3.2 Safe PCF

Proposition 6.3.2. In the standard game model of PCF, safe terms are denoted by closed
P-incrementally justified strategies.

Proof. We first prove the result for PCF1—the fragment of PCF containing terms of the form
ΩA = Y (λxA.x) but where no other use of Y is allowed [AM98b]. The proof is by structural
induction over the structure of the term:
• The strategy [[ΩA]] = ⊥ is clearly closed P-i.j.;
• The functional rules are treated the same way as in the corresponding proof for the safe

lambda calculus;
• For the arithmetic rules, we observe that the strategies succ, pred and cond are all closed

P-i.j. The fact that pairing and strategy composition preserve closed P-incremental justification
permits us to conclude.

We now lift the result to full PCF using the technique of syntactic approximant [AM98b].
We have [AM98b, lemma 16]:

[[M ]] =
⋃

n∈ω

[[Mn]]

where Mn is the PCF1 term obtained from M by replacing each subterm of the form Y N with
Y nNn, and Y nF denotes the nth approximant of Y F . Since the Mns are PCF1 terms, by the
previous result each [[Mn]] is closed P-i.j. and since closed P-incremental justification is clearly
a continuous property, [[M ]] is also closed P-i.j.

6.3.3 Safe Idealized Algol

We now extend the game-semantic interpretation to safe IA. The constants of IA are all denoted
by closed P-incrementally justified strategies:

Lemma 6.3.1.

(i) The strategy denotations of the IA constants skip, assign, deref, mkvar, seqexp, and
seqcom are all closed P-i.j.

(ii) The memory-cell strategy cell : I ( !var is closed P-i.j.

Proof. (i) Inspecting the view functions of these denotations (as defined in Sec. 2.3.5) reveals
that they are indeed all closed P-i.j. (ii) Since the game var does not contain any P-question,
any strategy on the game I ( !var is P-i.j. (and therefore also closed P-i.j.).
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Our game-semantic analysis of safe PCF immediately extends to strongly safe IA:

Proposition 6.3.3. Strongly safe IA terms are denoted by closed P-i.j. strategies.

Proof. The proof is an adaptation of the proof for safe PCF. We first show that the result holds
for the fragment of strongly safe IA in which the only allowed uses of Y are in terms of the form
Ω. By induction on the term’s structure: For the functional and arithmetic rules, the proof
is the same as for safe PCF. For the imperative rules, the result follows from the fact that IA
constants are denoted by closed P-i.j. strategies (Lemma 6.3.1(i)) and because tensor product and
composition both preserve closed P-incremental justification. For the block-allocation construct,
the result follows from the fact that cell is closed P-i.j. (Lemma 6.3.1(ii)) and that pairing and
strategy composition both preserve closed P-incremental justification.

The result is then lifted to the whole of strongly safe IA using the technique of syntactic
approximants as in the PCF case.

We now want to extend this result to safe IA. This turns out to be slightly more difficult than
for the strongly-safe fragment. Indeed, in safe IA the safety restriction only constrains variables
from the Γ-context (i.e., those that are bound by a λ-abstraction). The fact that Ξ-variables are
not constrained is reflected in the semantics. For instance the denotation of the safe split-term
∅|x : var `s λf

exp→exp.deref x is not closed P-i.j.
We show, however, that safe split-terms are denoted by strategies in which all the plays are

closed P-i.j. except those containing moves from the Ξ-context. Consequently, by “abstracting”
Ξ-variables using the constructs mkvar or the block-declaration new, we eliminate the plays that
are not closed P-i.j. Hence since safe IA terms are the semi-closed split-terms (i.e., with an
empty Ξ-component), this implies that their denotation is closed P-i.j.

Definition 6.3.1 (P-i.j. modulo M). Let σ be a strategy on some game A and M be a set of
moves. We say that σ is P-incrementally justified modulo M iff every even-length play in σ
ending with a question that is not in M is P-i.j. Similarly we say that σ is closed P-i.j. modulo
M iff every such play is closed P-i.j.

A strategy is thus P-i.j. if and only if it is P-i.j. modulo ∅.

The common operations on strategies preserve the property of being P-incremental justifi-
cation modulo a set of moves:

Lemma 6.3.2 (Composition). Let σ : A → B and µ : B → C. Let M be any set of moves
initial in A. If σ is closed P-i.j. modulo M and µ is P-i.j. (resp. closed P-i.j.) then σ # µ is
P-i.j. (resp. closed P-i.j.) modulo M.

Proof. We observe that in the proof of compositionality for closed P-i.j. strategies, to show that
a play u � A,C of σ;µ is P-i.j. we did not use the fact that every play of σ is P-i.j., but only
that u � A,B (resp. u � B,C) is P-i.j. and all the prefixes of u � A,B and u � B,C ending with
a non-initial B-move are P-i.j. Thus the same proof can be used to show that a play u � A,C
ending with a move not in M is P-i.j.

Lemma 6.3.3 (Tensor product). Let σ : A ( B and τ : C ( D. Let MA and MC be two
sets of moves initial in A and C respectively.

1. If σ and τ are P-i.j. modulo MA and modulo MC respectively then σ ⊗ τ is P-i.j. modulo
MA ∪MC ;

2. If σ and τ are closed P-i.j. modulo MA and modulo MC respectively then σ ⊗ τ is closed
P-i.j. modulo MA ∪MC .

Lemma 6.3.4 (Pairing). Let σ : C ( A, τ : C ( B, and MC be a sets of moves initial in C.

(i) If σ and τ are P-i.j. modulo MC then so is 〈σ, τ〉;
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(ii) If σ and τ are closed P-i.j. modulo MC then so is 〈σ, τ〉.

The proof of the two previous lemmas is an easy adaptation of the proofs of their counterpart
for P-i.j. strategies.

Lemma 6.3.5. Let τ : I → C2, σ : C1⊗C2 → B and M be any set of moves initial in C1⊗C2.
If τ is P-i.j. and σ is P-i.j. (resp. closed P-i.j.) modulo M then (idC1 ⊗ τ) # σ is P-i.j. (resp.
closed P-i.j.) modulo M ∩ C1.

Proof. Let D = C1 ⊗ C2. Let u ∈ Int(C1,D,B) be a non-empty interaction play of µ =
(idC1 ⊗ τ)

†‖σ, and m denote the last play of u. We need to show that if m does not belong to
M then u � C1, B is P-incrementally justified.

Supposem ∈ C1\M. Let d be the initial D-move hereditarily justifyingm, then by definition
of µ we have u � C1,D, d ∈ idC1 which implies that u � C1, B = u � D,B. But u is an interaction
sequence therefore u � D,B ∈ σ, and since σ is P-i.j. modulo M this implies that u � C1, B is
P-incrementally justified.

Suppose m ∈ B then necessarily its justifier also occurs in B. By definition of u, the play
u � D,B belongs to σ which is P-i.j. modulo M. Since m belongs to B it cannot be in M

therefore u is P-i.j. Furthermore, since τ is P-i.j., so is (idC1 ⊗ τ)
† therefore the play u � C1,D

and all its prefixes are P-i.j. Hence we can apply Lemma 6.2.13 with X ← D,B and Y ← C1,D
which shows that u � C1, B is P-i.j.

Lemma 6.3.6. Let mkvar : B → C be the denotation of the mkvar construct where B =
(exp1 → com)× exp and C = var. If σ : A→ B is a closed P-i.j. strategy modulo MA ∪ [[exp1]]
for some set MA of initial A-moves then σ;mkvar is closed P-i.j. modulo MA.

Proof. Let u be an interaction sequence such that u � A,C ends with a P-question that is not
in MA. Then u � A,B and u � B,C are both P-i.j. Let m denote the last move in u and n be
its justifier in u � A,C. Suppose that an O-move n′ occurs in the P-view between n and m. We
show that its order is necessarily smaller than that of m. We necessarily have m ∈ #A because
there is no P-question in C.

(a) Suppose that m ∈ #A, n ∈  A and n′ ∈  A. In general, n′ does not necessarily appear
in the P-view pu � A,Bq (see proof of compositionality). In the present case, however, this case
never happens. Indeed, as noted in the proof of Lemma 6.2.13, this would imply that n′ lies
underneath a G#- H#-arc. But this is not possible since the only G#-move in B is an initial move.
Thus n′ occurs in pu � A,Bq and since u � A,B is P-i.j. this implies that n′ has order smaller
than m.

(b) Suppose that m ∈ #A, n ∈  A and n′ ∈  C . Take Y = A,B and X = B,C. We have
that u � Y is P-i.j. and since mkvar is a P-i.j. strategy, for all B-move b occurring in u, u6b � X
is P-i.j. Thus we can apply Lemma 6.2.11 which shows that ordA→C n

′ ≤ ordA→Cm.
(c) Suppose m ∈ #A, n ∈  C . Then in A,B, the move m is justified by a G#-move b0 itself

justified by n in B,C. By definition of the strategy mkvar, n and b0 are in fact consecutive
moves in u, thus n′ necessarily occurs after b0. If n′ ∈  C then we conclude with Lemma 6.2.11
as in (b) that ordA→C n

′ ≤ ordA→Cm. Otherwise n′ ∈  A, and we conclude as in (a).
Hence u � A,C is P-i.j. It is further closed P-i.j. because both u � A,B and u � B,C are.

Example 6.3.1. The unsafe term

f : (exp→ exp)→ com ` λx.f(λy.x) ≡M : exp1 → com

is denoted by a strategy [[M ]] that is closed P-i.j. modulo [[exp1]]. But the term mkvarM 0 : var
is denoted by the strategy 〈[[M ]], 0〉;mkvar which is closed P-i.j.

Given a safe split-term Γ|Ξ `s M : A, we write [[Γ|Ξ `s M : A]] to refer to [[Γ,Ξ `M : A]],
the game denotation of the corresponding IA split-term. For every game A we write In(A) for
the set of initial moves in A.
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Proposition 6.3.4. Let Γ|Ξ `s M : A be a safe IA split-terms. Its denotation [[Γ|Ξ `s M : A]]
is closed P-i.j. modulo In([[Ξ]]).

Remark 6.3.1 In([[Ξ]]) contains only order-0 questions because the context Ξ contains variables
of type var and exp only.

Proof. We only need to prove the result for terms where the only allowed uses of the Y com-
binator is in subterms of the form Ω; the result then follows immediately using the syntactic
approximants technique and continuity of the “closed P-i.j.” property.

We proceed by induction on the safe IA term. The cases (var), (wk), (const), (succ), (pred),
(cond) are the same as for safe PCF.

- (varnew), (wknew) are similar to (var) and (wk).
- (seq), (assign), (deref) These constants all have closed P-i.j. denotations so the result follows

from the I.H., Lemma 6.3.2, Proposition 6.3.4 and 6.3.3.
- (app) The premise of the rule is an almost safe split-term: it is a consecutive applications of

safe terms. By the I.H. each of these terms has a denotation that is closed P-i.j. modulo In([[Ξ]]).
Since the evaluation strategy ev is P-i.j., by Lemma 6.3.2, the denotation of the split-term being
formed is P-i.j. modulo In([[Ξ]]). Finally, the side-condition of the rule ensures that it is closed
P-i.j. modulo In([[Ξ]]).

- (abs) It follows from the I.H. and because the side-condition of the abstraction rules con-
strains only free variables from the Γ-context.

- (new) Let σ = [[Γ|Ξ, x : var `s M : B]]. We have [[Γ|Ξ `s new x in M : B]] = (idΓ,Ξ⊗cell)#σ
where cell denotes the memory cell strategy on the game I →!var. By the I.H. σ is closed P-i.j.
modulo In([[Ξ⊗!var]]). Instancing Lemma 6.3.5 with τ ← cell, C1 ← Γ⊗Ξ and C2 ←!var gives
us the desired result.

- (mkvar) Let σ = [[Γ|Ξ `s mkvar (λx.M1)M2]]. We have σ = 〈∆(σ1), σ2〉;mkvar where
σ1 = [[Γ|Ξ, x : exp `s M1 : com]] and σ2 = [[Γ|Ξ `s M2 : exp]]. By the I.H., σ1 is closed P-i.j.
modulo In([[Ξ, x : exp]]) and σ2 is closed P-i.j. modulo In([[Ξ]]) therefore the strategy 〈∆(σ1), σ2〉 :
[[Γ× Ξ→ (exp1 → com)× exp]] is closed P-i.j. modulo In([[Ξ]]∪ [[exp1]]). Hence by Lemma 6.3.6,
σ is closed P-i.j. modulo In([[Ξ]]).

By definition, safe IA terms are the semi-closed safe split-terms, hence:

Corollary 6.3.1. In the standard game model of IA, safe terms are denoted by closed P-i.j.
strategies.

6.4 O-incremental justification

We define O-incremental justification as the dual of P-incremental justification:

Definition 6.4.1.
(i) A play sm of odd length is said to be O-incrementally justified, or O-i.j. for short, if

m points to the last unanswered P-question in psq with order strictly greater than ordm.
(ii) A strategy σ is said to be O-incrementally justified, if all plays in σ ending with an

O-question are O-incrementally justified.

Think of O-incremental justification as the constraint that one needs to impose to reflect the
fact that the environment is incarnated by a safe term. The duality between O-i.j. and P-i.j. is
similar to that of O-visibility versus P-visibility [Har05, Sec. 3.6].

For every strategy σ, we write O(σ) to denote the largest subset of plays of σ whose odd-
length prefixes are all O-i.j. The set O(σ) is obtained by removing all the plays containing
O-moves that are not incrementally justified. It defines a strategy that mimics the strategy σ
as long as the Opponent plays incrementally and does not answer otherwise.
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Lemma 6.4.1. Let σ : A and α : A → o be two strategies. Then in the composition σ;α, the
P-i.j. plays of σ interact only with O-i.j. plays of α, and the O-i.j. plays of σ interact only with
P-i.j. plays of α.

Proof. Let σ : A and α : A → o be two strategies, and q be the initial move of the game
[[A→ o]]. For every s ∈ LA we have qs ∈ LA→o. P-moves and O-moves in [[A]] become O-moves
and P-moves in [[A→ o]] respectively. Hence P-views of plays in A correspond to O-views in
A → o; thus qpsqA = xqsyA→o. Now take an interaction sequence u = qv ∈ σ‖α. We have
u � (A → o) = (qv) � (A → o) = q(v � A). Hence if u � A = v � A is P-i.j. then by the previous
remark, u � (A→ o) is O-i.j. The proof of the second part is symmetrical.

Lemma 6.4.2. In an order-3 well-opened game all the legal positions are O-i.j.

Proof. Let A be an order-3 well-opened game. Take a play s in σ ending with a question move q.
We prove by induction on s that if q is a non-initial O-move then there is a single P-move in xsy
with order > ord q (and thus s is necessarily O-i.j.). We do a case analysis on the level of q. We
recall that ord q+level q ≤ ordA. Since q is a non-initial O-move, we necessarily have level q = 2.
Let q′ denote the P-move preceding q in s. Suppose that level q′ = 1 then q′ is justified by an
occurrence of the initial A-move q0. Since A is well-opened, s contains only one occurrence of q0
and therefore we have xsy = q0 · q

′ · q. Thus by O-visibility, q necessarily points to q′ therefore
ord q′ > ord q; thus since q′ is the only P-move occurring in the O-view, it is also the only P-move
with order greater than ord q. Otherwise we have level q′ = 3. Thus ord q′ ≤ ordA− level q′ = 0
and q′ is justified by some O-move q′′ of level 2. We have xsy = xs6q′′y · q

′ · q so we can conclude
using the I.H. on s6q′′ and the fact that ord q′ = 0 < ord q.

This lemma does not hold anymore at order 4. For instance the identity strategy idA : A→ A
on the order-3 game A = [[((o3 → o2)→ o1)→ o0]] contains the following play which is not O-i.j.:

q0 q
′
0 q

′
1 q1 q2 q

′
2 q

′
1 q1 q2 q

′
2 q

′
3

where primed moves correspond to moves from the left copy of A.

Corollary 6.4.1. Let σ, µ be two strategies from C(I,A) where A is an order-3 game. Then

σ . µ ⇐⇒ σ .I µ .

Proof. Let α : A → o be a test strategy. By Lemma 6.4.2, σ and µ are necessarily O-i.j.
Thus by Lemma 6.4.1, the plays of σ, µ can only interact with P-i.j. plays from α. Hence
σ;α = σ;P(α) and µ;α = µ;P(α). Therefore by definition of the intrinsic preorders we have
σ . µ iff σ .I µ.

6.5 Full abstraction

Question: What is a fully abstract model of safe PCF and safe IA?

We already know from the fully-abstract game model of PCF that when the observational
preorder is defined with respect to unrestricted (i.e., possibly unsafe) PCF contexts, observa-
tional equivalence is captured by equality of the quotiented game denotations. We show here
that a similar correspondence holds when observational equivalence is defined with respect to
safe contexts only. This further implies a full abstraction result for the fragments of PCF and
IA consisting of safe closed terms.
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Observational equivalence with respect to safe contexts

We first recall some basic definitions. A context is a PCF term containing exactly one free
occurrence of a distinguished variable ‘−’ called the “hole”. A context is usually denoted by
C[−] so that

− : A ` C[−] : B

is a valid PCF term-in-context for some type A and B. For every term M of type A we write
C[M ] to denote the term obtained by substituting M for the hole using capture-permitting
substitution. Due to the possibility of variable capture, this term is not necessarily a valid PCF
term. Also it is possible to have C1[−] =β C2[−] and C1[M ] 6=β C2[M ]. (For instance take
C1[−] ≡ (λxexp.−)0 and C2[−] ≡ (λxexp.−)Ω. Then C1[−] =β − =β C2[−]; but C1[x] =β 0 and
C2[x] =β Ω.)

We write Trm(Γ, A) for the set of terms M such that Γ `M : A is derivable in PCF. Terms in
Trm(∅, exp) (i.e., closed PCF terms of base type) are called PCF program. For every typing-
context Γ and type A ∈ T the program contexts Ctxt(Γ, A) are the PCF contexts C[−] such
that for all M ∈ Trm(Γ, A), the term C[M ] is a PCF program.

We write Trms(Γ, A) for the set of terms M such that Γ ` M : A is derivable in safe PCF.
We say that a PCF context C[−] is a safe context if the judgment

− : A `s C[−] : B,

is a valid safe PCF term-in-context. The safe program contexts Ctxts(Γ, A) are the program
contexts from Ctxt(Γ, A) that are safe contexts.

We now define two notions of observational preorder for PCF:

Definition 6.5.1 (Observational preorders). Let Γ be a typing-context and T be a simple type.
Let M and N range over Trm(Γ, T ). We write <

∼ to denote the standard observational preorder
for PCF terms. This relation on Trm(Γ, T ) is defined as:

M <
∼ N

def
= ∀C[−] ∈ Ctxt(Γ, A). C[M ] ⇓ =⇒ C[N ] ⇓ .

The relation <
∼s on Trm(Γ, T ) is defined similarly to <

∼ except that contexts range over safe terms
only:

M <
∼s N

def
= ∀C[−] ∈ Ctxts(Γ, A). C[M ] ⇓ =⇒ C[N ] ⇓ .

We write ∼= and ∼=s to denote the reflexive closures of <
∼ and <

∼s.

Lemma 6.5.1.

(i) The relations <
∼ and <

∼s are preorders (reflexive and transitive);

(ii) Consequently ∼= and ∼=s are equivalence relations;

(iii) <
∼ ⊆

<
∼s.

Proof. Trivial.

Note that in the definition of <
∼s, the program context C[−] ranges in Ctxts(Γ, A) but it is

not required that C[M ] and C[N ] are themselves safe. When restricted to safe terms, however,
C[M ] and C[N ] are necessarily safe:

Lemma 6.5.2. M ∈ Trms(Γ, T ) ∧ C[−] ∈ Ctxts(Γ, T ) =⇒ C[M ] ∈ Trms(∅, exp).

Proof. Suppose that M ∈ Trms(Γ, T ) and C[−] ∈ Ctxts(Γ, T ) then in particular, M ∈ Trm(Γ, T )
and C[−] ∈ Ctxt(Γ, T ), therefore by definition of a program context we have C[M ] ∈ Trm(∅, exp).

Plugging a term in the context is done via capture-permitting substitution: C[M ] is given
by (C[−]) {M/−}. But since both C[−] and M are safe and C[M ] is a valid term, by the No-
variable-capture lemma (Corollary 3.5.2(ii)) it is syntactically equivalent to perform the standard
substitution: C[M ] ≡ (C[−]) [M/−]. Hence by the Substitution Lemma 3.1.6, C[M ] is safe.
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Lemma 6.5.3. M ∈ Trms(Γ, T ) ∧ C[−] ∈ Ctxts(Γ, T ) =⇒ [[C[M ]]] = [[C[−]]]; [[M ]].

Proof. By the previous lemma, plugging M in C[−] can be done using the capture-permitting
substitution therefore [[C[M ]]] = [[C[−]]]; [[M ]].

Note that this lemma does not hold for unsafe context. For instance with C[−] ≡ (λxexp.−)Ω
we have [[C[−]]]; [[M ]] = idA; [[M ]] = [[M ]] but [[C[x]]] = ⊥.

Remark 6.5.1 It is possible to define a third notion of observational preorder where the contexts
are unrestricted but where we require instead that C[M ] and C[N ] are safe. This notion of
observational preorder differs from <

∼s because the safety of C[M ] does not necessarily implies
that of C[−] (e.g., the context − : A ` λxA.− : B is unsafe although C[x] is safe).

Remark 6.5.2 Compared to <
∼, the observational preorder <

∼s is a relatively coarse approxi-
mation relation for open terms. If we fix a type T then all the open terms of type T containing
variables of order at least T will be equated by <

∼s. The is because for every such term M , there
is no safe context C[−] such that C[M ] is closed. Indeed, if C[M ] is closed then all the free vari-
ables in M must be abstracted in C[M ]. Take a variable z ∈ FV (M) satisfying ord z ≥ ordT ,
then the hole in C[−] must appear in a subterm of the form λz. · · · − · · · containing the hole ‘–’.
But then this implies that the context is unsafe because the hole, which has order smaller than
z, is not abstracted with z. For example, the terms x : exp ` cond 0x i ≡Mi : exp for i ∈ N are
all ∼=s-equivalent, but their closures Ni ≡ λx

exp.Mi are not: Ni 6<∼s Nj for every i 6= j.

Proposition 6.5.1 (Computational Adequacy). Let P be a PCF program. Then

P ⇓ ⇐⇒ [[P ]]C 6= ⊥ ⇐⇒ [[P ]]C 6≈I ⊥ .

Proof. The first equivalence is the Computational Adequacy result for PCF [AM97]. Second
equivalence: The .Iib

-equivalence class of ⊥ contains only the strategy ⊥ itself. Indeed, suppose
that σ .Iib

⊥ then for all P-i.j. strategy α : A→ Σ we have σ # α = > =⇒ ⊥ # α = >. But the
condition ⊥#α = > never holds therefore we necessarily have σ #α = ⊥ for all P-i.j. strategy α. In
particular, since the identity strategy idA is P-i.j. we can take α = idA giving us σ = σ #idA = ⊥.

Hence we have [[P ]]C 6= ⊥ iff [[P ]]C 6≈Iib
⊥.

Proposition 6.5.2 (Inequational soundness). Let M,N ∈ Trm(Γ, T ). Then:

[[M ]]C ⊆ [[N ]]C =⇒ M <
∼s N .

Proof. It follows from Inequational soundness in C [AM97] since <
∼ is a subset of <

∼s.

Theorem 6.5.1 (Inequational soundness in Cib/.Iib
). Let M,N ∈ Trm(Γ, T ). Then:

[[M ]]C .Iib
[[N ]]C =⇒ M <

∼s N .

Proof. We first show the result for closed terms. We follow the same argument as the proof of
Inequational soundness for PCF [AM97]. Let M,N ∈ Trm(∅, T ) and suppose that [[M ]]C .Iib

[[N ]]C and that C[M ] ⇓ for some safe context C[−]. Then the denotation of C[−] is a P-
i.j. strategy α ∈ I(T,Σ). For every closed term P , the context-substitution C[P ] causes no
variable capture therefore we have [[C[P ]]] = [[P ]] #α. Thus by Computational Adequacy we have
[[M ]] # α 6= ⊥. But since [[M ]]C .I [[N ]]C this implies that [[N ]] # α 6= ⊥ which by Computational
Adequacy implies C[N ] ⇓ as required.

We now generalize the result to open terms. We first make an observation: For all C[−] ∈
Ctxts(Γ, T ) and M ∈ Trm(Γ, T ) where Γ = x : A we have:

C[M ] ⇓ ⇐⇒ C[λxA.Mx] ⇓ ⇐⇒ C ′[λxA.M ] ⇓
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where C ′[−] is the program context defined as C ′[−] ≡ C[−x]. It is easy to see that this context
is necessarily safe: C ′[−] ∈ Ctxts(Γ, (A,T )).

Now consider two open terms M,N ∈ Trm(Γ, T ). W.l.o.g. we can assume that Γ = x : A
where the list x contains exactly the variables from FV (M) ∪ FV (N). We then have

[[M ]]C .Iib
[[N ]]C ⇐⇒ Λ|x|([[λxA.M ]]C) .I Λ|y|([[λxA.N ]]C)

⇐⇒ [[λxA.M ]]C .I [[λxA.N ]]C

⇐⇒ [[λxA.M ]]C .I [[λxA.N ]]C

⇐⇒ ∀C ′[−] ∈ Ctxts(Γ, (A,T )).C ′[λxA.M ] ⇓ =⇒ C ′[λxA.N ] ⇓

⇐⇒ ∀C[−] ∈ Ctxts(Γ, T ).C[λxA.M ] ⇓ =⇒ C ′[λxA.N ] ⇓ by (6.5)

=⇒ M <
∼s N .

The star fragment of PCF written PCF ∗, consists of all the judgements Γ ` M : T
satisfying the condition:

∀z : A ∈ Γ. ordA < ordT (6.4)

abbreviated as “ord Γ < ordT”.

Theorem 6.5.2 (Full abstraction of PCF ∗ with respect to safe contexts). Let M,N ∈ Trm(Γ, T )
be two PCF terms with ord Γ < ordT . Then

M <
∼s N ⇐⇒ [[M ]]C .Iib

[[N ]]C (i)

⇐⇒ O([[M ]]C) .Iib
O([[N ]]C) . (ii)

Proof. (i) (⇐) This is the Inequational Soundness result (Theorem 6.5.1). (⇒) We follow the
same argument as the proof of Full Abstraction of PCF [AM97]. Suppose that [[M ]]C .Iib

[[N ]]C .
Then by definition of the preorder .Iib

, there exists a P-i.j. strategy α : (Γ → [[T ]]) → exp

such that [[M ]] # α = > and [[N ]] # α = ⊥. α can be chosen to be compact. Moreover since
ord(T ) ≥ ord(exp) = 0, the strategy α is closed P-i.j. By the definability result for safe PCF
(Prop. 5.7.1), there exists a closed safe term-in-context `s λz

Γ→T .Q : (Γ → T ) → exp such
that [[λzΓ→T .Q]] = α. Using the application rule and the abstraction we can then form the safe
program context: − : T `s (λzΓ→T .Q)(λyΓ.−) ≡ C[−] : exp. In particular, the subterm λyΓ.−
is safe because we have ord− = ordT > ord Γ by assumption. Clearly, [[C[−]]] ∼= [[λzT .Q]] = α
therefore by Computational Adequacy it follows that C[M ] ⇓ and C[M ] 6⇓.

(ii) In the definition of the preorder .Iib
, the test strategy α ranges over P-i.j. strategies

therefore by Lemma 6.4.1 α can only interact with O-i.j. plays. Hence for every strategy σ in
C, O(σ) and σ are in the same .Iib

-equivalence class.

Full abstraction of safe PCF

Although the small-step operational semantics of PCF and safe PCF differ—the former contracts
β-redexes one at a time whereas the latter contracts “consecutive” β-redexes in a single step—
they have the same big-step operational semantics: a safe term evaluates to a value in safe PCF
if and only if it evaluates to the same value in PCF. Hence the operational semantics of safe
PCF is given by the same relation ⇓ as PCF.

We now consider the restrictions of the relations <
∼ and <

∼s on Trm(Γ, T ) × Trm(Γ, T ) to
Trms(Γ, T )× Trms(Γ, T ). Clearly these restrictions define preorders on Trms(Γ, T ).

Theorem 6.5.3 (Full abstraction for closed safe PCF terms). Let M,N be two closed safe PCF
terms of the same type. Then

M <
∼s N ⇐⇒ [[M ]]I .Iib

[[N ]]I

⇐⇒ O([[M ]]I) .Iib
O([[N ]]I) .
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Proof. Safe closed PCF terms are all in PCF ∗ therefore the result follows immediately from
Theorem 6.5.2 since for every safe term M we have [[M ]]I = [[M ]]C .

Remark 6.5.3 Observe that the condition (6.4) used in Theorem 6.5.2 expresses precisely the
negation of the basic property of the safe lambda calculus. Therefore the star fragment of safe
PCF is precisely given by the set of closed safe terms. That is why our full abstraction result
holds only for the fragment of PCF consisting of closed terms.

Full abstraction fails for open terms. For instance the family of opened safe terms cond 0x i
for i ∈ N are all in the same <

∼s-equivalence class although their denotations are not in the same
.Iib

-equivalence class.
In fact the observational relation <

∼s trivially equates all open safe terms of a given type!
This is due to the fact that for every open safe term M , there is no safe context C[−] such that
the term C[M ] is closed. (See remark 6.5.2.)

Full abstraction of Safe Idealized Algol

The proof of full abstraction of Idealized Algol is based on the Innocent Factorization theorem:

Theorem 6.5.4 (Innocent Factorization [AM97]). For every strategy σ on an a IA game A,
there exists an innocent strategy τ :!var ( A such that σ = cell; τ .

A version of this theorem also holds for safe IA:

Lemma 6.5.4. For every closed P-i.j. strategy σ on an a IA game A, there is an innocent
strategy µ :!var ( A which is closed P-i.j. modulo In([[!var]]) and such that σ = cell;µ.

Proof. By the Factorization Theorem we have that σ = cell; τ for some innocent strategy τ :
!var ( A. Observe that τ is not necessarily P-i.j. modulo In([[!var]]), although σ is P-i.j.
(see the following remark). However all the plays of τ interacting with cell are P-i.j. modulo
In([[!var]]). Indeed, take an interaction play u ∈ Int(I, !var,A) ending with an A-move. It is
easy to see that P-view of the play u � I,A is obtained from the P-view of the play u �!var,A
by removing the moves played in [[!var]]. Thus because the question moves of the game [[!var]]
are of order 0, since u � I,A is P-i.j. so must be u �!var,A.

Take µ to be the strategy obtained by truncating all the plays in τ that are not P-i.j. Then
clearly µ is P-i.j. modulo In([[!var]]) and satisfies σ = cell;µ.

Remark 6.5.4 In the previous proof, we mentioned that it is possible for cell; τ to be P-i.j even
when τ is not P-i.j. modulo In([[!var]]). Here is an example illustrating this fact. The IA term

x : var ` λf2 yexp.seq (assignx 0) (cond (derefx) 0 (f(λzexp.y))) ≡M

: var0 → ((exp1 → exp2)→ exp3)→ exp4 → exp5

is unsafe because it contains the unsafe occurrence y, and its denotation is not P-i.j. modulo
In([[!var]]) because it contains the play:

q5 write0 done read 1 q3 q2 q4 .

The term new x in M , however, is observationally equivalent to 0 and therefore its denotation
is P-i.j.

As in the IA case, the factorization result can be used to show that all the compact closed
P-i.j. strategies on IA types are definable in safe IA. Inequational Soundness of the game model
follows from that of IA. We then obtain:
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Theorem 6.5.5 (Full abstraction for closed safe IA terms). Let `s M : T and `s N : T be two
safe closed IA terms. Then:

M <
∼s N ⇐⇒ [[M ]]I .Ib

[[N ]]I

⇐⇒ O([[M ]]I) .Ib
O([[N ]]I) .

where the preorder <
∼s is defined similarly as for safe PCF.

Proof. This result follows from the definability result as in the case of safe PCF.

6.6 Algorithmic game semantics

The game model of safe IA is greatly simplified since justification pointers are unnecessary. By
the Characterization Theorem (Sec. 2.3.7), observational equivalence of IA terms is characterized
by equality of the set of complete plays. Thus for safe terms, observational equivalence is
characterized by equality of the set of underlying move-sequences without justification pointers.
This simplification suggests applications in algorithmic game semantics.

We show here that up to order 3, IA is a conservative extension of safe IA in the sense that
the observational equivalence relations ∼=s and ∼= coincide. Therefore, all the upper-bounds on
the complexity of observational equivalence that are known for the order-3 fragments of IA also
hold for safe IA. We then show that the Characterization Theorem also holds for observational
equivalence of safe IA with respect to safe contexts: two terms are ∼=s-equivalent if the sets of
complete plays of their denotation are the same. Consequently, we can show that up to order
3, the complexity lower-bounds that are already known for IA also hold in safe IA.

Observational equivalence

Proposition 6.6.1.

(i) Up to order 3, it is conservative, with respect to observational equivalence, to add unsafe
context to safe ones. Formally for every closed IA terms M,N we have:

M <
∼s N ⇐⇒ M <

∼ N .

(ii) Adding unsafe context is not conservative at order 4 for Idealized Algol.

Proof. (i) Let A be an order-3 type and M,N be two IA terms of type A.

M <
∼ N ⇐⇒ [[M ]] . [[N ]] by full abstraction of IA.

⇐⇒ [[M ]] .I [[N ]] Corollary 6.4.1

⇐⇒ M <
∼s N by full abstraction of IA w.r.t. safe contexts.

(ii) The idea is to start from some term E and construct a term D that behaves like E except
that it has a “hidden” behaviour which can only by triggered when the Opponent plays in some
particular way that is not incrementally justified. Take the following order-4 IA terms:

E ≡ λϕ(2,2,0).ϕ(λuo1.u1 skip)(λu
o
2.u2 skip) : ((2, 2, 0), 0)

D ≡ λϕ(2,2,0).new LAST := 0 in

ϕ (λuo1.new PREV :=!LAST in LAST := 1;u1([!LAST = 1]);LAST := PREV )

(λuo2.new PREV :=!LAST in LAST := 2;u2([!LAST = 2]);LAST := PREV )

: ((2, 2, 0), 0)
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where we use the type abbreviations 0 for com and k + 1 = k → com for k ≥ 0, and for every
term T : exp, the assertion operator [T ] is syntactic sugar for cond T Ω skip (i.e., the term
that does nothing if T evaluates to a positive number and goes into an infinite loop otherwise).

The two terms M and N are not observationally equivalent in PCF because the unsafe
context

C[−] = −(λw2
1w

2
2.w1(λx

o.w2(λy
o.x)))

can separate them: we have C[D] 6⇓ and C[E] ⇓. In safe PCF, however, these two terms are
observationally equivalent: Let C[−] be a safe context. We claim that when evaluating C[D],
the variable LAST always contains the index of the last called ϕ’s parameter and therefore
the assertion tests in D always succeed. This can be shown by induction on the length of the
interaction play between [[C[−]]] and [[D]]. We give here an informal argument. Assume that the
context makes a single call to D. (The argument can be easily adapted to the general case.)
During the evaluation, whenever a parameter of ϕ is called, D first sets the variable LAST to
the parameter index i and then calls the Opponent’s parameter ui. At that point, O can either
make another call to one of ϕ’s parameter, or it can call the parameter of some previous call
to some uj for j ∈ {1, 2}. Suppose it does the latter, because it is playing incrementally (since
the context is safe) such uj must necessarily be the ui that was last called by P. The next step
executed by P is then the assertion test which necessarily succeeds because LAST was just set
to i. When the call to ui returns, P restores LAST to the value it originally contained when ϕ’s
parameter was called, thus ensuring that it holds the index of the ϕ’s parameter that was last
called by the context.

Similarly, whenever a call to one of ϕ’s parameter returns, the Opponent can call the param-
eter of the last (because O plays incrementally) called uj . Since LAST contains the last called
ϕ’s parameter’s index, this again ensures that the assertion test succeeds.

Characterization Theorem

We now show that a version of the Characterization Theorem (Sec. 2.3.7) also holds for safe IA:

Theorem 6.6.1 (Characterization Theorem in I). Let σ and τ be two closed P-i.j. strategies
on a simple game A in I. Then

σ .I τ ⇐⇒ comp(O(σ)) ⊆ comp(O(τ)) .

Proof. By Theorem 6.5.5, σ .I τ iff O(σ) .I O(τ). The rest of the proof then follows the
same argument used to prove the original Characterization Theorem in the category Cb [AM97,
Theorem 25], with one subtlety: in the first part of the proof, the fact that O(σ) is O-i.j.
guarantees that the strategy α : A → Σ which “follows the script of s” is P-incrementally
justified.

Consequently, observational equivalence of safe IA terms with respect to safe IA contexts is
characterized by equality of the sets of complete plays.

Classification

Upper bounds By Proposition 6.6.1, all the known upper-bound for IA are also valid for safe
IA up to order 3: safe IA2 + while is decidable in PSPACE [GM00], IA3 + while is decidable
in EXPTIME for terms in β-nf [MW05], and IA3 + Y0 is decidable with a complexity that is at
most doubly exponentially larger than that of the DPDA equivalence problem [MOW05].

Lower bounds

Theorem 6.6.2 (Ong [Ong02]). Observational equivalence of IA2 + Y1 is undecidable.
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The proof of this theorem proceeds by reduction of the Queue-Halting problem to the
observational equivalence of two IA2 +Y1 programs: Given a Queue program P , a term `MP :
com of IA2 + Y1 is defined such that MP simulates P in the sense that P terminates if and only
if MP is equivalent to skip. It turns out that the encoding term MP [Ong02] is safe therefore:

Corollary 6.6.3. Observational equivalence of safe IA2 + Y1 is undecidable.

For IA3 + while, it was shown that the Containment Problem for DPDA can be reduced
to observational approximation in IA1 + Y0 [MOW05, Proposition 1]. Therefore observational
approximation is undecidable for IA1 + Y0 terms, and observational equivalence is at least as
hard as DPDA Equivalence.

Corollary 6.6.4. For safe IA2 + Y0, observational approximation is undecidable and observa-
tional equivalence is at least as hard as DPDA Equivalence.

Proof. The original encoding [MOW05] is not safe because it contains an occurrence of a variable
x : exp occurring in the body of a µ-abstraction µz with ord z = ordx. An equivalent safe
encoding can be obtained by replacing the free variable x : exp by a variable of type exp→ exp,
thus giving an encoding in safe IA2 + Y0.

Let B be a DPDA over an alphabet Σ. We write N(B) to denote the language accepted by B.
We identify values of type exp with Σ∪{0} and we consider the game G = (exp2 → exp1)→ com

whose set of moves is given by MG = {q1, q2} ∪Σ∪ {run, done}. Following [MOW05], for every
language L ⊆ Σ∗, we define L̂ ⊆M∗

G as L̂ = {run q1q20x1 · · · q
1q20xn done |x1 . . . xn ∈ L}. We

have L̂1 = L̂2 iff L1 = L2.
Claim: There exists a safe term z : exp2 → exp1 `s QB : com such that the set of underlying

sequence of moves of the complete plays of [[z : exp2 → exp1 `s QB : com]] is equal to N̂(B).
This term QB is obtained from the term MB used in the original encoding, by replacing the
free variable x : exp in MB by a variable z of type exp → exp and by replacing the subterm
“CH := x” by “CH := z 0”. We can then conclude as in the proof for IA1 + Y0 [MOW05].

For IA3 + while, Murawski et al. showed that observational equivalence is EXPTIME-hard
by a reduction from the equivalence problem of nondeterministic automata on binary trees
[MW05, Corollary 2]. The encoding used in the paper is unsafe but it can be easily changed into
an equivalent safe term of the same order using the same trick as in the previous proof. (The
variable y : exp is replaced by y : exp→ exp and “Z := y” is replaced by “Z := y 0”). Hence:

Proposition 6.6.2. Observational equivalence in safe IA3 + while is EXPTIME-hard.

At order 4, since adding unsafe context is not conservative (Prop. 6.6.1) we need to dis-
tinguish two problems: deciding ∼=-equivalence and deciding ∼=s-equivalence (i.e., observational
equivalence defined with respect to safe contexts only).

Murawski showed that ∼=-observational equivalence is undecidable at order 4 [Mur03]. He
considered Γ-machines, a Turing complete class of devices, and showed that for every such
machine, there is an IA4-term M such that the machine accept the empty string if and only if
the set of complete plays of [[M ]] is not empty. This shows that ∼=-observational equivalence is
undecidable. It turns out that Murawski’s encoding is safe, therefore:

Corollary 6.6.5. ∼=-observational equivalence for safe IA4 is undecidable.

The fact that contexts are not restricted to be safe is crucial in this simulation. The ADD
operation of Γ-machines is for instance simulated using plays that are not O-i.j.2 Thus the same
argument can be used to show undecidability of ∼=s-observational equivalence. We make the
following conjecture:

Conjecture 6.6.6. ∼=s-observational equivalence for safe IA4 is decidable.

2In the paper, the plays ending with the move r4 are not O-i.j.
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The idea is that by the Characterization Theorem for safe IA (Theorem 6.6.1), two terms are
equivalent iff the sets of complete O-incrementally justified plays of their denotation are equal.
But for such plays, all the pointers can be uniquely recovered from the underlying sequence
of moves. Therefore observational equivalence is characterized by equality of the sequences of
moves underlying the sequence of complete O-i.j. plays. I suspect that at order 4, such sequences
can be represented by a DPDA. This would imply the above conjecture.

All the previous results are recapitulated in Table 6.6.

Finitary fragments

L Obs. eq.
order 2 order 2 order 3 order 3

order 4
+ while + Y1 + while +Y0

IA

∼=

PSPACE(1)

4 DFA
U(2)

EXPTIME-hard(3)

EXPTIME-
complete for
β-nf
4 VPA

D(4)

4exp DPDA

< DPDA

U(5)

∼=s ?(6)

Safe IA

∼= U

∼=s ?

U = Undecidable 4 P = “reducible to problem P”
D = Decidable with unknown complexity < P = “at least as hard as problem P”

(1) [GM00] (2) [Ong02] (3) [MW05] (4) [MOW05] (5) [Mur03] (6) The Characterization Theorem
does not hold in that case.

Table 6.2: Complexity of observational equivalence for finitary fragments of safe IA.

Expressivity of safe IA

Murawski introduced a notion of representability of languages by IA terms [Mur03] where a
language is represented by (some erasure homomorphism of) the set of complete plays of the
term. He showed that the class of languages representable by second-order terms is precisely the
regular languages; for third-order terms it is the class of context-free languages; and for terms
of order 4 and above, it is the full class of recursively enumerable languages. These results are
recapitulated in Table 6.6.

What are the representable languages in the safe fragments of IA? It turns out that up to
order 3, the safety constraint does not alter expressivity:

Proposition 6.6.3. For 0 ≤ k ≤ 3, safe IAk and IAk are equi-expressive (in terms of Murawski-
representable language).

Proof. Unsafety only appears at order 3 therefore the same languages are representable in IAi

and safe IAi for i < 3. The order-3 term used by Murawski’s encoding [Mur03] to represent

Fragment Representable languages Machine equivalent

IA0 singleton sets + empty set –
IA1 finite languages with the prefix property –
IA2 regular languages Finite State Automata
IA3 context free languages Pushdown Automata
IA4 recursively enumerable Turing Machines

Table 6.3: Murawski representability.
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context-free languages is unsafe, but it can made be easily turned into a safe term by replacing the
variable c : exp by a variable of type (com→ com)→ exp and changing the code “INPUT := c”
into “INPUT := c (λz.z)”.

It is not known which languages are expressible in higher-order fragments of safe IA. Recall
that regular languages are the languages definable by 0-DPDAs, and context-free languages are
those definable by DPDAs, so a possible conjecture is: “Murawski-representable in safe IAn

for n ≥ 2 are the (n − 2)-DPDA definable word languages”. It is not clear, however, how to
interpret the higher-order “push” DPDA instructions in terms of game-semantic moves. If such
result were to be proved then the question of decidability of higher-order DPDA would become
relevant to the observational equivalence problem: the undecidability of the former would imply
that of the latter.



Chapter 7

Conclusion

7.1 Summary of contribution

Safety is a syntactic constraint for higher-order grammars. A grammar is safe if the right-hand
side of each rule is such that no subterm occurring in operand position contains parameters of
order smaller than the order of the subterm. Motivated by the appealing algorithmic properties
of safety, we derived a new typing system, the safe lambda calculus, by imposing this syntactic
constraint on the simply-typed lambda calculus. The salient property of this calculus is that
it is not necessary to rename variables when performing substitution. Thus in some sense, safe
terms are “easier” to compute than unsafe ones. Computation in our calculus is standardly
done via the concept of β-reduction. Safety is not preserved by beta-reduction in general, but
it is preserved when sufficiently many consecutive redexes are contracted simultaneously. This
is formalized by the notion of safe beta-reduction: If a safe term contains a β-redex then this
redex can always be “enlarged” into a group of consecutive beta-redexes, called a safe redex,
such that contracting all of them produces a safe term. The notion of normal form thus remains
unchanged. Further, safety is an extensional property: a term is safe if and only if its eta-long
normal form is.

The typing system of the safe lambda calculus has desirable properties: the type-checking
(Can a given type be assigned to a given term?) and typability (Given a term, is there a type
that can be assigned to it?) problems are both decidable. On the other-hand, we only know
that the type-inhabitation problem (Given a type, is there a safe term of that type?) is at least
semi-decidable (there is an algorithm that tells if a type is inhabited by a safe term in a finite
amount of time if it is the case, but may not terminate otherwise).

The loss of expressivity incurred by safety can be characterized in terms of expressible nu-
meric functions: they are precisely the multivariate polynomials; the conditional operator, which
is definable in the lambda calculus, is not expressible by any safe term. In terms of representable
word functions, these are given by the set containing the projections, constant functions, con-
catenation and substitution and closed by composition.

We then looked at the complexity of the calculus by considering the beta-equivalence prob-
lem: we hinted that it probably lies in the complexity class ELEMENTARY by showing how
both Statman and Mairson’s encoding of finite type theory in the simply-typed lambda calculus
fail in the safe fragment. We further showed that the problem is PSPACE-hard.

Seeking a semantic explanation of the safety constraint, we focused on the analysis of the
game semantics of safe terms. This led us to the other main contribution of this thesis: the de-
velopment of a new presentation of game semantics based on the theory of traversals [Ong06a].
Essentially, traversals implement a version of β-reduction in which beta-redex are computed
locally as opposed to a global approach based on substitution. The soundness of the traver-
sal theory as a model of computation is ensured by the correspondence with game semantics:
traversals are just uncovering of plays from game semantics.



214 Chapter 7. Conclusion

Armed with the Correspondence Theorem, we were able to give a precise account of the game
semantics of the safe lambda calculus. A notable property of safe terms is that its variables are
incrementally-bound: the binder of a variable node x in the computation tree is precisely the
last lambda-node in the path from x to the root with order strictly greater than ordx. By
the Correspondence Theorem, this implies that the strategy denotation of a safe term is P-
incrementally justified. In such strategy, a P-question’s justifier is given by the last O-move in
the P-view with greater order.

In the last chapter we finally investigated the categorical model of the safe lambda calculus.
We proposed the notion of Incremental Closed Category (ICC) that soundly interprets the safe
lambda calculus in the same way Cartesian Closed Categories model the simply-typed lambda
calculus. We then exhibited such an ICC by constructing a game model of P-incrementally
justified strategies. We showed in particular that P-incremental justified strategies compose.

To conclude, we looked at safety from the point of view of algorithmic game semantics. We
considered the problem of observational equivalence of IA term with respect to safe contexts.
By suitably constraining O-moves by the dual notion of O-incremental justification, we obtain a
model of safe PCF and safe IA that is fully abstract with respect to this notion of observational
equivalence. Furthermore, the model is effectively presentable: two safe terms are observationally
equivalent (with respect to safe contexts) if and only if their denotations have the same set of
complete O-incrementally justified plays.

Up to order 3, the addition of unsafe contexts to safe ones is conservative with respect to
observational equivalence. Furthermore, all the complexity results—lower and upper bounds—
known about observational equivalence of the (unrestricted) lower-order fragments of IA also
hold in the safe sub-fragments. At order-4, however, the notion of observational equivalence
with respect to unrestricted contexts differs from the one defined with respect to safe contexts
only. Concerning the latter, we conjecture that the restriction of the problem to safe terms (i.e.,
safe observational equivalence of safe IA4 terms) is reducible to the DPDA-equivalence problem
(which is decidable).

7.2 Further works

The nature of the safe lambda calculus is still not entirely understood. Some questions remain
about the safe lambda calculus pertaining for instance to its computational power, the complex-
ity classes that it characterizes and its interpretation under the Curry-Howard isomorphism. We
now propose possible directions for further works and highlight some open questions.

Type theory

One of the most pressing open problems concerns the complexity of the safe lambda calculus.
We have shown that the beta-equivalence problem is PSPACE-hard, but this lower-bound may
be very coarse. Further investigations need to be done to determine an upper-bound.

Another open problem is the question of decidability of type inhabitation. At the moment
we already know that it is semi-decidable: there is an algorithm that, given a simple type, can
exhibit a safe inhabitant if it exists but may not terminate otherwise.

Extensions

We have defined a notion of safety for simply-typed terms (and also for untyped terms by means
of a Curry-like version of the typing system). Is there any generalization to more complicated
typing system such as the second-order lambda calculus?
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Logic

What kind of reasoning principles does the safe lambda calculus support via the Curry-Howard
Isomorphism? How expressive is the safe fragment of intuitionistic implication logic? Is the
logic decidable?—or equivalently is type inhabitation decidable in the safe lambda calculus?

Computational complexity

Can the safe lambda calculus help to characterize complexity classes? There are already many
such results in the unrestricted case: Leivant and Marion [LM93] considered for instance an
“impure” variation of the simply-typed lambda calculus extended with constructors, destruc-
tors and conditionals, and obtain several characterization of the polytime-computable numeric
functions in that language.

Hillebrand, Kanellakis and Mairson [HKM96] considered the problem from a database point
of view. Instead of encoding numeric functions, they looked at the database queries that are
encodable in the simply-typed lambda calculus and gave a precise characterization of PTIME:
The polynomial time queries are those expressible in the 4th order fragment of the simply-typed
lambda calculus. This result was later extended to give characterizations of the standard com-
plexity classes PSPACE, k-EXPTIME, k-EXPSPACE (k ≥ 1) and ELEMENTARY at higher-
orders [HK96].

More research needs to be done to see if similar characterizations can be obtained in the safe
lambda calculus.

Expressibility

Functions over free algebras

What are the function over free-algebras definable in the safe simply-typed lambda calculus?
There is an isomorphism between binary trees and closed simply-typed terms of type τ =

(o → o → o) → o → o. Thus any closed term of type τ → τ → . . . → τ represents an n-ary
function over trees. Zaionc [Zai88] and Leivant [Lei93] gave a characterization of the set of
tree functions representable in the simply-typed lambda calculus: it is precisely the minimal set
containing constant functions, projections and closed under composition and limited primitive
recursion. Zaionc showed that the same characterization holds for the general case of functions
expressed over free algebras [Zai91]: they are given by the minimal set containing constant
functions, projections and closed under composition and limited primitive recursion. This result
subsumes Schwichtenberg’s result on definable numeric functions as well as Zaionc’s own results
on definable word and tree functions.

All these basic operations are safe except limited primitive recursion. This suggests that
one needs to restrict further the primitive recursion in order to obtain a characterization of
free-algebra functions representable in the safe lambda calculus. Such result would generalize
our expressivity result for numeric and word functions from Sec. 3.3.

Murawski-expressibility

Murawski introduced a notion of language expressibility by game semantics [Mur03]. He showed
that the 4th order finitary fragment of IA is expressive enough to give the full class of recursively
enumerable languages. Does the safe fragment have the same expressive power? Another line of
research would be to investigate whether the class of word languages recognizable by higher-order
pushdown automata can be characterized in Murawski’s sense by some higher-order fragment
of safe IA.
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Trees and word languages

The impact of safety on the expressivity of higher-order recursion schemes was studied in de
Miranda’s thesis [dM06]. At order 2 and for word languages, safety is not a genuine constraint if
we allow non-determinism [AdMO05b]; de Miranda and Urzyczyn conjectured that for determin-
istic higher-order grammars, safety is a proper restriction. Urzyczyn even proposed an unsafe
deterministic higher-order recursion scheme generating a word language that he conjectured to
be inherently unsafe (i.e., that cannot be generated by any deterministic safe grammar). At
the time of this writing, though, this remains a conjecture. The traversal theory seems to be a
promising tool to investigate the problem.

Game semantics

Is the game model of safe PCF universal? (i.e., is every recursive incremental strategy denoted
by some safe PCF term?) Is there a category of O-incrementally justified strategies?

Compilation of safe recursion schemes to pushdown automata

We have mentioned before the equi-expressivity result about safe homogeneously-typed higher-
order recursion schemes and higher-order pushdown automata: these two devices generate the
same class of infinite trees. Hague et al. generalized this result to unrestricted recursion scheme;
one direction relies on the traversal theory: an order n recursion scheme can be compiled into
an equivalent order n collapsible pushdown automaton which proceeds by computing the set of
traversals of the recursion scheme’s computation graph [HMOS08]. We conjecture that when
the safety constraint is imposed, this encoding can be specialized into a higher-order pushdown
automaton (without the collapse operation). Such result would give an alternative proof of
Knapik et al.’s equi-expressivity result [KNU02].

Algorithmic game semantics

Is observational equivalence for safe IA4 decidable? We have seen that up to order 3, the
problem of observational equivalence has the same complexity in the safe finitary fragments
as in the unrestricted finitary fragments. At order 4 the picture remains unclear. Murawski
[Mur03] showed the undecidability of program equivalence in IAi for i ≥ 4 by encoding Turing
machine computations using finitary IA4 terms. Because his encoding relies on unsafe terms, the
argument cannot be transposed to the safe fragment of IA. The question of whether observational
equivalence of safe IA4 is decidable thus remains open.

PUR languages

In this thesis, we have shown that the safety constraint produces languages whose game semantics
enjoy the property that some justification pointers are uniquely recoverable from the underlying
sequence of moves. Safe IA3 is an example of language in which all pointers are recoverable. We
name this class PUR for “Pointer Uniquely Recoverable”. Finitary IA2 (finite base types and
no recursion) is the paradigmatic example of a PUR-language (The fact that it is a sublanguage
of Safe IA3 is another proof of this fact). But safe fragments are clearly not the only PUR-
languages: singleton languages (i.e., containing only one term) are trivial examples of PUR
languages. Also the language consisting of all IA3 terms whose beta-reduction is safe is also a
PUR language.

A more interesting example is Serially Re-entrant Idealized Algol [Abr01], a version of IA
where multiple uses of arguments are allowed only if they do not “overlap in time”. In the game
semantics denotation of a SRIA term there is at most one pending occurrence of a question at
any time. Each move has therefore a unique justifier and consequently justification pointers may
be ignored. Safe IA is not a sublanguage of SRIA. One reason for this is that none of the two
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Kierstead terms λf.f(λx.f(λy.y)) and λf.f(λx.f(λy.x)) are Serially Re-entrant whereas the first
one is safe. Conversely, SRIA is not a sublanguage of safe IA since the term λfg.f(λx.g(λy.x))
where f, g : ((o, o), o) belongs to SRIA but not to safe IA.

Another way to generate PUR-languages may consist in constraining types. Joly introduced
a notion of “complexity” for lambda-terms and proved that there is a constant bounding the
complexity of every closed normal lambda-term of a given type T if and only if T can be
generated from a finite set of combinators. Consequently, the only inhabited finitely generated
types are the types of order ≤ 2 and the types (A1, A2, . . . , An, o) such that for all i = 1..n:
Ai = o , Ai = o → o or Ai = (ok → o) → o [Jol01]. We already know that imposing the first
type restriction to Finitary IA leads to a PUR language. Does the second restriction also give
rise to a PUR language?

With a view to algorithmic game semantics and its applications, the PUR class is of particular
interest. Indeed, PUR-languages are good candidates of languages with decidable observational
equivalence. This is because the simplification of the game-semantic model resulting from the
nonnecessity of pointers makes the observational equivalence problem more manageable: in IA,
for instance one just need to compare the set of complete plays underlying the denotation of
a term, forgetting the justification pointers altogether. For lower-order fragments, a machine
characterization of this set is sometimes possible (e.g., finite-state automaton at order-2, and
deterministic pushdown automata for the order-3 fragment with Y0 recursion), subsequently
leading to decidability and complexity results for the observational equivalence problem.
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[HY99] K. Honda and N. Yoshida – Game-theoretic analysis of call-by-value computa-
tion. Theoretical Computer Science 221 (1999), no. 1–2, p. 393–456.

[Jol01] T. Joly – The finitely generated types of the lambda-calculus. In TLCA, 2001,
p. 240–252.
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